1
|
Negri A, Ward C, Bucci A, D'Angelo G, Cauchy P, Radesco A, Ventura AB, Walton DS, Clarke M, Mandriani B, Pappagallo SA, Mondelli P, Liao K, Gargano G, Zaccaria GM, Viggiano L, Lasorsa FM, Ahmed A, Di Molfetta D, Fiermonte G, Cives M, Guarini A, Vegliante MC, Ciavarella S, Frampton J, Volpe G. Reversal of MYB-dependent suppression of MAFB expression overrides leukaemia phenotype in MLL-rearranged AML. Cell Death Dis 2023; 14:763. [PMID: 37996430 PMCID: PMC10667525 DOI: 10.1038/s41419-023-06276-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
The transcription factor MYB plays a pivotal role in haematopoietic homoeostasis and its aberrant expression is involved in the genesis and maintenance of acute myeloid leukaemia (AML). We have previously demonstrated that not all AML subtypes display the same dependency on MYB expression and that such variability is dictated by the nature of the driver mutation. However, whether this difference in MYB dependency is a general trend in AML remains to be further elucidated. Here, we investigate the role of MYB in human leukaemia by performing siRNA-mediated knock-down in cell line models of AML with different driver lesions. We show that the characteristic reduction in proliferation and the concomitant induction of myeloid differentiation that is observed in MLL-rearranged and t(8;21) leukaemias upon MYB suppression is not seen in AML cells with a complex karyotype. Transcriptome analyses revealed that MYB ablation produces consensual increase of MAFB expression in MYB-dependent cells and, interestingly, the ectopic expression of MAFB could phenocopy the effect of MYB suppression. Accordingly, in silico stratification analyses of molecular data from AML patients revealed a reciprocal relationship between MYB and MAFB expression, highlighting a novel biological interconnection between these two factors in AML and supporting new rationales of MAFB targeting in MLL-rearranged leukaemias.
Collapse
Affiliation(s)
- A Negri
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - C Ward
- Edge Impulse Inc., San Jose, CA, USA
| | - A Bucci
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - G D'Angelo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - P Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - A Radesco
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - A B Ventura
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - D S Walton
- Clent Life Sciences, DY84HD, Stourbridge, UK
| | - M Clarke
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK
| | - B Mandriani
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - S A Pappagallo
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - P Mondelli
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - K Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - G Gargano
- Department of Mathematics, University of Bari "Aldo Moro", Bari, Italy
| | - G M Zaccaria
- Department of Electrical and Information Engineering, Polytechnic University of Bari, Bari, Italy
| | - L Viggiano
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - F M Lasorsa
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - A Ahmed
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - D Di Molfetta
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - G Fiermonte
- Department of Bioscience, Biotechnology and Environment, University of Bari "Aldo Moro", 70125, Bari, Italy
| | - M Cives
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | - A Guarini
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - M C Vegliante
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - S Ciavarella
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - J Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, B152TT, Birmingham, UK.
| | - G Volpe
- Hematology and Cell Therapy Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
2
|
Duan Y, Zhao Y, Li Z, Liu Z, Wang M, Wang X, Sun M, Song C, Yao Y. Discovery of N-(2-oxoethyl) sulfanilamide-derived inhibitors of KAT6A (MOZ) against leukemia by an isostere strategy. Eur J Med Chem 2023; 260:115770. [PMID: 37651878 DOI: 10.1016/j.ejmech.2023.115770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
KAT6A has been identified as a new target for leukemia treatment. The histone acetyltransferase activity of KAT6A is essential for normal hematopoietic stem cell self-renewal, and mutations or translocations are regarded as one of the major causes of leukemia development. In previous studies, CTX-0124143 has been shown to be a class of KAT6A inhibitors with a sulfonyl hydrazide backbone. However, weak activity, poor selectivity and pharmacokinetic problems have hindered its clinical application. In this work, the N‒N bond in compound CTX-0124143 was replaced by an N-C bond, and the aromatic rings were replaced on both sides. Finally, we obtained Compound 6j. Compared to CTX-0124143, 6j showed a 16-fold stronger inhibition of KAT6A (0.49 μM vs. 0.03 μM) with high selectivity. In addition, 6j exhibited strong antitumor activity on four leukemia cell lines. Moreover, 6j showed significant improvement in metabolic stability and pharmacokinetics in vivo and in vitro. In conclusion, 6j shows excellent potential as a promising anti-leukemia drug candidate.
