1
|
Moassass F, Moualla Y, AL‐Halabi B, Khamis A, Al‐achkar W. The Clinical Impact of NPM1 Mutations and the Effect of Concurrent Mutations in Acute Myeloid Leukemia: Unraveling the Prognostic Significance. Health Sci Rep 2024; 7:e70231. [PMID: 39633833 PMCID: PMC11615810 DOI: 10.1002/hsr2.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Background and Aims Nucleophosmin (NPM1) gene mutations occur in approximately 30%-35% of individuals with an initial diagnosis of acute myeloid leukemia (AML). Mutations in this gene have been reported in 50%-60% of AML patients with a normal karyotype. These mutations help to distinguish clinicopathological and molecular features, setting them apart as a unique subset within the heterogeneous landscape of AML. In the present study, we investigated the frequency and clinical impact of NPM1 mut in 100 newly diagnosed adult Syrian patients with AML-normal karyotype (NK) using direct sequencing. Methods We analyzed 100 AML-NK patients using direct sequencing to assess the prevalence and clinical impact of NPM1 mutations, as well as the co-occurrence of FLT3-ITD and DNMT3A mutations. Results Our results revealed that the prevalence of NPM1 mut was 22% among the patients; 86.4% of these mutations were type A (NM_002520.5:c.860-863dupTCTG), while 13.6% were de novo mutations (c.863_864insCCTG, p.Trp288CysfsTer12), (c.861_862dup, p.Trp288SerfsTer13), and (c.863_864insCCGG, p.Trp288CysfsTer12). Among our patients, 22% exhibited NPM1 mut, with 7% also harboring FLT3-ITD mut and 2% having DNMT3A mut. The presence of NPM1 mut was correlated with a statistically significant increase in bone marrow blast percentage (p = 0.017). Notably, patients with NPM1 mut displayed significantly higher mortality rates, with 72.7% succumbing to the disease compared to 29.5% of patients without NPM1 mut (p < 0.001). Furthermore, our results showed that when the overall survival (OS) time exceeded 8.35 months, the likelihood of NPM1 wild-type status was greater. Conclusion The evaluation of NPM1 mut and co-mutation has consistently demonstrated remarkable prognostic significance in AML, suggesting the potential for improved response rates, extended disease-free periods, and OS. Our findings provide valuable insights for understanding molecular leukemogenesis in AML-NK patients and will aid in clinical diagnosis, prognostic implications, and the development of targeted therapy strategies for Syrian AML patients.
Collapse
Affiliation(s)
- Faten Moassass
- Department of Molecular Biology and Biotechnology, Human Genetics DivisionAtomic Energy CommissionDamascusSyria
| | - Yahia Moualla
- Department of Laboratory DiagnosisFaculty of Pharmacy, Ministry of Higher EducationTishreen UniversityLattakiaSyria
| | - Bassel AL‐Halabi
- Department of Molecular Biology and Biotechnology, Human Genetics DivisionAtomic Energy CommissionDamascusSyria
| | - Atieh Khamis
- Department of Laboratory DiagnosisFaculty of Pharmacy, Ministry of Higher EducationTishreen UniversityLattakiaSyria
| | - Walid Al‐achkar
- Department of Molecular Biology and Biotechnology, Human Genetics DivisionAtomic Energy CommissionDamascusSyria
| |
Collapse
|
2
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Juul-Dam KL, Shukla NN, Cooper TM, Cuglievan B, Heidenreich O, Kolb EA, Rasouli M, Hasle H, Zwaan CM. Therapeutic targeting in pediatric acute myeloid leukemia with aberrant HOX/MEIS1 expression. Eur J Med Genet 2023; 66:104869. [PMID: 38174649 PMCID: PMC11195042 DOI: 10.1016/j.ejmg.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/21/2023] [Accepted: 10/22/2023] [Indexed: 01/05/2024]
Abstract
Despite advances in the clinical management of childhood acute myeloid leukemia (AML) during the last decades, outcome remains fatal in approximately one third of patients. Primary chemoresistance, relapse and acute and long-term toxicities to conventional myelosuppressive therapies still constitute significant challenges and emphasize the unmet need for effective targeted therapies. Years of scientific efforts have translated into extensive insights on the heterogeneous spectrum of genetics and oncogenic signaling pathways of AML and identified a subset of patients characterized by upregulation of HOXA and HOXB homeobox genes and myeloid ecotropic virus insertion site 1 (MEIS1). Aberrant HOXA/MEIS1 expression is associated with genotypes such as rearrangements in Histone-lysine N-methyltransferase 2A (KMT2A-r), nucleoporin 98 (NUP98-r) and mutated nucleophosmin (NPM1c) that are found in approximately one third of children with AML. AML with upregulated HOXA/MEIS1 shares a number of molecular vulnerabilities amenable to recently developed molecules targeting the assembly of protein complexes or transcriptional regulators. The interaction between the nuclear scaffold protein menin and KMT2A has gained particular interest and constitutes a molecular dependency for maintenance of the HOXA/MEIS1 transcription program. Menin inhibitors disrupt the menin-KMT2A complex in preclinical models of KMT2A-r, NUP98-r and NPM1c acute leukemias and its occupancy at target genes leading to leukemic cell differentiation and apoptosis. Early-phase clinical trials are either ongoing or in development and preliminary data suggests tolerable toxicities and encouraging efficacy of menin inhibitors in adults with relapsed or refractory KMT2A-r and NPM1c AML. The Pediatric Acute Leukemia/European Pediatric Acute Leukemia (PedAL/EUPAL) project is focused to advance and coordinate informative clinical trials with new agents and constitute an ideal framework for testing of menin inhibitors in pediatric study populations. Menin inhibitors in combination with standard chemotherapy or other targeting agents may enhance anti-leukemic effects and constitute rational treatment strategies for select genotypes of childhood AML, and provide enhanced safety to avoid differentiation syndrome. In this review, we discuss the pathophysiological mechanisms in KMT2A-r, NUP98-r and NPM1c AML, emerging molecules targeting the HOXA/MEIS1 transcription program with menin inhibitors as the most prominent examples and future therapeutic implications of these agents in childhood AML.
Collapse
Affiliation(s)
- Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Todd M Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - Branko Cuglievan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - E Anders Kolb
- Division of Oncology, Nemours/Alfred I. Dupont Hospital for Children, Wilmington, DE, USA
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Tomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4171. [PMID: 37627199 PMCID: PMC10452723 DOI: 10.3390/cancers15164171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is the second most common type of leukemia in children. Recent advances in high-resolution genomic profiling techniques have uncovered the mutational landscape of pediatric AML as distinct from adult AML. Overall survival rates of children with AML have dramatically improved in the past 40 years, currently reaching 70% to 80% in developed countries. This was accomplished by the intensification of conventional chemotherapy, improvement in risk stratification using leukemia-specific cytogenetics/molecular genetics and measurable residual disease, appropriate use of allogeneic hematopoietic stem cell transplantation, and improvement in supportive care. However, the principle therapeutic approach for pediatric AML has not changed substantially for decades and improvement in event-free survival is rather modest. Further refinements in risk stratification and the introduction of emerging novel therapies to contemporary therapy, through international collaboration, would be key solutions for further improvements in outcomes.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children’s Cancer Center, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan;
| |
Collapse
|
6
|
Krizsán S, Péterffy B, Egyed B, Nagy T, Sebestyén E, Hegyi LL, Jakab Z, Erdélyi DJ, Müller J, Péter G, Csanádi K, Kállay K, Kriván G, Barna G, Bedics G, Haltrich I, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Gaál Z, Szegedi I, Ujfalusi A, Kajtár B, Kiss C, Matolcsy A, Tímár B, Kovács G, Alpár D, Bödör C. Next-Generation Sequencing-Based Genomic Profiling of Children with Acute Myeloid Leukemia. J Mol Diagn 2023; 25:555-568. [PMID: 37088137 PMCID: PMC10435843 DOI: 10.1016/j.jmoldx.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/11/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.
Collapse
Affiliation(s)
- Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Sebestyén
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pal Children's Hospital, Budapest, Hungary
| | - Krisztián Kállay
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gergely Kriván
- Division of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, University of Pécs Clinical Centre, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Zsuzsanna Gaál
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Department of Pediatric Hematology and Oncology, Institute of Pediatrics, University of Debrecen, Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, University of Debrecen, Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Clinical Centre, Pécs, Hungary
| | - Csongor Kiss
- Hemato-Oncology and Stem Cell Transplantation Unit, Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Botond Tímár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gábor Kovács
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Miyashita N, Onozawa M, Yoshida S, Kimura H, Takahashi S, Yokoyama S, Matsukawa T, Hirabayashi S, Fujisawa S, Mori A, Ota S, Kakinoki Y, Tsutsumi Y, Yamamoto S, Miyagishima T, Nagashima T, Ibata M, Wakasa K, Haseyama Y, Fujimoto K, Ishihara T, Sakai H, Kondo T, Teshima T. Prognostic impact of FLT3-ITD, NPM1 mutation and CEBPA bZIP domain mutation in cytogenetically normal acute myeloid leukemia: a Hokkaido Leukemia Net study. Int J Hematol 2023:10.1007/s12185-023-03567-1. [PMID: 36853451 DOI: 10.1007/s12185-023-03567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
Mutation status of FLT3, NPM1, and CEBPA is used to classify the prognosis of acute myeloid leukemia, but its significance in patients with cytogenetically normal (CN) AML is unclear. We prospectively analyzed these genes in 295 patients with CN-AML and identified 76 (25.8%) FLT3-ITD, 113 (38.3%) NPM1 mutations, and 30 (10.2%) CEBPA biallelic mutations. We found that patients with FLT3-ITD had a poor prognosis at any age, while patients with CEBPA biallelic mutation were younger and had a better prognosis. FLT3-ITD and NPM1 mutations were correlated, and the favorable prognostic impact of being FLT3-ITD negative and NPM1 mutation positive was evident only in patients aged 65 years or more. For CEBPA, 86.7% of the patients with biallelic mutation and 9.1% of patients with the single allele mutation had in-frame mutations in the bZIP domain, which were strongly associated with a favorable prognosis. Multivariate analysis showed that age < 65 years, FLT3-ITD and CEBPA bZIP in-frame mutation were independent prognostic factors. The results suggest that analyzing these gene mutations at diagnosis can inform selection of the optimal intensity of therapy for patients with CN-AML.
