1
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Niktoreh N, Weber L, Walter C, Karimifard M, Hoffmeister LM, Breiter H, Thivakaran A, Soldierer M, Drexler HG, Schaal H, Sendker S, Reinhardt D, Schneider M, Hanenberg H. Understanding WT1 Alterations and Expression Profiles in Hematological Malignancies. Cancers (Basel) 2023; 15:3491. [PMID: 37444601 DOI: 10.3390/cancers15133491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
WT1 is a true chameleon, both acting as an oncogene and tumor suppressor. As its exact role in leukemogenesis is still ambiguous, research with model systems representing natural conditions surrounding the genetic alterations in WT1 is necessary. In a cohort of 59 leukemia/lymphoma cell lines, we showed aberrant expression for WT1 mRNA, which does not always translate into protein levels. We also analyzed the expression pattern of the four major WT1 protein isoforms in the cell lines and primary AML blasts with/without WT1 mutations and demonstrated that the presence of mutations does not influence these patterns. By introduction of key intronic and exonic sequences of WT1 into a lentiviral expression vector, we developed a unique tool that can stably overexpress the four WT1 isoforms at their naturally occurring tissue-dependent ratio. To develop better cellular model systems for WT1, we sequenced large parts of its gene locus and also other important myeloid risk factor genes and revealed previously unknown alterations. Functionally, inhibition of the nonsense-mediated mRNA decay machinery revealed that under natural conditions, the mutated WT1 alleles go through a robust degradation. These results offer new insights and model systems regarding the characteristics of WT1 in leukemia and lymphoma.
Collapse
Affiliation(s)
- Naghmeh Niktoreh
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lisa Weber
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christiane Walter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Mahshad Karimifard
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lina Marie Hoffmeister
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hannah Breiter
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aniththa Thivakaran
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Maren Soldierer
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Hans Günther Drexler
- Faculty of Life Sciences, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Stephanie Sendker
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus Schneider
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Otorhinolaryngology, Head & Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Joshi K, Liu S, Breslin S J P, Zhang J. Mechanisms that regulate the activities of TET proteins. Cell Mol Life Sci 2022; 79:363. [PMID: 35705880 DOI: 10.1007/s00018-022-04396-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
The ten-eleven translocation (TET) family of dioxygenases consists of three members, TET1, TET2, and TET3. All three TET enzymes have Fe+2 and α-ketoglutarate (α-KG)-dependent dioxygenase activities, catalyzing the 1st step of DNA demethylation by converting 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), and further oxidize 5hmC to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Gene knockout studies demonstrated that all three TET proteins are involved in the regulation of fetal organ generation during embryonic development and normal tissue generation postnatally. TET proteins play such roles by regulating the expression of key differentiation and fate-determining genes via (1) enzymatic activity-dependent DNA methylation of the promoters and enhancers of target genes; and (2) enzymatic activity-independent regulation of histone modification. Interacting partner proteins and post-translational regulatory mechanisms regulate the activities of TET proteins. Mutations and dysregulation of TET proteins are involved in the pathogenesis of human diseases, specifically cancers. Here, we summarize the research on the interaction partners and post-translational modifications of TET proteins. We also discuss the molecular mechanisms by which these partner proteins and modifications regulate TET functioning and target gene expression. Such information will help in the design of medications useful for targeted therapy of TET-mutant-related diseases.