Collapse
Affiliation(s)
- Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yabiao Zhao
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Li
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhenling Liu
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Xuan Wang
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Moran Sun
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Chuanjun Song
- College of Chemistry, and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
3
|
The role of MOZ/KAT6A in hematological malignancies and advances in MOZ/KAT6A inhibitors. Pharmacol Res 2021; 174:105930. [PMID: 34626770 DOI: 10.1016/j.phrs.2021.105930] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Hematological malignancies, unlike solid tumors, are a group of malignancies caused by abnormal differentiation of hematopoietic stem cells. Monocytic leukemia zinc finger protein (MOZ), a member of the MYST (MOZ, Ybf2/Sas3, Sas2, Tip60) family, is a histone acetyltransferase. MOZ is involved in various cellular functions: generation and maintenance of hematopoietic stem cells, development of erythroid cells, B-lineage progenitors and myeloid cells, and regulation of cellular senescence. Studies have shown that MOZ is susceptible to translocation in chromosomal rearrangements to form fusion genes, leading to the fusion of MOZ with other cellular regulators to form MOZ fusion proteins. Different MOZ fusion proteins have different roles, such as in the development and progression of hematological malignancies and inhibition of cellular senescence. Thus, MOZ is an attractive target, and targeting MOZ to design small-molecule drugs can help to treat hematological malignancies. This review summarizes recent progress in biology and medicinal chemistry for the histone acetyltransferase MOZ. In the biology section, MOZ and cofactors, structures of MOZ and related HATs, MOZ and fusion proteins, and roles of MOZ in cancer are discussed. In medicinal chemistry, recent developments in MOZ inhibitors are summarized.
Collapse
|
4
|
Becker MW, Angelucci E. A large co-operative biological and clinical study to better understand and improve treatment of the rare t(8;16)(p11;p13) acute myeloid leukaemia. Br J Haematol 2021; 192:800-802. [PMID: 33540474 DOI: 10.1111/bjh.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Emanuele Angelucci
- Hematology and Transplant Center, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
5
|
Masetti R, Bertuccio SN, Guidi V, Cerasi S, Lonetti A, Pession A. Uncommon cytogenetic abnormalities identifying high-risk acute myeloid leukemia in children. Future Oncol 2020; 16:2747-2762. [DOI: 10.2217/fon-2020-0505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents an aggressive disease and is the leading cause of childhood leukemic mortality. The genomic landscape of pediatric AML has been recently mapped and redefined thanks to large-scale sequencing efforts. Today, understanding how to incorporate the growing list of genetic lesions into a risk stratification algorithm for pediatric AML is increasingly challenging given the uncertainty regarding the prognostic impact of rare lesions. Here we review some uncommon cytogenetic lesions to be considered for inclusion in the high-risk groups of the next pediatric AML treatment protocols. We describe their main clinical characteristics, biological background and outcome. We also provide some suggestions for the management of these rare but challenging patients and some novel targeted therapeutic options.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Vanessa Guidi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Sara Cerasi
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Annalisa Lonetti
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Andrea Pession
- Pediatric Hematology-Oncology Unit, Department of Medical & Surgical Sciences DIMEC, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Giorgio Prodi Interdepartmental Cancer Research Centre, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
6
|
Acute Myeloid Leukemia in an Infant with t(8;19)(p11.2;q13) Translocation: Case Report and a Review of the Literature. Case Rep Hematol 2019; 2019:4198415. [PMID: 31583141 PMCID: PMC6754882 DOI: 10.1155/2019/4198415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) patients with t(8;16)(p11.2;p13) constitute a small subgroup with a distinct genetic and clinical profile. We present a unique case of a female infant with monocytic AML associated with t(8;19)(p11.2;q13.3), a rarely reported variation of t(8;16)(p11.2;p13). The patient presented with leukemia cutis and demonstrated erythrophagocytosis in the diagnostic bone marrow. She responded well to standard AML chemotherapy and is currently in remission. Here, we highlight her case as the youngest AML patient with t(8;19) described in the literature, discuss the significance and prognostic implications of this genetic variant, and review 8p11.2 fusion proteins in AML.
Collapse
|
7
|
McRae HM, Voss AK, Thomas T. Are transplantable stem cells required for adult hematopoiesis? Exp Hematol 2019; 75:1-10. [PMID: 31175894 DOI: 10.1016/j.exphem.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cells (HSCs) have been studied intensely for more than half a century. As a result, the properties of HSCs have become a paradigm of adult stem cell biology and function. The "classical" view of hematopoiesis suggests that the HSCs sit at the top of a hierarchy and that differentiation involves sequential production of multipotent and lineage committed progenitors with limited self-renewal capacity. This view of hematopoiesis is certainly valid after transplantation of HSCs, where, with appropriate support, a single HSC can regenerate the entire hematopoietic system of the recipient. However, it is not clear whether HSCs perform the same function during steady-state hematopoiesis. Indeed, studies have shown that the majority of classical HSCs are not required for ongoing steady-state adult hematopoiesis. Several reports suggest that steady-state hematopoiesis relies on highly proliferative cells with more lineage restricted characteristics, a finding that was not anticipated based on results from transplantation experiments. However, other studies indicate a more substantial HSC contribution. Nevertheless, the notion of HSCs as distinct from progenitors appears to be simplistic in view of ample evidence for heterogeneity within the stem cell compartment. In this review we discuss recent results and controversies surrounding HSCs.