Collapse
Affiliation(s)
- Naoki Miyashita
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan.
| | - Shota Yoshida
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Hiroyuki Kimura
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Shogo Takahashi
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Shota Yokoyama
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Toshihiro Matsukawa
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan
| | - Shinsuke Hirabayashi
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Fujisawa
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Akio Mori
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| | | | - Yutaka Tsutsumi
- Department of Hematology, Hakodate Municipal Hospital, Hakodate, Japan
| | - Satoshi Yamamoto
- Department of Hematology, Sapporo City General Hospital, Sapporo, Japan
| | | | - Takahiro Nagashima
- Department of Internal Medicine/General Medicine, Kitami Red Cross Hospital, Kitami, Japan
| | - Makoto Ibata
- Department of Hematology, Sapporo Kosei General Hospital, Sapporo, Japan
| | - Kentaro Wakasa
- Department of Hematology, Obihiro Kosei Hospital, Obihiro, Japan
| | | | - Katsuya Fujimoto
- Department of Hematology, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | | | - Hajime Sakai
- Department of Hematology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Takeshi Kondo
- Blood Disorders Center, Aiiku Hospital, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-Ku, Sapporo, 0608638, Japan.,Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
8
|
Eshibona N, Giwa A, Rossouw SC, Gamieldien J, Christoffels A, Bendou H. Upregulation of FHL1, SPNS3, and MPZL2 predicts poor prognosis in pediatric acute myeloid leukemia patients with FLT3-ITD mutation. Leuk Lymphoma 2022; 63:1897-1906. [PMID: 35249471 DOI: 10.1080/10428194.2022.2045594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
Chromosomal translocations and gene mutations are characteristics of the genomic profile of acute myeloid leukemia (AML). We aim to identify a gene signature associated with poor prognosis in AML patients with FLT3-ITD compared to AML patients with NPM1/CEBPA mutations. RNA-sequencing (RNA-Seq) count data were downloaded from the UCSC Xena browser. Samples were grouped by their mutation status into high and low-risk groups. Differential gene expression (DGE), machine learning (ML) and survival analyses were performed. A total of 471 differentially expressed genes (DEGs) were identified, of which 16 DEGs were used as features for the prediction of mutation status. An accuracy of 92% was obtained from the ML model. FHL1, SPNS3, and MPZL2 were found to be associated with overall survival in FLT3-ITD samples. FLT3-ITD mutation confers an indicative gene expression profile different from NPM1/CEBPA mutation, and the expression of FHL1, SPSN3, and MPZL2 can serve as prognostic indicators of unfavorable disease.
Collapse
Affiliation(s)
- Nasr Eshibona
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Abdulazeez Giwa
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Sophia Catherine Rossouw
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Junaid Gamieldien
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Alan Christoffels
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| | - Hocine Bendou
- SAMRC Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
9
|
Noort S, van Oosterwijk J, Ma J, Garfinkle EA, Nance S, Walsh M, Song G, Reinhardt D, Pigazzi M, Locatelli F, Hasle H, Abrahamsson J, Jarosova M, Kelaidi C, Polychronopoulou S, van den Heuvel-Eibrink MM, Fornerod M, Gruber TA, Zwaan CM. Analysis of rare driving events in pediatric acute myeloid leukemia. Haematologica 2022; 108:48-60. [PMID: 35899387 PMCID: PMC9827169 DOI: 10.3324/haematol.2021.280250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 02/04/2023] Open
Abstract
Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics.
Collapse
Affiliation(s)
- Sanne Noort
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | | | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dirk Reinhardt
- AML-BFM Study Group, Pediatric Hematology and Oncology, Essen, Germany
| | - Martina Pigazzi
- Women and Child Health Department, Hematology-Oncology Clinic and Lab, University of Padova, Padova, Italy
| | - Franco Locatelli
- Italian Association of Pediatric Hematology and Oncology, University of Pavia, Pavia, Italy
| | - Henrik Hasle
- Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jonas Abrahamsson
- Nordic Society for Pediatric Hematology and Oncology, Department of Pediatrics, Institution for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Jarosova
- Center of Molecular Biology and Gene Therapy, Department of Internal Hematology and Oncology, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology, “Aghia Sophia” Children’s Hospital, Athens, Greece
| | - Marry M. van den Heuvel-Eibrink
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maarten Fornerod
- Department of Cell Biology, Erasmus MC, Rotterdam, the Netherlands
| | - Tanja A. Gruber
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C. Michel Zwaan
- Pediatric Oncology/Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands,C. M. Zwaan
| |
Collapse
|
10
|
Distinct genomic landscape of Chinese pediatric acute myeloid leukemia impacts clinical risk classification. Nat Commun 2022; 13:1640. [PMID: 35347147 PMCID: PMC8960760 DOI: 10.1038/s41467-022-29336-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/09/2022] [Indexed: 12/17/2022] Open
Abstract
Studies have revealed key genomic aberrations in pediatric acute myeloid leukemia (AML) based on Western populations. It is unknown to what extent the current genomic findings represent populations with different ethnic backgrounds. Here we present the genomic landscape of driver alterations of Chinese pediatric AML and discover previously undescribed genomic aberrations, including the XPO1-TNRC18 fusion. Comprehensively comparing between the Chinese and Western AML cohorts reveal a substantially distinct genomic alteration profile. For example, Chinese AML patients more commonly exhibit mutations in KIT and CSF3R, and less frequently mutated of genes in the RAS signaling pathway. These differences in mutation frequencies lead to the detection of previously uncharacterized co-occurring mutation pairs. Importantly, the distinct driver profile is clinical relevant. We propose a refined prognosis risk classification model which better reflected the adverse event risk for Chinese AML patients. These results emphasize the importance of genetic background in precision medicine. The genomic landscape of pediatric acute myeloid leukemia (AML) has mostly been characterised for Western populations. Here, the authors identify potential driver alterations in Chinese pediatric AML, which differ from Western populations, and propose a prognostic risk classification model.
Collapse
|
11
|
Fournier E, Heiblig M, Lespinasse C, Flandrin-Gresta P, Geay A, Miguet L, Fenwarth L, Vallat L, Soubeyrand B, Marceau-Renaut A, Plesa A, Preudhomme C, Sujobert P, Hayette S, Duployez N, Huet S. Molecular heterogeneity and measurable residual disease of rare NPM1 mutations in acute myeloid leukemia: a nationwide experience from the GBMHM study group. Leukemia 2022; 36:1390-1400. [PMID: 35256762 DOI: 10.1038/s41375-022-01534-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Elise Fournier
- Université de Lille, CNRS, Inserm, CHU Lille, Laboratoire d'Hématologie, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Maël Heiblig
- Hospices Civils de Lyon, Hopital Lyon Sud, Service clinique d'hématologie, Pierre-Bénite, France
| | - Christine Lespinasse
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France
| | - Pascale Flandrin-Gresta
- CHU Saint-Etienne, Hôpital Nord, Service d'hématologie biologique, Saint-Priest-en-Jarez, France
| | - Antoine Geay
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France
| | - Laurent Miguet
- CHU Strasbourg, Département de génétique moléculaire des cancers; Laboratoire d'hématologie, Hôpitaux universitaires de Strasbourg, INSERM, IRFAC, UMR-S1113, Strasbourg, France
| | - Laurene Fenwarth
- Université de Lille, CNRS, Inserm, CHU Lille, Laboratoire d'Hématologie, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Laurent Vallat
- CHU Strasbourg, Département de génétique moléculaire des cancers; Laboratoire d'hématologie, Hôpitaux universitaires de Strasbourg, INSERM, IRFAC, UMR-S1113, Strasbourg, France
| | - Brigitte Soubeyrand
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France
| | - Alice Marceau-Renaut
- Université de Lille, CNRS, Inserm, CHU Lille, Laboratoire d'Hématologie, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Adriana Plesa
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France
| | - Claude Preudhomme
- Université de Lille, CNRS, Inserm, CHU Lille, Laboratoire d'Hématologie, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France.,Université Claude Bernard Lyon I, UR Lymphoma-Immuno-Biology, Faculté de médecine Lyon Sud, Oullins, France
| | - Sandrine Hayette
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France.,Université Claude Bernard Lyon I, UR Lymphoma-Immuno-Biology, Faculté de médecine Lyon Sud, Oullins, France
| | - Nicolas Duployez
- Université de Lille, CNRS, Inserm, CHU Lille, Laboratoire d'Hématologie, UMR9020-U1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Sarah Huet
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, Pierre-Bénite, France. .,Université Claude Bernard Lyon I, UR Lymphoma-Immuno-Biology, Faculté de médecine Lyon Sud, Oullins, France.