Collapse
Affiliation(s)
- Helen M McRae
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Abstract
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRβ in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
9
|
Wang X, Angelis N, Thein SL. MYB - A regulatory factor in hematopoiesis. Gene 2018; 665:6-17. [PMID: 29704633 PMCID: PMC10764194 DOI: 10.1016/j.gene.2018.04.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023]
Abstract
MYB is a transcription factor which was identified in birds as a viral oncogene (v-MYB). Its cellular counterpart was subsequently isolated as c-MYB which has three functional domains - DNA binding domain, transactivation domain and negative regulatory domain. c-MYB is essential for survival, and deletion of both alleles of the gene results in embryonic death. It is highly expressed in hematopoietic cells, thymus and neural tissue, and required for T and B lymphocyte development and erythroid maturation. Additionally, aberrant MYB expression has been found in numerous solid cancer cells and human leukemia. Recent studies have also implicated c-MYB in the regulation of expression of fetal hemoglobin which is highly beneficial to the β-hemoglobinopathies (beta thalassemia and sickle cell disease). These findings suggest that MYB could be a potential therapeutic target in leukemia, and possibly also a target for therapeutic increase of fetal hemoglobin in the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xunde Wang
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Nikolaos Angelis
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, USA.
| |
Collapse
|
10
|
Uttarkar S, Frampton J, Klempnauer KH. Targeting the transcription factor Myb by small-molecule inhibitors. Exp Hematol 2016; 47:31-35. [PMID: 28017646 DOI: 10.1016/j.exphem.2016.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 11/18/2022]
Abstract
The transcription factor Myb is a key regulator of hematopoietic cell proliferation, differentiation, and survival and has been implicated in the development of leukemia and several other human cancers. Pharmacological inhibition of Myb is therefore emerging as a potential therapeutic strategy. Recently, the first low-molecular-weight compounds that show Myb inhibitory activity have been identified. Characterization of these compounds suggests disruption of the protein-protein-interaction of Myb and the coactivator p300 as a suitable strategy to inhibit Myb.
Collapse
Affiliation(s)
| | - Jon Frampton
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
11
|
c-myb hyperactivity leads to myeloid and lymphoid malignancies in zebrafish. Leukemia 2016; 31:222-233. [PMID: 27457538 DOI: 10.1038/leu.2016.170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/17/2022]
Abstract
The c-MYB transcription factor is a key regulator of hematopoietic cell proliferation and differentiation, and dysregulation of c-MYB activity often associates with various hematological disorders. Yet, its pathogenic role remains largely unknown due to lack of suitable animal models. Here, we report a detail characterization of a c-myb-gfp transgenic zebrafish harboring c-Myb hyperactivity (named c-mybhyper). This line exhibits abnormal granulocyte expansion that resembles human myelodysplastic syndrome (MDS) from embryonic stage to adulthood. Strikingly, a small portion of c-mybhyper adult fish develops acute myeloid leukemia-like or acute lymphoid leukemia-like disorders with age. The myeloid and lymphoid malignancies in c-mybhyper adult fish are likely caused by the hyperactivity of c-myb, resulting in the dysregulation of a number of cell-cycle-related genes and hyperproliferation of hematopoietic precursor cells. Finally, treatment with c-myb target drug flavopiridol can relieve the MDS-like symptoms in both c-mybhyper embryos and adult fish. Our study establishes a zebrafish model for studying the cellular and molecular mechanisms underlying c-Myb-associated leukemogenesis as well as for anti-leukemic drug screening.
Collapse
|
12
|
Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction. Blood 2015; 127:1173-82. [PMID: 26631113 DOI: 10.1182/blood-2015-09-668632] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb.
Collapse
|
13
|
MYST2 acetyltransferase expression and Histone H4 Lysine acetylation are suppressed in AML. Exp Hematol 2015; 43:794-802.e4. [DOI: 10.1016/j.exphem.2015.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 02/04/2023]
|
14
|
Kühnl A, Valk PJM, Sanders MA, Ivey A, Hills RK, Mills KI, Gale RE, Kaiser MF, Dillon R, Joannides M, Gilkes A, Haferlach T, Schnittger S, Duprez E, Linch DC, Delwel R, Löwenberg B, Baldus CD, Solomon E, Burnett AK, Grimwade D. Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia. Blood 2015; 125:2985-94. [PMID: 25805812 PMCID: PMC4463809 DOI: 10.1182/blood-2014-12-613703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/11/2015] [Indexed: 12/13/2022] Open
Abstract
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle
- Cohort Studies
- DNA Methylation
- DNA-Binding Proteins
- Down-Regulation
- Female
- Follow-Up Studies
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Immunoenzyme Techniques
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Mutation/genetics
- Oligonucleotide Array Sequence Analysis
- Prognosis
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Wnt Proteins/antagonists & inhibitors
- Young Adult
Collapse
Affiliation(s)
- Andrea Kühnl
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom; Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adam Ivey
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Robert K Hills
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Ken I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, United Kingdom
| | - Rosemary E Gale
- Department of Haematology, University College London, London, United Kingdom
| | - Martin F Kaiser
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Melanie Joannides
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | | | - Estelle Duprez
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Centre National de la Recherche Scientifique UMR7258, Institut Paoli-Calmettes, Aix Marseille University, Marseille, France
| | - David C Linch
- Department of Haematology, University College London, London, United Kingdom
| | - Ruud Delwel
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Claudia D Baldus
- Department of Hematology and Oncology, Charité University Hospital Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Alan K Burnett
- Department of Haematology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| |
Collapse
|
15
|
Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 2014; 123:2682-90. [DOI: 10.1182/blood-2012-02-413187] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Key Points
A mutation preventing interaction between c-Myb and p300 prevents transformation and leukemia induction by MLL-AF9 and AML1-ETO9a oncogenes. Identifying agents that block the c-Myb-p300 interaction may be a valuable approach to developing a therapy for acute myeloid leukemia.