| |
Collapse
|
12
|
Lejman M, Dziatkiewicz I, Jurek M. Straight to the Point-The Novel Strategies to Cure Pediatric AML. Int J Mol Sci 2022; 23:1968. [PMID: 35216084 PMCID: PMC8878466 DOI: 10.3390/ijms23041968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0-M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland
| | - Izabela Dziatkiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| | - Mateusz Jurek
- Student Scientific Society, Laboratory of Genetic Diagnostics, II Faculty of Pediatrics, Medical University of Lublin, A. Gębali 6, 20-093 Lublin, Poland; (I.D.); (M.J.)
| |
Collapse
|
13
|
Fornerod M, Ma J, Noort S, Liu Y, Walsh MP, Shi L, Nance S, Liu Y, Wang Y, Song G, Lamprecht T, Easton J, Mulder HL, Yergeau D, Myers J, Kamens JL, Obeng EA, Pigazzi M, Jarosova M, Kelaidi C, Polychronopoulou S, Lamba JK, Baker SD, Rubnitz JE, Reinhardt D, van den Heuvel-Eibrink MM, Locatelli F, Hasle H, Klco JM, Downing JR, Zhang J, Pounds S, Zwaan CM, Gruber TA. Integrative Genomic Analysis of Pediatric Myeloid-Related Acute Leukemias Identifies Novel Subtypes and Prognostic Indicators. Blood Cancer Discov 2021; 2:586-599. [PMID: 34778799 PMCID: PMC8580615 DOI: 10.1158/2643-3230.bcd-21-0049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022] Open
Abstract
Integrating somatic mutation analysis and gene expression profiling distinguishes pediatric AML subtypes with differential prognoses and clinical risks. Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell–like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification.
Collapse
Affiliation(s)
- Maarten Fornerod
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Jing Ma
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sanne Noort
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael P Walsh
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephanie Nance
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yuanyuan Wang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Tamara Lamprecht
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather L Mulder
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Donald Yergeau
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacquelyn Myers
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L Kamens
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martina Pigazzi
- Department of Women's and Children's Health, Hematology Oncology Clinic and Lab, University of Padova, IRP, Padova, Italy.,Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Marie Jarosova
- Department of Internal Medicine Hematology and Oncology Center of Molecular Biology and Gene Therapy, Masaryk University Hospital, Brno, Czech Republic
| | - Charikleia Kelaidi
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Sophia Polychronopoulou
- Department of Pediatric Hematology and Oncology Aghia Sophia Children's Hospital, Athens, Greece
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Sharyn D Baker
- Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dirk Reinhardt
- Department of Pediatrics, University Hospital Essen, Essen, Germany
| | - Marry M van den Heuvel-Eibrink
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Franco Locatelli
- Department of Pediatric Hematology Oncology, IRCCS Ospedale Pediatrico Bambino Gesù, Sapienza, University of Rome, Rome, Italy
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University, Aarhus, Denmark
| | - Jeffery M Klco
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - C Michel Zwaan
- Department of Pediatric Oncology Hematology, Erasmus Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Pediatric Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Tanja A Gruber
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
14
|
Skou AS, Juul-Dam KL, Hansen M, Lausen B, Stratmann S, Holmfeldt L, Aggerholm A, Nyvold CG, Ommen HB, Hasle H. Measurable Residual Disease Monitoring of SPAG6, ST18, PRAME, and XAGE1A Expression in Peripheral Blood May Detect Imminent Relapse in Childhood Acute Myeloid Leukemia. J Mol Diagn 2021; 23:1787-1799. [PMID: 34600138 DOI: 10.1016/j.jmoldx.2021.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
Overexpressed genes may be useful for monitoring of measurable residual disease (MRD) in patients with childhood acute myeloid leukemia (AML) without a leukemia-specific target. The normal expression of five leukemia-associated genes (SPAG6, ST18, MSLN, PRAME, XAGE1A) was defined in children without hematologic disease (n = 53) and children with suspected infection (n = 90). Gene expression at AML diagnosis (n=50) and during follow-up (n = 21) was compared with child-specific reference values. At diagnosis, 34/50 children (68%) had high expression of at least one of the five genes, and so did 16/31 children (52%) without a leukemia-specific target. Gene expression was quantified in 110 peripheral blood (PB) samples (median, five samples/patient; range, 1 to 10) during follow-up in 21 patients with high expression at diagnosis. All nine patients with PB sampling performed within 100 days of disease recurrence displayed overexpression of SPAG6, ST18, PRAME, or XAGE1A at a median of 2 months (range, 0.6 to 9.6 months) before hematologic relapse, whereas MSLN did not reach expression above normal prior to hematologic relapse. Only 1 of 130 (0.8%) follow-up analyses performed in 10 patients in continuous complete remission had transient expression above normal. SPAG6, ST18, PRAME, and XAGE1A expression in PB may predict relapse in childhood AML patients and facilitate MRD monitoring in most patients without a leukemia-specific target.
Collapse
Affiliation(s)
- Anne-Sofie Skou
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maria Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Svea Stratmann
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Linda Holmfeldt
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anni Aggerholm
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotte G Nyvold
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Hans B Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
16
|
NPM1 Mutational Status Underlines Different Biological Features in Pediatric AML. Cancers (Basel) 2021; 13:cancers13143457. [PMID: 34298672 PMCID: PMC8304368 DOI: 10.3390/cancers13143457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, predominantly located in the nucleolus, that regulates a multiplicity of different biological processes. NPM1 localization in the cell is finely tuned by specific signal motifs, with two tryptophan residues (Trp) being essential for the nucleolar localization. In acute myeloid leukemia (AML), several NPM1 mutations have been reported, all resulting in cytoplasmic delocalization, but the putative biological and clinical significance of different variants are still debated. We explored HOXA and HOXB gene expression profile in AML patients and found a differential expression between NPM1 mutations inducing the loss of two (A-like) Trp residues and those determining the loss of one Trp residue (non-A-like). We thus expressed NPM1 A-like- or non-A-like-mutated vectors in AML cell lines finding that NPM1 partially remained in the nucleolus in the non-A-like NPM1-mutated cells. As a result, only in A-like-mutated cells we detected HOXA5, HOXA10, and HOXB5 hyper-expression and p14ARF/p21/p53 pathway deregulation, leading to reduced sensitivity to the treatment with either chemotherapy or Venetoclax, as compared to non-A-like cells. Overall, we identified that the NPM1 mutational status mediates crucial biological characteristics of AML cells, providing the basis for further sub-classification and, potentially, management of this subgroup of patients.
Collapse
|
17
|
Egan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer 2021; 68:e28979. [PMID: 33844444 DOI: 10.1002/pbc.28979] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease that requires a multifaceted treatment approach. Although outcomes for low-risk AML have improved significantly over recent decades, high-risk AML continues to be associated with an adverse prognosis. Recent advances in molecular diagnostics, risk stratification, and supportive care have contributed to improvements in outcomes in pediatric AML. Targeted approaches, for example, the use of tyrosine kinase inhibitors to treat FLT3-ITD AML, offer promise and are currently undergoing clinical investigation in pediatric patients. New approaches to hematopoietic stem cell transplantation, including the use of haploidentical donors, are significantly expanding donor options for patients with high-risk AML. This review provides an overview of recent advances in the treatment of pediatric AML that are likely to have clinical impact and reshape the standard of care.
Collapse
Affiliation(s)
- Grace Egan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yogi Chopra
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie Mourad
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | - Kuang-Yueh Chiang
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Johann Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
Abstract
The genetic basis for pediatric acute myeloid leukemia (AML) is highly heterogeneous, often involving the cooperative action of characteristic chromosomal rearrangements and somatic mutations in progrowth and antidifferentiation pathways that drive oncogenesis. Although some driver mutations are shared with adult AML, many genetic lesions are unique to pediatric patients, and their appropriate identification is essential for patient care. The increased understanding of these malignancies through broad genomic studies has begun to risk-stratify patients based on their combinations of genomic alterations, a trend that will enable precision medicine in this population.
Collapse
Affiliation(s)
- Bryan Krock
- Caris Life Sciences, 4610 South 44th Place, Phoenix, AZ, USA
| | | |
Collapse
|
19
|
Quessada J, Cuccuini W, Saultier P, Loosveld M, Harrison CJ, Lafage-Pochitaloff M. Cytogenetics of Pediatric Acute Myeloid Leukemia: A Review of the Current Knowledge. Genes (Basel) 2021; 12:924. [PMID: 34204358 PMCID: PMC8233729 DOI: 10.3390/genes12060924] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/04/2023] Open
Abstract
Pediatric acute myeloid leukemia is a rare and heterogeneous disease in relation to morphology, immunophenotyping, germline and somatic cytogenetic and genetic abnormalities. Over recent decades, outcomes have greatly improved, although survival rates remain around 70% and the relapse rate is high, at around 30%. Cytogenetics is an important factor for diagnosis and indication of prognosis. The main cytogenetic abnormalities are referenced in the current WHO classification of acute myeloid leukemia, where there is an indication for risk-adapted therapy. The aim of this article is to provide an updated review of cytogenetics in pediatric AML, describing well-known WHO entities, as well as new subgroups and germline mutations with therapeutic implications. We describe the main chromosomal abnormalities, their frequency according to age and AML subtypes, and their prognostic relevance within current therapeutic protocols. We focus on de novo AML and on cytogenetic diagnosis, including the practical difficulties encountered, based on the most recent hematological and cytogenetic recommendations.
Collapse
Affiliation(s)
- Julie Quessada
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
| | - Wendy Cuccuini
- Hematological Cytogenetics Laboratory, Saint-Louis Hospital, Assistance Publique des Hôpitaux de Paris (APHP), 75010 Paris, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| | - Paul Saultier
- APHM, La Timone Children’s Hospital Department of Pediatric Hematology and Oncology, 13005 Marseille, France;
- Faculté de Médecine, Aix Marseille University, INSERM, INRAe, C2VN, 13005 Marseille, France
| | - Marie Loosveld
- Aix Marseille University, CNRS, INSERM, CIML, 13009 Marseille, France;
- Hematology Laboratory, Timone Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group Translational and Clinical Research Institute, Newcastle University Centre for Cancer Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children’s Hospital, Assistance Publique-Hôpitaux de Marseille (APHM), Faculté de Médecine, Aix Marseille University, 13005 Marseille, France;
- Groupe Francophone de Cytogénétique Hématologique (GFCH), 1 Avenue Claude Vellefaux, 75475 Paris, France
| |
Collapse
|
20
|
Krali O, Palle J, Bäcklin CL, Abrahamsson J, Norén-Nyström U, Hasle H, Jahnukainen K, Jónsson ÓG, Hovland R, Lausen B, Larsson R, Palmqvist L, Staffas A, Zeller B, Nordlund J. DNA Methylation Signatures Predict Cytogenetic Subtype and Outcome in Pediatric Acute Myeloid Leukemia (AML). Genes (Basel) 2021; 12:895. [PMID: 34200630 PMCID: PMC8229099 DOI: 10.3390/genes12060895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous disease composed of clinically relevant subtypes defined by recurrent cytogenetic aberrations. The majority of the aberrations used in risk grouping for treatment decisions are extensively studied, but still a large proportion of pediatric AML patients remain cytogenetically undefined and would therefore benefit from additional molecular investigation. As aberrant epigenetic regulation has been widely observed during leukemogenesis, we hypothesized that DNA methylation signatures could be used to predict molecular subtypes and identify signatures with prognostic impact in AML. To study genome-wide DNA methylation, we analyzed 123 diagnostic and 19 relapse AML samples on Illumina 450k DNA methylation arrays. We designed and validated DNA methylation-based classifiers for AML cytogenetic subtype, resulting in an overall test accuracy of 91%. Furthermore, we identified methylation signatures associated with outcome in t(8;21)/RUNX1-RUNX1T1, normal karyotype, and MLL/KMT2A-rearranged subgroups (p < 0.01). Overall, these results further underscore the clinical value of DNA methylation analysis in AML.
Collapse
Affiliation(s)
- Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
| | - Josefine Palle
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
- Department of Women’s and Children’s Health, Uppsala University, 752 37 Uppsala, Sweden
| | - Christofer L. Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, 751 85 Uppsala, Sweden; (C.L.B.); (R.L.)
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children’s Hospital, 416 85 Gothenburg, Sweden;
| | - Ulrika Norén-Nyström
- Department of Clinical Sciences, Pediatrics, Umeå University Hospital, 901 85 Umeå, Sweden;
| | - Henrik Hasle
- Department of Pediatrics, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
| | - Kirsi Jahnukainen
- Children’s Hospital, Helsinki University Central Hospital, Helsinki, and University of Helsinki, 00290 Helsinki, Finland;
| | - Ólafur Gísli Jónsson
- Department of Pediatrics, Landspitali University Hospital, 101 Reykjavík, Iceland;
| | - Randi Hovland
- Center of Medical Genetics and Molecular Medicine, Haukeland University Hospital, 5009 Bergen, Norway;
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, 751 85 Uppsala, Sweden; (C.L.B.); (R.L.)
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (L.P.); (A.S.)
| | - Anna Staffas
- Department of Clinical Chemistry and Transfusion Medicine, University of Gothenburg, 41346 Gothenburg, Sweden; (L.P.); (A.S.)
| | - Bernward Zeller
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, 0450 Oslo, Norway;
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden;
| |
Collapse
|
21
|
What Is Abnormal in Normal Karyotype Acute Myeloid Leukemia in Children? Analysis of the Mutational Landscape and Prognosis of the TARGET-AML Cohort. Genes (Basel) 2021; 12:genes12060792. [PMID: 34064268 PMCID: PMC8224370 DOI: 10.3390/genes12060792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Normal karyotype acute myeloid leukemia (NK-AML) constitutes 20–25% of pediatric AML and detailed molecular analysis is essential to unravel the genetic background of this group. Using publicly available sequencing data from the TARGET-AML initiative, we investigated the mutational landscape of NK-AML in comparison with abnormal karyotype AML (AK-AML). In 164 (97.6%) of 168 independent NK-AML samples, at least one somatic protein-coding mutation was identified using whole-genome or targeted capture sequencing. We identified a unique mutational landscape of NK-AML characterized by a higher prevalence of mutated CEBPA, FLT3, GATA2, NPM1, PTPN11, TET2, and WT1 and a lower prevalence of mutated KIT, KRAS, and NRAS compared with AK-AML. Mutated CEBPA often co-occurred with mutated GATA2, whereas mutated FLT3 co-occurred with mutated WT1 and NPM1. In multivariate regression analysis, we identified younger age, WBC count ≥50 × 109/L, FLT3-internal tandem duplications, and mutated WT1 as independent predictors of adverse prognosis and mutated NPM1 and GATA2 as independent predictors of favorable prognosis in NK-AML. In conclusion, NK-AML in children is characterized by a unique mutational landscape which impacts the disease outcome.
Collapse
|
22
|
Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol 2021; 236:7832-7852. [PMID: 33959979 DOI: 10.1002/jcp.30406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Nucleophosmin (NPM1) is a well-known nucleocytoplasmic shuttling protein that performs several cellular functions such as ribosome biogenesis, chromatin remodeling, genomic stability, cell cycle progression, and apoptosis. NPM1 has been identified to be necessary for normal cellular functions, and its altered regulation by overexpression, mutation, translocation, loss of function, or sporadic deletion can lead to cancer and tumorigenesis. In this review, we focus on the gene and protein structure of NPM1 and its physiological roles. Finally, we discuss the association of NPM1 with various types of cancer including solid tumors and leukemia.
Collapse
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
23
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Alarbeed IF, Wafa A, Moassass F, Al-Halabi B, Alachkar W, Aboukhamis I. Two Novel Mutations of the NPM1 Gene in Syrian Adult Patients with Acute Myeloid Leukemia and Normal Karyotype. Asian Pac J Cancer Prev 2021; 22:227-232. [PMID: 33507703 PMCID: PMC8184179 DOI: 10.31557/apjcp.2021.22.1.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/25/2022] Open
Abstract
Objective: Somatic mutations in exon 12 of the NPM1 gene is one of the most common genetic abnormalities in adult acute myeloid leukemia (AML), which is observed in 25-35% of AML patients and in 50-60% of patients with cytogenetically normal AML (CN-AML). Methods: We performed Sanger sequencing of exon 12 of the NPM1 gene, on 44 CN-AML patients to characterize NPM1 status. Results: In this study, NPM1 mutations were identified in 10 (22.7%) of the 44 CN-AML patients. Among the 10 patients with NPM1 mutations, type A NPM1 mutations were identified in 8 (80%) patients, whereas non-A type NPM1 mutations were observed in 2 (20%) patients. Two non-A type NPM1 mutations were not previously reported: c.867-868InsCGGA and c.861-862InsTGCA. These two novel mutant proteins display a nuclear export signal (NES) motif (L-xxx-L-xx-V-x-L) less frequently and L-x-Lx-V-xx-V-x-L it has been never seen before, yet. However, both novel mutations show a tryptophan loss at codon 288 and 290 at the mutant C-terminus which are crucial for aberrant nuclear export of NPM into the cytoplasm. Conclusions: This study suggests previously unreported NPM1 mutations may be non-rare and thus additional sequence analysis is needed along with conventional targeted mutational analysis to detect non type-A NPM1 mutations.
Collapse
Affiliation(s)
- Ismael F Alarbeed
- Department of Microbiology, Hematology and Immunology, Faculty of Pharmacy, Damascus University, Ministry of High Education, Damascus, Syria
| | - Abdulsamad Wafa
- Department of Molecular Biology and Biotechnology, Human Genetics Division, Atomic Energy Commission, Damascus, Syria
| | - Faten Moassass
- Department of Molecular Biology and Biotechnology, Human Genetics Division, Atomic Energy Commission, Damascus, Syria
| | - Bassel Al-Halabi
- Department of Molecular Biology and Biotechnology, Human Genetics Division, Atomic Energy Commission, Damascus, Syria
| | - Walid Alachkar
- Department of Molecular Biology and Biotechnology, Human Genetics Division, Atomic Energy Commission, Damascus, Syria
| | - Imad Aboukhamis
- Department of Microbiology, Hematology and Immunology, Faculty of Pharmacy, Damascus University, Ministry of High Education, Damascus, Syria
| |
Collapse
|
25
|
Diagnostic and therapeutic pitfalls in NPM1-mutated AML: notes from the field. Leukemia 2021; 35:3113-3126. [PMID: 33879827 PMCID: PMC8056374 DOI: 10.1038/s41375-021-01222-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/21/2021] [Accepted: 03/09/2021] [Indexed: 02/02/2023]
Abstract
Mutations of Nucleophosmin (NPM1) are the most common genetic abnormalities in adult acute myeloid leukaemia (AML), accounting for about 30% of cases. NPM1-mutated AML has been recognized as distinct entity in the 2017 World Health Organization (WHO) classification of lympho-haematopoietic neoplasms. WHO criteria allow recognition of this leukaemia entity and its distinction from AML with myelodysplasia-related changes, AML with BCR-ABL1 rearrangement and AML with RUNX1 mutations. Nevertheless, controversial issues include the percentage of blasts required for the diagnosis of NPM1-mutated AML and whether cases of NPM1-mutated myelodysplasia and chronic myelomonocytic leukaemia do exist. Evaluation of NPM1 and FLT3 status represents a major pillar of the European LeukemiaNet (ELN) genetic-based risk stratification model. Moreover, NPM1 mutations are particularly suitable for assessing measurable residual disease (MRD) since they are frequent, stable at relapse and do not drive clonal haematopoiesis. Ideally, combining monitoring of MRD with the ELN prognostication model can help to guide therapeutic decisions. Here, we provide examples of instructive cases of NPM1-mutated AML, in order to provide criteria for the appropriate diagnosis and therapy of this frequent leukaemia entity.