Collapse
|
16
|
Bies J, Sramko M, Wolff L. Stress-induced phosphorylation of Thr486 in c-Myb by p38 mitogen-activated protein kinases attenuates conjugation of SUMO-2/3. J Biol Chem 2013; 288:36983-93. [PMID: 24257756 DOI: 10.1074/jbc.m113.500264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
c-Myb plays an essential role in regulation of properly balanced hematopoiesis through transcriptional regulation of genes directly controlling cellular processes such as proliferation, differentiation, and apoptosis. The transcriptional activity and protein levels of c-Myb are strictly controlled through post-translational modifications such as phosphorylation, acetylation, ubiquitination, and SUMOylation. Conjugation of small ubiquitin-like modifier (SUMO) proteins has been shown to suppress the transcriptional activity of c-Myb. SUMO-1 modifies c-Myb under physiological conditions, whereas SUMO-2/3 conjugation was reported in cells under stress. Because stress also activates several cellular protein kinases, we investigated whether phosphorylation of c-Myb changes in stressed cells and whether a mutual interplay exists between phosphorylation and SUMOylation of c-Myb. Here we show that several types of environmental stress induce a rapid change in c-Myb phosphorylation. Interestingly, the phosphorylation of Thr(486), located in close proximity to SUMOylation site Lys(499) of c-Myb, is detected preferentially in nonSUMOylated protein and has a negative effect on stress-induced SUMOylation of c-Myb. Stress-activated p38 MAPKs phosphorylate Thr(486) in c-Myb, attenuate its SUMOylation, and increase its proteolytic turnover. Stressed cells expressing a phosphorylation-deficient T486A mutant demonstrate decreased expression of c-Myb target genes Bcl-2 and Bcl-xL and accelerated apoptosis because of increased SUMOylation of the mutant protein. These results suggest that phosphorylation-dependent modulation of c-Myb SUMOylation may be important for proper response of cells to stress. In summary, we have identified a novel regulatory interplay between phosphorylation and SUMOylation of c-Myb that regulates its activity in stressed cells.
Collapse
Affiliation(s)
- Juraj Bies
- From the Laboratory of Cellular Oncology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
17
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Pediatric acute myeloid leukemia with t(8;16)(p11;p13), a distinct clinical and biological entity: a collaborative study by the International-Berlin-Frankfurt-Munster AML-study group. Blood 2013; 122:2704-13. [PMID: 23974201 DOI: 10.1182/blood-2013-02-485524] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In pediatric acute myeloid leukemia (AML), cytogenetic abnormalities are strong indicators of prognosis. Some recurrent cytogenetic abnormalities, such as t(8;16)(p11;p13), are so rare that collaborative studies are required to define their prognostic impact. We collected the clinical characteristics, morphology, and immunophenotypes of 62 pediatric AML patients with t(8;16)(p11;p13) from 18 countries participating in the International Berlin-Frankfurt-Münster (I-BFM) AML study group. We used the AML-BFM cohort diagnosed from 1995-2005 (n = 543) as a reference cohort. Median age of the pediatric t(8;16)(p11;p13) AML patients was significantly lower (1.2 years). The majority (97%) had M4-M5 French-American-British type, significantly different from the reference cohort. Erythrophagocytosis (70%), leukemia cutis (58%), and disseminated intravascular coagulation (39%) occurred frequently. Strikingly, spontaneous remissions occurred in 7 neonates with t(8;16)(p11;p13), of whom 3 remain in continuous remission. The 5-year overall survival of patients diagnosed after 1993 was 59%, similar to the reference cohort (P = .14). Gene expression profiles of t(8;16)(p11;p13) pediatric AML cases clustered close to, but distinct from, MLL-rearranged AML. Highly expressed genes included HOXA11, HOXA10, RET, PERP, and GGA2. In conclusion, pediatric t(8;16)(p11;p13) AML is a rare entity defined by a unique gene expression signature and distinct clinical features in whom spontaneous remissions occur in a subset of neonatal cases.