Collapse
|
26
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
27
|
Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia. Blood Adv 2020; 3:3157-3169. [PMID: 31648321 DOI: 10.1182/bloodadvances.2019000404] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the genetic understanding of acute myeloid leukemia (AML) have improved clinical outcomes in pediatric patients. However, ∼40% of patients with pediatric AML relapse, resulting in a relatively low overall survival rate of ∼70%. The objective of this study was to reveal the comprehensive genetic background of pediatric AML. We performed transcriptome analysis (RNA sequencing [RNA-seq]) in 139 of the 369 patients with de novo pediatric AML who were enrolled in the Japanese Pediatric Leukemia/Lymphoma Study Group AML-05 trial and investigated correlations between genetic aberrations and clinical information. Using RNA-seq, we identified 54 in-frame gene fusions and 1 RUNX1 out-of-frame fusion in 53 of 139 patients. Moreover, we found at least 258 gene fusions in 369 patients (70%) through reverse transcription polymerase chain reaction and RNA-seq. Five gene rearrangements were newly identified, namely, NPM1-CCDC28A, TRIP12-NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1. In addition, we found rare gene rearrangements, namely, MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-MECOM, ETV6-CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-CBFA2T3. Among the remaining 111 patients, KMT2A-PTD, biallelic CEBPA, and NPM1 gene mutations were found in 11, 23, and 17 patients, respectively. These mutations were completely mutually exclusive with any gene fusions. RNA-seq unmasked the complexity of gene rearrangements and mutations in pediatric AML. We identified potentially disease-causing alterations in nearly all patients with AML, including novel gene fusions. Our results indicated that a subset of patients with pediatric AML represent a distinct entity that may be discriminated from their adult counterparts. Based on these results, risk stratification should be reconsidered.
Collapse
|
28
|
Hu GH, Lu AD, Jia YP, Zuo YX, Wu J, Zhang LP. Prognostic Impact of Extramedullary Infiltration in Pediatric Low-risk Acute Myeloid Leukemia: A Retrospective Single-center Study Over 10 Years. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e813-e820. [PMID: 32680776 DOI: 10.1016/j.clml.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND The impact of extramedullary infiltration (EMI) on the clinical outcomes of pediatric patients with acute myeloid leukemia (AML) are controversial. PATIENTS AND METHODS A total of 214 pediatric patients with low-risk AML were classified as having EMI (central nervous leukemia [CNSL] and/or myeloid sarcoma [MS]) and not having EMI. Patients with isolated MS before AML diagnosis by bone marrow examination were confirmed with histopathologic examination. For patients diagnosed with AML by bone marrow examination, a thorough physical examination and radiologic imaging were used to confirm MS. RESULTS Male gender, a high white blood cell count, the FAB-M5 subtype, t(8;21) and t(1;11) abnormalities, and c-KIT mutations were associated with EMI. The presence of MS was associated with a low complete remission rate (63.6% vs. 79.4%; P = .000) and poor 3-year relapse-free survival (RFS) (62.6% ± 7.5% vs. 87.0% ± 2.8%; P = .000) and 3-year overall survival (73.5% ± 7% vs. 88.8% ± 2.6%; P = .011). Multivariate analysis revealed that MS was a poor prognostic factor for RFS and overall survival. Bone infiltration was an independent risk factor for inferior RFS with MS. Patients with CNSL had a low complete remission rate (58.3% vs. 77.2%; P = .045); however, CNSL did not significantly affect the survival of low-risk patients with AML. CONCLUSION MS should be considered an independent risk factor to guide stratified treatment.
Collapse
Affiliation(s)
- Guan-Hua Hu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ai-Dong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yue-Ping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Ying-Xi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Jun Wu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
29
|
Pourrajab F, Zare-Khormizi MR, Hashemi AS, Hekmatimoghaddam S. Genetic Characterization and Risk Stratification of Acute Myeloid Leukemia. Cancer Manag Res 2020; 12:2231-2253. [PMID: 32273762 PMCID: PMC7104087 DOI: 10.2147/cmar.s242479] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/22/2020] [Indexed: 12/24/2022] Open
Abstract
The most common acute leukemia in adults is acute myeloid leukemia (AML). The pathophysiology of the disease associates with cytogenetic abnormalities, gene mutations and aberrant gene expressions. At the molecular level, the disease manifests as changes in both epigenetic and genetic signatures. At the clinical level, two aspects of AML should be taken into account. First, the molecular changes occurring in the disease are important prognostic and predictive markers of AML. Second, use of novel therapies targeting these molecular changes. Currently, cytogenetic abnormalities and molecular alterations are the common biomarkers for the prognosis and choice of treatment for AML. Finding a panel of multiple biomarkers is a crucial diagnostic step for patient classification and serves as a prerequisite for individualized treatment strategies. Furthermore, the most important way of identifying relevant targets for new treatment approaches is defining specific patterns or a spectrum of driver gene mutations occurring in AML. Then, an algorithm can be established by the use of several biomarkers, to be used for personalized medicine. This review deals with molecular alterations, risk stratification, and relevant therapeutic decision-making in AML.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- Department of Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Centre, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Azam Sadat Hashemi
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Hematology & Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Despite advances in therapy over the past decades, overall survival for children with acute myeloid leukemia (AML) has not exceeded 70%. In this review, we highlight recent insights into risk stratification for patients with pediatric AML and discuss data driving current and developing therapeutic approaches. RECENT FINDINGS Advances in cytogenetics and molecular profiling, as well as improvements in detection of minimal residual disease after induction therapy, have informed risk stratification, which now relies heavily on these elements. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. However, recent trials focus on limiting treatment-related toxicity through the identification of low-risk subsets who can safely receive fewer cycles of chemotherapy, allocation of hematopoietic stem-cell transplant to only high-risk patients and optimization of infectious and cardioprotective supportive care. SUMMARY Further incorporation of genomic and molecular data in pediatric AML will allow for additional refinements in risk stratification to enable the tailoring of treatment intensity. These data will also dictate the incorporation of molecularly targeted therapeutics into frontline treatment in the hope of improving survival while decreasing treatment-related toxicity.
Collapse
|
31
|
Nucleophosmin mutations confer an independent favorable prognostic impact in 869 pediatric patients with acute myeloid leukemia. Blood Cancer J 2020; 10:1. [PMID: 31915364 PMCID: PMC6949268 DOI: 10.1038/s41408-019-0268-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/28/2022] Open
Abstract
Studies on the clinical significance of Nucleophosmin (NPM1) mutations in pediatric AML in a large cohort are lacking. Moreover, the prognosis of patients with co-occurring NPM1 and FLT3/ITD mutations is controversial. Here, we analyzed the impact of NPM1 mutations on prognoses of 869 pediatric AML patients from the TAGET dataset. The frequency of NPM1 mutations was 7.6%. NPM1 mutations were significantly associated with older age (P < 0.001), normal cytogenetics (P < 0.001), FLT3/ITD mutations (P < 0.001), and high complete remission induction rates (P < 0.05). Overall, NPM1-mutated patients had a significantly better 5-year EFS (P = 0.001) and OS (P = 0.016) compared to NPM1 wild-type patients, and this favorable impact was maintained even in the presence of FLT3/ITD mutations. Stem cell transplantation had no significant effect on the survival of patients with both NPM1 and FLT3/ITD mutations. Multivariate analysis revealed that NPM1 mutations were independent predictors of better outcome in terms of EFS (P = 0.004) and OS (P = 0.012). Our findings showed that NPM1 mutations confer an independent favorable prognostic impact in pediatric AML despite of FLT3/ITD mutations. In addition, pediatric AML patients with both NPM1 and FLT3/ITD mutations appear to have favorable prognoses and may not need hematopoietic stem cell transplantations.
Collapse
|
32
|
Mutated WT1, FLT3-ITD, and NUP98-NSD1 Fusion in Various Combinations Define a Poor Prognostic Group in Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2019; 2019:1609128. [PMID: 31467532 PMCID: PMC6699323 DOI: 10.1155/2019/1609128] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in the WT1 gene and NUP98-NSD1 fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain of FLT3 (FLT3-ITD). To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutated WT1 and FLT3-ITD in blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (only FLT3-ITD; n=33, only WT1 mutation; n=29) or none of these mutations (n=272). Including NUP98-NSD1 and high allelic ratio (AR) of FLT3-ITD (AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence of WT1 mutation, NUP98-NSD1, and FLT3-ITD with an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.