Collapse
|
19
|
Lee Y, Yoon KA, Joo J, Lee D, Bae K, Han JY, Lee JS. Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 2012; 34:307-13. [PMID: 23144319 DOI: 10.1093/carcin/bgs356] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The prognostic significance of inherited genetic variants in advanced-stage non-small cell lung cancer (NSCLC) patients remains unknown. In this study, we genotyped 271 817 single-nucleotide polymorphisms in 348 advanced NSCLC patients who received chemotherapy and analyzed their association with prognosis by using Cox proportional hazard regression model adjusted for known prognostic factors. Top candidate single-nucleotide polymorphisms (SNPs) were selected using the bootstrap re-sampling procedure. Median age of patient population was 56 years. Proportions of female, never smokers and adenocarcinoma were 64.9, 67.5 and 80.4%, respectively. We identified 17 top candidate SNPs related to prognosis using cut-off minimum P value of <5.0 × 10(-5) in at least 70% of 1000 bootstrap samples. These SNPs were located in the genomic regions of the FAM154A, ANKS1A, DLST, THSD7B, NCOA2, CDH8, SLC35D2, NALCN and EGF genes. The most significant SNP, rs1571228 (9p22.1:FAM154A), was significantly associated with overall survival in dominant model [AG+GG to AA, hazard ratio (HR) of death (95% CI) = 0.53 (0.42-0.67); P = 2.025 × 10(-7)]. The SNP at 4q25:EGF, rs11098063, for which some genetic variations was previously reported to be associated with prognosis, also showed significant association with overall survival in additive model [CC versus CT versus TT, HR (95% CI) = 1.00 versus 0.61 (0.47-0.78) versus 0.39 (0.19-0.79); P = 9.582 × 10(-6)]. Survival differences according to the genotype of these SNPs were independent of sex, smoking, histology and chemotherapy regimens. These results suggested the variants at multiple genetic loci might contribute to the risk of death in advanced NSCLC patients receiving chemotherapy.
Collapse
Affiliation(s)
- Youngjoo Lee
- Center for Lung Cancer, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Lieu YK, Reddy EP. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice. Cell Cycle 2012; 11:3504-12. [PMID: 22918254 DOI: 10.4161/cc.21802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The differentiation of myeloid progenitors to mature, terminally differentiated cells is a highly regulated process. Here, we showed that conditional disruption of the c-myb proto-oncogene in adult mice resulted in dramatic reductions in CMP, GMP and MEP myeloid progenitors, leading to a reduction of neutrophils, basophils, monocytes and platelets in peripheral blood. In addition, c-myb plays a critical role at multiple stages of myeloid development, from multipotent CMP and bipotent GMP to unipotent CFU-G and CFU-M progenitor cells. c-myb controls the differentiation of these cells and is required for the proper commitment, maturation and normal differentiation of CMPs and GMPs. Specifically, c-myb regulates the precise commitment to the megakaryocytic and granulo-monocytic pathways and governs the granulocytic-monocytic lineage choice. c-myb is also required for the commitment along the granulocytic pathway for early myeloid progenitor cells and for the maturation of committed precursor cells along this pathway. On the other hand, disruption of the c-myb gene favors the commitment to the monocytic lineage, although monocytic development was abnormal with cells appearing more mature with atypical CD41 surface markers. These results demonstrate that c-myb plays a pivotal role in the regulation of multiple stages in adult myelogenesis.
Collapse
Affiliation(s)
- Yen K Lieu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA.
| | | |
Collapse
|
21
|
|
22
|
Falk H, Connor T, Yang H, Loft KJ, Alcindor JL, Nikolakopoulos G, Surjadi RN, Bentley JD, Hattarki MK, Dolezal O, Murphy JM, Monahan BJ, Peat TS, Thomas T, Baell JB, Parisot JP, Street IP. An Efficient High-Throughput Screening Method for MYST Family Acetyltransferases, a New Class of Epigenetic Drug Targets. ACTA ACUST UNITED AC 2011; 16:1196-205. [DOI: 10.1177/1087057111421631] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epigenetic aberrations are increasingly regarded as key factors in cancer progression. Recently, deregulation of histone acetyltransferases (HATs) has been linked to several types of cancer. Monocytic leukemia zinc finger protein (MOZ) is a member of the MYST family of HATs, which regulate gene expression in cell proliferation and differentiation. Deregulation of these processes through constitutively active MOZ fusion proteins gives rise to the formation of leukemic stem cells, rendering MOZ an excellent target for treating myeloid leukemia. The authors implemented a hit discovery campaign to identify small-molecule inhibitors of MOZ-HAT activity. They developed a robust, homogeneous assay measuring the acetylation of synthetic histone peptides. In a primary screening campaign testing 243 000 lead-like compounds, they identified inhibitors from several chemical classes. Secondary assays were used to eliminate assay-interfering compounds and prioritize confirmed hits. This study establishes a new high-throughput assay for HAT activity and could provide the foundation for the development of a new class of drugs for the treatment of leukemias.