Collapse
|
33
|
Løvvik Juul-Dam K, Guldborg Nyvold C, Vålerhaugen H, Zeller B, Lausen B, Hasle H, Beier Ommen H. Measurable residual disease monitoring using Wilms tumor gene 1 expression in childhood acute myeloid leukemia based on child-specific reference values. Pediatr Blood Cancer 2019; 66:e27671. [PMID: 30900388 DOI: 10.1002/pbc.27671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 01/16/2019] [Accepted: 01/30/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Measurable/minimal residual disease (MRD) monitoring can predict imminent hematological relapse in acute myeloid leukemia (AML). The majority of childhood AML patients do not harbor fusion genes or mutations applicable as MRD markers and overexpression of Wilms tumor gene 1 (WT1) may constitute a useful monitoring target. However, age-specific reference values in healthy hematopoiesis and standardization of WT1 assessment are prerequisites for clinical utility. PROCEDURE We investigated WT1 expression across age in hematologically healthy controls (n = 109), during suspected infection (n = 90) and bone marrow (BM) regeneration (n = 13). WT1 expression in AML at diagnosis (n = 91) and during follow-up (n = 30) was compared with age-specific reference values. RESULTS WT1 expression correlated with age and showed higher levels in both BM and peripheral blood (PB) in children compared with adults (P < 0.001 and P = 0.01). WT1 expression from healthy hematopoiesis was lower in PB compared with BM (WT1BM /WT1PB = 8.6, 95% CI: 5.3-13.7) and not influenced by infection nor BM regeneration. At AML diagnosis, 66% had more than 20-fold WT1 overexpression in PB or BM (PB 74%; BM 45%). WT1 was quantified in 279 PB samples during follow-up. All 11 patients with PB sampling within 4 months of disease recurrence displayed WT1 overexpression by a median of 1.9 months (range, 0.7-9.7) before hematological relapse. CONCLUSIONS This study defines child-specific reference values for WT1 expression in healthy hematopoiesis and demonstrates that WT1 expression in PB is a useful post-treatment monitoring tool in childhood AML. Based on these observations, we propose definitions for childhood AML molecular relapse using WT1 overexpression.
Collapse
Affiliation(s)
| | - Charlotte Guldborg Nyvold
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark.,Hematology-Pathology Research Laboratory, Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Helen Vålerhaugen
- Department of Pathology, The Norwegian Radium Hospital, Oslo, Norway
| | - Bernward Zeller
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Birgitte Lausen
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Hasle
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Beier Ommen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
34
|
Mat Yusoff Y, Abu Seman Z, Othman N, Kamaluddin NR, Esa E, Zulkiply NA, Abdullah J, Zakaria Z. Identification of FLT3 and NPM1 Mutations in Patients with Acute Myeloid Leukaemia. Asian Pac J Cancer Prev 2019; 20:1749-1755. [PMID: 31244296 PMCID: PMC7021611 DOI: 10.31557/apjcp.2019.20.6.1749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Indexed: 11/25/2022] Open
Abstract
Objective: The most frequent acquired molecular abnormalities and important prognostic indicators in patients with Acute Myeloid Leukaemia (AML) are fms-like tyrosine kinase-3 gene (FLT3) and nucleophosmin-1 (NPM1) mutations. Our study aims to develop a cost effective and comprehensive in-house conventional PCR method for detection of FLT3-ITD, FLT3-D835 and NPM1 mutations and to evaluate the frequency of these mutations in patients with cytogenetically normal (CN) AML in our population. Methods: A total of 199 samples from AML patients (95 women, 104 men) were included in the study. Mutation analyses were performed using polymerase chain reaction (PCR) and gene sequencing. Result: Sixty-eight patients were positive for the mutations. FLT3-ITD mutations were detected in 32 patients (16.1%), followed by FLT3-D835 in 5 (2.5%) and NPM1 in 54 (27.1%). Double mutations of NPM1 and FLT3-ITD were detected in 23 cases (11.6%). Assays validation were performed using Sanger sequencing and showed 100% concordance with in house method. Conclusion: The optimized in-house PCR assays for the detection of FLT3-ITD, FLT3-D835 and NPM1 mutations in AML patients were robust, less labour intensive and cost effective. These assays can be used as diagnostic tools for mutation detection in AML patients since identification of these mutations are important for prognostication and optimization of patient care.
Collapse
Affiliation(s)
- Yuslina Mat Yusoff
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zahidah Abu Seman
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Norodiyah Othman
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Nor Rizan Kamaluddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Nor Amalina Zulkiply
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Julia Abdullah
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| | - Zubaidah Zakaria
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
35
|
The stem cell-associated gene expression signature allows risk stratification in pediatric acute myeloid leukemia. Leukemia 2018; 33:348-357. [PMID: 30089916 DOI: 10.1038/s41375-018-0227-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/20/2018] [Accepted: 07/10/2018] [Indexed: 01/24/2023]
Abstract
Despite constant progress in prognostic risk stratification, children with acute myeloid leukemia (AML) still relapse. Treatment failure and subsequent relapse have been attributed to acute myeloid leukemia-initiating cells (LSC), which harbor stem cell properties and are inherently chemoresistant. Although pediatric and adult AML represent two genetically very distinct diseases, we reasoned that common LSC gene expression programs are shared and consequently, the highly prognostic LSC17 signature score recently developed in adults may also be of clinical interest in childhood AML. Here, we demonstrated prognostic relevance of the LSC17 score in pediatric non-core-binding factor AML using Nanostring technology (ELAM02) and RNA-seq data from the NCI (TARGET-AML). AML were stratified by LSC17 quartile groups (lowest 25%, intermediate 50% and highest 25%) and children with low LSC17 score had significantly better event-free survival (EFS: HR = 3.35 (95%CI = 1.64-6.82), P < 0.001) and overall survival (OS: HR = 3.51 (95%CI = 1.38-8.92), P = 0.008) compared with patients with high LSC17 scores. More importantly, the high LSC17 score was an independent negative EFS and OS prognosticator determined by multivariate Cox model analysis (EFS: HR = 3.42 (95% CI = 1.63-7.16), P = 0.001; OS HR = 3.02 (95%CI = 1.16-7.85), P = 0.026). In conclusion, we have demonstrated the broad applicability of the LSC17 score in the clinical management of AML by extending its prognostic relevance to pediatric AML.
Collapse
|
36
|
Coustan-Smith E, Song G, Shurtleff S, Yeoh AEJ, Chng WJ, Chen SP, Rubnitz JE, Pui CH, Downing JR, Campana D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight 2018; 3:98561. [PMID: 29720577 DOI: 10.1172/jci.insight.98561] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Optimal management of acute myeloid leukemia (AML) requires monitoring of treatment response, but minimal residual disease (MRD) may escape detection. We sought to identify distinctive features of AML cells for universal MRD monitoring. METHODS We compared genome-wide gene expression of AML cells from 157 patients with that of normal myeloblasts. Markers encoded by aberrantly expressed genes, including some previously associated with leukemia stem cells, were studied by flow cytometry in 240 patients with AML and in nonleukemic myeloblasts from 63 bone marrow samples. RESULTS Twenty-two (CD9, CD18, CD25, CD32, CD44, CD47, CD52, CD54, CD59, CD64, CD68, CD86, CD93, CD96, CD97, CD99, CD123, CD200, CD300a/c, CD366, CD371, and CX3CR1) markers were aberrantly expressed in AML. Leukemia-associated profiles defined by these markers extended to immature CD34+CD38- AML cells; expression remained stable during treatment. The markers yielded MRD measurements matching those of standard methods in 208 samples from 52 patients undergoing chemotherapy and revealed otherwise undetectable MRD. They allowed MRD monitoring in 129 consecutive patients, yielding prognostically significant results. Using a machine-learning algorithm to reduce high-dimensional data sets to 2-dimensional data, the markers allowed a clear visualization of MRD and could detect 1 leukemic cell among more than 100,000 normal cells. CONCLUSION The markers uncovered in this study allow universal and sensitive monitoring of MRD in AML. In combination with contemporary analytical tools, the markers improve the discrimination between leukemic and normal cells, thus facilitating data interpretation and, hence, the reliability of MRD results. FUNDING National Cancer Institute (CA60419 and CA21765); American Lebanese Syrian Associated Charities; National Medical Research Council of Singapore (1299/2011); Viva Foundation for Children with Cancer, Children's Cancer Foundation, Tote Board & Turf Club, and Lee Foundation of Singapore.