Collapse
Affiliation(s)
- Hendrik Falk
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - Theresa Connor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hong Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - Karen J. Loft
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - Joanne L. Alcindor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - George Nikolakopoulos
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - Regina N. Surjadi
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - John D. Bentley
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - Meghan K. Hattarki
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - Olan Dolezal
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - James M. Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Brendon J. Monahan
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - Thomas S. Peat
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Materials Science and Engineering Division, Parkville, Victoria, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jonathan B. Baell
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - John P. Parisot
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| | - Ian P. Street
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Cancer Therapeutics CRC P/L, High Throughput Screening Group, Bundoora, Victoria, Australia
| |
Collapse
|
23
|
Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA, Leo PJ, Gonda TJ. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39:4664-79. [PMID: 21317192 PMCID: PMC3113568 DOI: 10.1093/nar/gkr024] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/28/2022] Open
Abstract
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas J. Gonda
- The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
24
|
Zhou Y, Ness SA. Myb proteins: angels and demons in normal and transformed cells. Front Biosci (Landmark Ed) 2011; 16:1109-31. [PMID: 21196221 DOI: 10.2741/3738] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.
Collapse
Affiliation(s)
- Ye Zhou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | |
Collapse
|
25
|
A functional SUMO-interacting motif in the transactivation domain of c-Myb regulates its myeloid transforming ability. Oncogene 2010; 30:212-22. [DOI: 10.1038/onc.2010.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Rocquain J, Carbuccia N, Trouplin V, Raynaud S, Murati A, Nezri M, Tadrist Z, Olschwang S, Vey N, Birnbaum D, Gelsi-Boyer V, Mozziconacci MJ. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 2010; 10:401. [PMID: 20678218 PMCID: PMC2923633 DOI: 10.1186/1471-2407-10-401] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation. Methods We searched for mutations in the ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype. Results Mutations in ASXL1 and CBL were frequent in refractory anemia with excess of blasts. Mutations in TET2 occurred with similar frequency in MDSs and AMLs and associated equally with either ASXL1 or NPM1 mutations. Mutations of RUNX1 were mutually exclusive with TET2 and combined with ASXL1 but not with NPM1. Mutations in FLT3 (mutation and internal tandem duplication), IDH1, IDH2, NPM1 and WT1 occurred primarily in AMLs. Conclusion Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.
Collapse
Affiliation(s)
- Julien Rocquain
- Laboratoire d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Serravalle S, Melchionda F, Astolfi A, Libri V, Masetti R, Pession A. A novel specific signature of pediatric MOZ-CBP acute myeloid leukemia. Leuk Res 2010; 34:e292-3. [PMID: 20630590 DOI: 10.1016/j.leukres.2010.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/19/2010] [Accepted: 05/26/2010] [Indexed: 02/05/2023]
|
28
|
Myeloid-specific inactivation of p15Ink4b results in monocytosis and predisposition to myeloid leukemia. Blood 2010; 116:979-87. [PMID: 20457873 DOI: 10.1182/blood-2009-08-238360] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inactivation of p15INK4b, an inhibitor of cyclin-dependent kinases, through DNA methylation is one of the most common epigenetic abnormalities in myeloid leukemia. Although this suggests a key role for this protein in myeloid disease suppression, experimental evidence to support this has not been reported. To address whether this event is critical for premalignant myeloid disorders and leukemia development, mice were generated that have loss of p15Ink4b specifically in myeloid cells. The p15Ink4b(fl/fl)-LysMcre mice develop nonreactive monocytosis in the peripheral blood accompanied by increased numbers of myeloid and monocytic cells in the bone marrow resembling the myeloproliferative form of chronic myelomonocytic leukemia. Spontaneous progression from chronic disease to acute leukemia was not observed. Nevertheless, MOL4070LTR retrovirus integrations provided cooperative genetic mutations resulting in a high frequency of myeloid leukemia in knockout mice. Two common retrovirus insertion sites near c-myb and Sox4 genes were identified, and their transcript up-regulated in leukemia, suggesting a collaborative role of their protein products with p15Ink4b-deficiency in promoting malignant disease. This new animal model demonstrates experimentally that p15Ink4b is a tumor suppressor for myeloid leukemia, and its loss may play an active role in the establishment of preleukemic conditions.
Collapse
|
29
|
Patnaik MM, Gangat N, Knudson RA, Keefe JG, Hanson CA, Pardanani A, Ketterling RP, Tefferi A. Chromosome 8p11.2 translocations: prevalence, FISH analysis for FGFR1 and MYST3, and clinicopathologic correlates in a consecutive cohort of 13 cases from a single institution. Am J Hematol 2010; 85:238-42. [PMID: 20143402 DOI: 10.1002/ajh.21631] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromosome 8p11.2 translocations result in diverse oncogenic fusion genes involving FGFR1 or MYST3. Among 24,262 unique patient cytogenetic studies performed at the Mayo Clinic, 8p11.2 translocations were identified in 14 cases ( approximately 0.06%). FISH analysis was performed in 13 patients (12 had myeloid neoplasms) and revealed abnormalities of MYST3 (n = 4) or FGFR1 (n = 4) in eight patients. MYST3 abnormalities were associated with acute myeloid leukemia (AML), M4 in three and M6 in one. Three of the four FGFR1-rearranged cases were associated with myeloproliferative neoplasms but none, including the two with sole 8p11.2, displayed the typical phenotype for stem cell leukemia/lymphoma (SCLL) and only one had eosinophilia; the fourth case had AML-M4. FISH did not reveal FGFR1 involvement in the one patient with SCLL. We conclude that neither the SCLL phenotype nor blood eosinophilia is a consistent feature of FGFR1-associated 8p11.2 translocations; conversely, FISH might not always reveal FGFR1 involvement in typical SCLL.
Collapse
|
30
|
|
31
|
Pattabiraman DR, Sun J, Dowhan DH, Ishii S, Gonda TJ. Mutations in Multiple Domains of c-Myb Disrupt Interaction with CBP/p300 and Abrogate Myeloid Transforming Ability. Mol Cancer Res 2009; 7:1477-86. [DOI: 10.1158/1541-7786.mcr-09-0070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci U S A 2009; 106:12950-5. [PMID: 19651600 DOI: 10.1073/pnas.0903091106] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytogenetic analysis of acute myeloid leukemia (AML) cells has accelerated the identification of genes important for AML pathogenesis. To complement cytogenetic studies and to identify genes altered in AML genomes, we performed genome-wide copy number analysis with paired normal and tumor DNA obtained from 86 adult patients with de novo AML using 1.85 million feature SNP arrays. Acquired copy number alterations (CNAs) were confirmed using an ultra-dense array comparative genomic hybridization platform. A total of 201 somatic CNAs were found in the 86 AML genomes (mean, 2.34 CNAs per genome), with French-American-British system M6 and M7 genomes containing the most changes (10-29 CNAs per genome). Twenty-four percent of AML patients with normal cytogenetics had CNA, whereas 40% of patients with an abnormal karyotype had additional CNA detected by SNP array, and several CNA regions were recurrent. The mRNA expression levels of 57 genes were significantly altered in 27 of 50 recurrent CNA regions <5 megabases in size. A total of 8 uniparental disomy (UPD) segments were identified in the 86 genomes; 6 of 8 UPD calls occurred in samples with a normal karyotype. Collectively, 34 of 86 AML genomes (40%) contained alterations not found with cytogenetics, and 98% of these regions contained genes. Of 86 genomes, 43 (50%) had no CNA or UPD at this level of resolution. In this study of 86 adult AML genomes, the use of an unbiased high-resolution genomic screen identified many genes not previously implicated in AML that may be relevant for pathogenesis, along with many known oncogenes and tumor suppressor genes.
Collapse
|
33
|
|
34
|
Bacher U, Kohlmann A, Haferlach T. Perspectives of gene expression profiling for diagnosis and therapy in haematological malignancies. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:184-93. [PMID: 19474126 DOI: 10.1093/bfgp/elp011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Considering the heterogeneity of leukaemias and the widening spectrum of therapeutic strategies, novel diagnostic methods are urgently needed for haematological malignancies. For a decade, gene expression profiling (GEP) has been applied in leukaemia research. Thus, various studies demonstrated worldwide that the majority of genetically defined leukaemia subtypes are accurately predictable by GEP, for example, with respect to reciprocal rearrangements in acute myeloid leukaemia (AML). Moreover, novel prognostically relevant gene classifiers were developed as, for example, in normal karyotype AML. Considering the lymphatic malignancies, GEP studies defined novel clinically relevant subtypes in diffuse large B cell lymphoma (DLBCL), and improved the discrimination of Burkitt lymphoma and DLBCL cases, overcoming considerable overlaps of these entities that exist from morphological and genetic perspectives. Treatment-specific sensitivity assays are being developed for targeted drugs such as farnesyl transferase inhibitors in AML or imatinib in BCR-ABL1 positive acute lymphoblastic leukaemia (ALL). Irrespectively of these proceedings, an introduction of the microarray technology in haematological practice requires diagnostic algorithms and strategies for interaction with currently established diagnostic techniques. Large multicentre studies such as the MILE Study (Microarray Innovations in LEukemia) aim at translating this methodology into clinical routine workflows and to catalyze this process.