Collapse
Affiliation(s)
| | - Guangchun Song
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sheila Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Allen Eng-Juh Yeoh
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Wee Joo Chng
- National University Cancer Institute, Singapore, National University of Singapore, Singapore
| | - Siew Peng Chen
- Department of Pediatrics, National University of Singapore, Singapore
| | - Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ching-Hon Pui
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dario Campana
- Department of Pediatrics, National University of Singapore, Singapore.,National University Cancer Institute, Singapore, National University of Singapore, Singapore
| |
Collapse
|
37
|
Zhu R, Zhao W, Fan F, Tang L, Liu J, Luo T, Deng J, Hu Y. A 3-miRNA signature predicts prognosis of pediatric and adolescent cytogenetically normal acute myeloid leukemia. Oncotarget 2018; 8:38902-38913. [PMID: 28473658 PMCID: PMC5503581 DOI: 10.18632/oncotarget.17151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/04/2017] [Indexed: 01/10/2023] Open
Abstract
Acute myeloid leukemia is a hematologic malignancy with significant molecular heterogeneity. MicroRNAs have important biological functions and play critical roles in pathogenesis and prognosis in a variety of cancers including acute myeloid leukemia. Some reports have constructed risk stratification systems for adult acute myeloid leukemia patients using microRNAs to predict an optimal outcome of patients. However, little has been done in pediatric and adolescent patients. The purpose of this study is to identify a panel of microRNA signature that could predict prognosis in younger cytogenetically normal acute myeloid leukemia patients by analyzing the data from The Cancer Genome Atlas. A total of 59 cytogenetically normal acute myeloid leukemia patients under 21 years with corresponding clinical data were enrolled in our study. Using univariate Cox's model, we found 17 miRNAs were significantly related with overall survival in pediatric and adolescent cytogenetically normal acute myeloid leukemia patients but no clinical parameter was found significant related with overall survival. The multivariate Cox regression identified high expression of hsa-miR-146b was independent poor prognostic factor and high expression of hsa-miR-181c and hsa-miR-4786 appeared to be favorable factors. A model was proposed based on these three miRNAs. Leave-one-out Cross Validation method and Permutation Test was further used to evaluate this model. The function role of has-mir-181c was further studied by carrying out flow cytometry and cell counting kit-8 (CCK-8) in U937 cell line. The results indicate that the 3-microRNA-based signature is a reliable prognostic biomarker for pediatric and adolescent cytogenetically normal acute myeloid leukemia patients.
Collapse
Affiliation(s)
- Ruiqi Zhu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, 150086, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingdi Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
38
|
Affiliation(s)
- Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine, Asan Medical Center Children's Hospital, Seoul, Korea
| |
Collapse
|
39
|
Molecular Profiling Defines Distinct Prognostic Subgroups in Childhood AML: A Report From the French ELAM02 Study Group. Hemasphere 2018; 2:e31. [PMID: 31723759 PMCID: PMC6745946 DOI: 10.1097/hs9.0000000000000031] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Supplemental Digital Content is available in the text Despite major treatment improvements over the past decades, pediatric acute myeloid leukemia (AML) is still a life-threatening malignancy with relapse rates up to 30% and survival rates below 75%. A better description of the pattern of molecular aberrations in childhood AML is needed to refine prognostication in such patients. We report here the comprehensive molecular landscape using both high-throughput sequencing focused on 36 genes and ligation-dependent RT-PCR in 385 children with de novo AML enrolled in the prospective ELAM02 trial and we evaluated their prognostic significance. Seventy-six percent of patients had at least 1 mutation among the genes we screened. The most common class of mutations involved genes that control kinase signaling (61%) followed by transcription factors (16%), tumor suppressors (14%), chromatin modifiers (9%), DNA methylation controllers (8%), cohesin genes (5%), and spliceosome (3%). Moreover, a recurrent transcript fusion was detected in about a half of pediatric patients. Overall, CBF rearrangements, NPM1 and double CEBPA mutations represented 37% of the cohort and defined a favorable molecular subgroup (3 years OS: 92.1%) while NUP98 fusions, WT1, RUNX1, and PHF6 mutations (15% of the cohort) segregated into a poor molecular subgroup (3 years OS: 46.1%). KMT2A-rearrangements (21% of the cohort) were associated with an intermediate risk. Despite some overlaps, the spectrum of molecular aberrations and their prognostic significance differ between childhood and adult AML. These data have important implications to contribute in refining risk stratification of pediatric AML and show the need for further validations in independent pediatric cohorts.
Collapse
|
40
|
Suárez-González J, Martínez-Laperche C, Martínez N, Rodríguez-Macías G, Kwon M, Balsalobre P, Carbonell D, Chicano M, Serrano D, Triviño JC, Piris MÁ, Gayoso J, Díez-Martín JL, Buño I. Whole-exome sequencing reveals acquisition of mutations leading to the onset of donor cell leukemia after hematopoietic transplantation: a model of leukemogenesis. Leukemia 2018; 32:1822-1826. [PMID: 29568094 DOI: 10.1038/s41375-018-0042-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/17/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Julia Suárez-González
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Carolina Martínez-Laperche
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain. .,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.
| | | | | | - Mi Kwon
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Pascual Balsalobre
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Diego Carbonell
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - María Chicano
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - David Serrano
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | | | - Miguel Ángel Piris
- Department of Pathology, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jorge Gayoso
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| | - José Luis Díez-Martín
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ismael Buño
- Genomics Unit, Gregorio Marañón General University Hospital, Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain.,Department of Hematology, Gregorio Marañón General University Hospital, Madrid, Spain
| |
Collapse
|
41
|
Walter C, Pozzorini C, Reinhardt K, Geffers R, Xu Z, Reinhardt D, von Neuhoff N, Hanenberg H. Single-cell whole exome and targeted sequencing in NPM1/FLT3 positive pediatric acute myeloid leukemia. Pediatr Blood Cancer 2018; 65. [PMID: 29090521 DOI: 10.1002/pbc.26848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The small portion of leukemic stem cells (LSCs) in acute myeloid leukemia (AML) present in children and adolescents is often masked by the high background of AML blasts and normal hematopoietic cells. The aim of the current study was to establish a simple workflow for reliable genetic analysis of single LSC-enriched blasts from pediatric patients. PROCEDURE For three AMLs with mutations in nucleophosmin 1 and/or fms-like tyrosine kinase 3, we performed whole genome amplification on sorted single-cell DNA followed by whole exome sequencing (WES). The corresponding bulk bone marrow DNAs were also analyzed by WES and by targeted sequencing (TS) that included 54 genes associated with myeloid malignancies. RESULTS Analysis revealed that read coverage statistics were comparable between single-cell and bulk WES data, indicating high-quality whole genome amplification. From 102 single-cell variants, 72 single nucleotide variants and insertions or deletions (70%) were consistently found in the two bulk DNA analyses. Variants reliably detected in single cells were also present in TS. However, initial screening by WES with read counts between 50-72× failed to detect rare AML subclones in the bulk DNAs. CONCLUSIONS In summary, our study demonstrated that single-cell WES combined with bulk DNA TS is a promising tool set for detecting AML subclones and possibly LSCs.
Collapse
Affiliation(s)
- Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Katarina Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zhenyu Xu
- Sophia Genetics Inc., Saint-Sulpice, Switzerland
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nils von Neuhoff
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Otorhinolaryngology and Head/Neck Surgery (ENT), Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
42
|
Klein K, de Haas V, Kaspers GJL. Clinical challenges in de novo pediatric acute myeloid leukemia. Expert Rev Anticancer Ther 2018; 18:277-293. [DOI: 10.1080/14737140.2018.1428091] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kim Klein
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Valérie de Haas
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Gertjan J. L. Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
- Dutch Childhood Oncology Group, The Hague, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
43
|
Bolouri H, Farrar JE, Triche T, Ries RE, Lim EL, Alonzo TA, Ma Y, Moore R, Mungall AJ, Marra MA, Zhang J, Ma X, Liu Y, Liu Y, Auvil JMG, Davidsen TM, Gesuwan P, Hermida LC, Salhia B, Capone S, Ramsingh G, Zwaan CM, Noort S, Piccolo SR, Kolb EA, Gamis AS, Smith MA, Gerhard DS, Meshinchi S. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med 2018; 24:103-112. [PMID: 29227476 PMCID: PMC5907936 DOI: 10.1038/nm.4439] [Citation(s) in RCA: 519] [Impact Index Per Article: 74.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
We present the molecular landscape of pediatric acute myeloid leukemia (AML) and characterize nearly 1,000 participants in Children's Oncology Group (COG) AML trials. The COG-National Cancer Institute (NCI) TARGET AML initiative assessed cases by whole-genome, targeted DNA, mRNA and microRNA sequencing and CpG methylation profiling. Validated DNA variants corresponded to diverse, infrequent mutations, with fewer than 40 genes mutated in >2% of cases. In contrast, somatic structural variants, including new gene fusions and focal deletions of MBNL1, ZEB2 and ELF1, were disproportionately prevalent in young individuals as compared to adults. Conversely, mutations in DNMT3A and TP53, which were common in adults, were conspicuously absent from virtually all pediatric cases. New mutations in GATA2, FLT3 and CBL and recurrent mutations in MYC-ITD, NRAS, KRAS and WT1 were frequent in pediatric AML. Deletions, mutations and promoter DNA hypermethylation convergently impacted Wnt signaling, Polycomb repression, innate immune cell interactions and a cluster of zinc finger-encoding genes associated with KMT2A rearrangements. These results highlight the need for and facilitate the development of age-tailored targeted therapies for the treatment of pediatric AML.
Collapse
Affiliation(s)
- Hamid Bolouri
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jason E Farrar
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences and Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Timothy Triche
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Emilia L Lim
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Todd A Alonzo
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Children's Oncology Group, Monrovia, California, USA
| | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard Moore
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jinghui Zhang
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiaotu Ma
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yu Liu
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yanling Liu
- Division of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Tanja M Davidsen
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Leandro C Hermida
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stephen Capone
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Giridharan Ramsingh
- Jane Anne Nohl Division of Hematology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California, USA
| | - Christian Michel Zwaan
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Sanne Noort
- Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Stephen R Piccolo
- Department of Biology, Brigham Young University, Provo, Utah, USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, Delaware, USA
| | - Alan S Gamis
- Division of Hematology, Oncology and Bone Marrow Transplantation, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, Bethesda, Maryland, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
44
|
Prognostic value of genetic mutations in adolescent and young adults with acute myeloid leukemia. Int J Hematol 2017; 107:201-210. [PMID: 29027108 DOI: 10.1007/s12185-017-2340-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Clinical outcomes and the genetic background of acute myeloid leukemia (AML) in adolescent and young adults (AYAs) are known to differ in younger children and older adults. To clarify the impact of genetic mutations on clinical outcomes of AYAs with AML, we analyzed data from the JPLSG AML-05 and JALSG AML201 studies. AYAs aged 15-39 years (n = 103) were included. FLT3-ITD, KIT, CEBPA, NRAS, KRAS, WT1, MLL-PTD, and NPM1 mutations were analyzed. Overall survival (OS) of the AYAs was 61% and event-free survival was 38% at 3 years. FLT3-ITD (HR 2.10; 95% CI 1.07-4.12; p = 0.031) and NPM1 (HR 0.24; 95% CI 0.06-1.00; p = 0.050) mutations were associated with risk of overall mortality in multivariate analysis. OS was significantly different according to FLT3-ITD and NPM1 mutation status (p = 0.03). Survival was 100% with NPM1 mutations in the absence of FLT3-ITD and 35% (95% CI 14-57%) with FLT3-ITD in the absence of NPM1 mutations. The OS of AYAs, children (n = 413) and older adults (n = 124) of the AML-05 and AML201 participants were significantly different (p < 0.0001). This is the first report to combine clinical and genetic data of AYA AML from the major Japanese pediatric and adult study groups.
Collapse
|
45
|
Arber DA, Borowitz MJ, Cessna M, Etzell J, Foucar K, Hasserjian RP, Rizzo JD, Theil K, Wang SA, Smith AT, Rumble RB, Thomas NE, Vardiman JW. Initial Diagnostic Workup of Acute Leukemia: Guideline From the College of American Pathologists and the American Society of Hematology. Arch Pathol Lab Med 2017; 141:1342-1393. [PMID: 28225303 DOI: 10.5858/arpa.2016-0504-cp] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT - A complete diagnosis of acute leukemia requires knowledge of clinical information combined with morphologic evaluation, immunophenotyping and karyotype analysis, and often, molecular genetic testing. Although many aspects of the workup for acute leukemia are well accepted, few guidelines have addressed the different aspects of the diagnostic evaluation of samples from patients suspected to have acute leukemia. OBJECTIVE - To develop a guideline for treating physicians and pathologists involved in the diagnostic and prognostic evaluation of new acute leukemia samples, including acute lymphoblastic leukemia, acute myeloid leukemia, and acute leukemias of ambiguous lineage. DESIGN - The College of American Pathologists and the American Society of Hematology convened a panel of experts in hematology and hematopathology to develop recommendations. A systematic evidence review was conducted to address 6 key questions. Recommendations were derived from strength of evidence, feedback received during the public comment period, and expert panel consensus. RESULTS - Twenty-seven guideline statements were established, which ranged from recommendations on what clinical and laboratory information should be available as part of the diagnostic and prognostic evaluation of acute leukemia samples to what types of testing should be performed routinely, with recommendations on where such testing should be performed and how the results should be reported. CONCLUSIONS - The guideline provides a framework for the multiple steps, including laboratory testing, in the evaluation of acute leukemia samples. Some aspects of the guideline, especially molecular genetic testing in acute leukemia, are rapidly changing with new supportive literature, which will require on-going updates for the guideline to remain relevant.
Collapse
|
46
|
Zhu YM, Wang PP, Huang JY, Chen YS, Chen B, Dai YJ, Yan H, Hu Y, Cheng WY, Ma TT, Chen SJ, Shen Y. Gene mutational pattern and expression level in 560 acute myeloid leukemia patients and their clinical relevance. J Transl Med 2017; 15:178. [PMID: 28830460 PMCID: PMC5568401 DOI: 10.1186/s12967-017-1279-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Background Cytogenetic aberrations and gene mutations have long been regarded as independent prognostic markers in AML, both of which can lead to misexpression of some key genes related to hematopoiesis. It is believed that the expression level of the key genes is associated with the treatment outcome of AML. Methods In this study, we analyzed the clinical features and molecular aberrations of 560 newly diagnosed non-M3 AML patients, including mutational status of CEBPA, NPM1, FLT3, C-KIT, NRAS, WT1, DNMT3A, MLL-PTD and IDH1/2, as well as expression levels of MECOM, ERG, GATA2, WT1, BAALC, MEIS1 and SPI1. Results Certain gene expression levels were associated with the cytogenetic aberration of the disease, especially for MECOM, MEIS1 and BAALC. FLT3, C-KIT and NRAS mutations contained conversed expression profile regarding MEIS1, WT1, GATA2 and BAALC expression, respectively. FLT3, DNMT3A, NPM1 and biallelic CEBPA represented the mutations associated with the prognosis of AML in our group. Higher MECOM and MEIS1 gene expression levels showed a significant impact on complete remission (CR) rate, disease free survival (DFS) and overall survival (OS) both in univariate and multivariate analysis, respectively; and an additive effect could be observed. By systematically integrating gene mutational status results and gene expression profile, we could establish a more refined system to precisely subdivide AML patients into distinct prognostic groups. Conclusions Gene expression abnormalities contained important biological and clinical informations, and could be integrated into current AML stratification system. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong-Mei Zhu
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Pan-Pan Wang
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Jin-Yan Huang
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yun-Shuo Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Bing Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yu-Jun Dai
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Han Yan
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Yi Hu
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Wen-Yan Cheng
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Ting-Ting Ma
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China
| | - Sai-Juan Chen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China.
| | - Yang Shen
- Department of Hematology, Shanghai Institute of Hematology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Road II, Shanghai, 200025, China.
| |
Collapse
|
47
|
Hackl H, Astanina K, Wieser R. Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol 2017; 10:51. [PMID: 28219393 PMCID: PMC5322789 DOI: 10.1186/s13045-017-0416-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The majority of individuals with acute myeloid leukemia (AML) respond to initial chemotherapy and achieve a complete remission, yet only a minority experience long-term survival because a large proportion of patients eventually relapse with therapy-resistant disease. Relapse therefore represents a central problem in the treatment of AML. Despite this, and in contrast to the extensive knowledge about the molecular events underlying the process of leukemogenesis, information about the mechanisms leading to therapy resistance and relapse is still limited. PURPOSE AND CONTENT OF REVIEW Recently, a number of studies have aimed to fill this gap and provided valuable information about the clonal composition and evolution of leukemic cell populations during the course of disease, and about genetic, epigenetic, and gene expression changes associated with relapse. In this review, these studies are summarized and discussed, and the data reported in them are compiled in order to provide a resource for the identification of molecular aberrations recurrently acquired at, and thus potentially contributing to, disease recurrence and the associated therapy resistance. This survey indeed uncovered genetic aberrations with known associations with therapy resistance that were newly gained at relapse in a subset of patients. Furthermore, the expression of a number of protein coding and microRNA genes was reported to change between diagnosis and relapse in a statistically significant manner. CONCLUSIONS Together, these findings foster the expectation that future studies on larger and more homogeneous patient cohorts will uncover pathways that are robustly associated with relapse, thus representing potential targets for rationally designed therapies that may improve the treatment of patients with relapsed AML, or even facilitate the prevention of relapse in the first place.
Collapse
Affiliation(s)
- Hubert Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Ksenia Astanina
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - Rotraud Wieser
- Department of Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| |
Collapse
|
48
|
Abstract
The outcome for children with acute myeloid leukemia (AML) has improved significantly over the past 30 years, with complete remission and overall survival rates exceeding 90 and 60%, respectively, in recent clinical trials. However, these improvements have not been achieved by the introduction of new agents. Instead, intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy have all contributed to this success. Nevertheless, novel therapies are needed, as the cure rates for many subtypes of childhood AML remain unacceptably low. Here, we briefly review advances in our understanding of the biology and genetics of AML, the results of recent clinical trials, and current recommendations for the treatment of children with AML.
Collapse
Affiliation(s)
- Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105-2794, USA. .,Department of Pediatrics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA.
| |
Collapse
|
49
|
Prognostic significance of FLT3-ITD in pediatric acute myeloid leukemia: a meta-analysis of cohort studies. Mol Cell Biochem 2016; 420:121-8. [PMID: 27435859 DOI: 10.1007/s11010-016-2775-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 07/09/2016] [Indexed: 01/20/2023]
Abstract
The purpose of the study was to assess the effect of the internal tandem duplication in FMS-like tyrosine kinase 3 (FLT3-ITD) on the outcome in pediatric acute myeloid leukemia (AML) patients. We identified eligible studies from several databases including PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) (from January 1995 to July 2015). Ten studies of 1661 pediatric patients with AML were included in exploring the relationship between the FLT3-ITD and overall survival (OS)/event free survival (EFS). Pediatric patients with AML with FLT3-ITD had worse OS [HR = 2.19 (1.60-3.01)]/EFS [HR = 1.70 (1.37-2.11)] than those patients without FLT3-ITD. Furthermore, FLT3-ITD had unfavorable effect on OS/EFS in the subgroups of NOS, uni/multivariate model, number of patients, the length of following-up, and patient source. The findings of this meta-analysis indicated that FLT3-ITD had negative impact on pediatric patients with AML.
Collapse
|
50
|
Taga T, Tomizawa D, Takahashi H, Adachi S. Acute myeloid leukemia in children: Current status and future directions. Pediatr Int 2016; 58:71-80. [PMID: 26645706 DOI: 10.1111/ped.12865] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials.
Collapse
Affiliation(s)
- Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Otsu, Japan
| | - Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | | | | |
Collapse
|