Collapse
Affiliation(s)
- Ulrike Bacher
- MLL Munich Leukemia Laboratory, D-81377 Munich, Germany
| | | | | |
Collapse
|
35
|
Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N, Lagarde A, Prebet T, Nezri M, Sainty D, Olschwang S, Xerri L, Chaffanet M, Mozziconacci MJ, Vey N, Birnbaum D. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009; 145:788-800. [PMID: 19388938 DOI: 10.1111/j.1365-2141.2009.07697.x] [Citation(s) in RCA: 450] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal haematological diseases characterized by ineffective haematopoiesis and predisposition to acute myeloid leukaemia (AML). The pathophysiology of MDSs remains unclear. A definition of the molecular biology of MDSs may lead to a better classification, new prognosis indicators and new treatments. We studied a series of 40 MDS/AML samples by high-density array-comparative genome hybridization (aCGH). The genome of MDSs displayed a few alterations that can point to candidate genes, which potentially regulate histone modifications and WNT pathways (e.g. ASXL1, ASXL2, UTX, CXXC4, CXXC5, TET2, TET3). To validate some of these candidates we studied the sequence of ASXL1. We found mutations in the ASXL1 gene in four out of 35 MDS patients (11%). To extend these results we searched for mutations of ASXL1 in a series of chronic myelomonocytic leukaemias, a disease classified as MDS/Myeloproliferative disorder, and found mutations in 17 out of 39 patients (43%). These results show that ASXL1 might play the role of a tumour suppressor in myeloid malignancies.
Collapse
Affiliation(s)
- Véronique Gelsi-Boyer
- Centre de Recherche en Cancérologie de Marseille, Département d'Oncologie Moléculaire, UMR891 Inserm, Institut Paoli-Calmettes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bacher U, Haferlach C, Schnittger S, Kern W, Kroeger N, Zander AR, Haferlach T. Interactive diagnostics in the indication to allogeneic SCT in AML. Bone Marrow Transplant 2009; 43:745-56. [DOI: 10.1038/bmt.2009.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Bacher U, Kohlmann A, Haferlach T. Current status of gene expression profiling in the diagnosis and management of acute leukaemia. Br J Haematol 2009; 145:555-68. [PMID: 19344393 DOI: 10.1111/j.1365-2141.2009.07656.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene expression profiling (GEP) enables the simultaneous investigation of the expression of tens of thousands of genes and was successfully introduced in leukaemia research a decade ago. Aiming to better understand the diversity of genetic aberrations in acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL), pioneer studies investigated and confirmed the predictability of many cytogenetic and molecular subclasses in AML and ALL. In addition, GEP can define new prognostic subclasses within distinct leukaemia subgroups, as illustrated in AML with normal karyotype. Another approach is the development of treatment-specific sensitivity assays, which might contribute to targeted therapy studies. Finally, GEP might enable the detection of new molecular targets for therapy in patients with acute leukaemia. Meanwhile, large multicentre studies, e.g. the Microarray Innovations in LEukaemia (MILE) study, prepare for a standardised introduction of GEP in leukaemia diagnostic algorithms, aiming to translate this novel methodology into clinical routine for the benefit of patients with the complex disorders of AML and ALL.
Collapse
Affiliation(s)
- Ulrike Bacher
- Department of Stem Cell Transplantation, University Cancer Center Hamburg, Hamburg
| | | | | |
Collapse
|
38
|
AML with translocation t(8;16)(p11;p13) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features. Leukemia 2009; 23:934-43. [PMID: 19194466 DOI: 10.1038/leu.2008.388] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Balanced chromosomal rearrangements define distinct entities in acute myeloid leukemia (AML). Here, we present 13 AML cases with t(8;16)(p11;p13) with observed low incidence (13/6124 patients), but more frequent presentation in therapy-related AML than in de novo AML (7/438 versus 6/5686, P=0.00001). Prognosis was poor with median overall survival of 4.7 months. Cytomorphology was characterized by parallel positive myeloperoxidase and non-specific esterase staining, therefore, French-American-British (FAB)-classification was impossible and origin of the AML with t(8;16) from an early stem cell with myeloid and monoblastic potential is hypothesized. Erythrophagocytosis was observed in 7/13 cases. Using gene expression profiling on 407 cases, patients with t(8;16) were compared to AML FAB subtypes with normal karyotype. Principal component analyses demonstrated that AML with t(8;16) were distinct from FAB subtypes M1, M4, M5a/b. When further compared to AML showing balanced rearrangements, that is, current WHO categories t(15;17), t(8;21), inv(16) and t(11q23)/MLL, AML with t(8;16) cases were clustered close to t(11q23)/MLL sharing commonly expressed genes. Subsequently, a pairwise comparison discriminated AML with t(8;16) from AML with t(11q23)/MLL, thus defining a highly unique signature for AML with t(8;16). In conclusion, AML with t(8;16) demonstrates unique cytomorphological, cytogenetic, molecular and prognostic features and is a specific subtype of AML.
Collapse
|