Collapse
Affiliation(s)
- Kanak Joshi
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Shanhui Liu
- School of Life Sciences, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
4
|
Wagstaff M, Tsaponina O, Caalim G, Greenfield H, Milton-Harris L, Mancini EJ, Blair A, Heesom KJ, Tonks A, Darley RL, Roberts SG, Morgan RG. Crosstalk between β-catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica 2022; 108:283-289. [PMID: 35443562 PMCID: PMC9827145 DOI: 10.3324/haematol.2021.280294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | - Gilian Caalim
- School of Life Sciences, University of Sussex, Brighton
| | | | | | | | - Allison Blair
- Bristol Institute for Transfusion Sciences, NHS Blood & Transplant Filton, Bristol,School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | | | - Alex Tonks
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Richard L. Darley
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefan G Roberts
- School of Cellular & Molecular Medicine, University of Bristol, Bristol
| | - Rhys G. Morgan
- School of Life Sciences, University of Sussex, Brighton,RHYS G. MORGAN -
| |
Collapse
|
5
|
Wang Y, Chen Q, Zhang F, Yang X, Shang L, Ren S, Pan Y, Zhou Z, Li G, Fang Y, Jin L, Wu Y, Zhang X. Whole exome sequencing identified a rare WT1 loss-of-function variant in a non-syndromic POI patient. Mol Genet Genomic Med 2022; 10:e1820. [PMID: 34845858 PMCID: PMC8801142 DOI: 10.1002/mgg3.1820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is a highly heterogeneous disease, and up to 25% of cases can be explained by genetic causes. The transcription factor WT1 has long been reported to play a crucial role in ovary function. Wt1-mutated female mice exhibited POI-like phenotypes. METHODS AND RESULTS In this study, whole exome sequencing (WES) was applied to find the cause of POI in Han Chinese women. A nonsense variant in the WT1 gene: NM_024426.6:c.1387C>T(p.R463*) was identified in a non-syndromic POI woman. The variant is a heterozygous de novo mutation that is very rare in the human population. The son of the patient inherited the mutation and developed Wilms' tumor and urethral malformation at the age of 7. According to the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines, the novel variant is categorized as pathogenic. Western blot analysis further demonstrated that the WT1 variant could produce a truncated WT1 isoform in vitro. CONCLUSIONS A rare heterozygous nonsense WT1 mutant is associated with non-syndromic POI and Wilms' tumor. Our finding characterized another pathogenic WT1 variant, providing insight into genetic counseling.
Collapse
Affiliation(s)
- Yingchen Wang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Qing Chen
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Feng Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| | - Xi Yang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Lingyue Shang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Shuting Ren
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yuncheng Pan
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Zixue Zhou
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Guoqing Li
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yunzheng Fang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiChina
| | - Li Jin
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
| | - Yanhua Wu
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
- National Demonstration Center for Experimental Biology EducationSchool of Life SciencesFudan UniversityShanghaiChina
| | - Xiaojin Zhang
- Obstetrics and Gynecology HospitalNHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research)School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Female Reproductive Endocrine Related DiseasesShanghaiChina
| |
Collapse
|
6
|
Pasca S, Jurj A, Zdrenghea M, Tomuleasa C. The Potential Equivalents of TET2 Mutations. Cancers (Basel) 2021; 13:cancers13071499. [PMID: 33805247 PMCID: PMC8036366 DOI: 10.3390/cancers13071499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In acute myeloid leukemia (AML) TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its activity. Because of this, it is possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. Abstract TET2 is a dioxygenase dependent on Fe2+ and α-ketoglutarate which oxidizes 5-methylcytosine (5meC) to 5-hydroxymethylcytosine (5hmeC). TET proteins successively oxidize 5mC to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Among these oxidized methylcytosines, 5fC and 5caC are directly excised by thymine DNA glycosylase (TDG) and ultimately replaced with unmethylated cytosine. Mutations in TET2 have been shown to lead to a hypermethylated state of the genome and to be responsible for the initiation of the oncogenetic process, especially in myeloid and lymphoid malignancies. Nonetheless, this was also shown to be the case in other cancers. In AML, TET2 mutations have been observed to be mutually exclusive with IDH1, IDH2, and WT1 mutations, all of them showing a similar impact on the transcription profile of the affected cell. Because of this, it is possible that TET2/IDH1/2/WT1 mutated AML could be considered as having similar characteristics between each other. Nonetheless, other genes also interact with TET2 and influence its effect, thus making it possible that other signatures exist that would mimic the effect of TET2 mutations. Thus, in this review, we searched the literature for the genes that were observed to interact with TET2 and classified them in the following manner: transcription alteration, miRs, direct interaction, posttranslational changes, and substrate reduction. What we propose in the present review is the potential extension of the TET2/IDH1/2/WT1 entity with the addition of certain expression signatures that would be able to induce a similar phenotype with that induced by TET2 mutations. Nonetheless, we recommend that this approach be taken on a disease by disease basis.
Collapse
Affiliation(s)
- Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Correspondence:
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj Napoca, Romania; (S.P.); (M.Z.); (C.T.)
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| |
Collapse
|
7
|
Luo P, Jing W, Yi K, Wu S, Zhou F. Wilms' tumor 1 gene in hematopoietic malignancies: clinical implications and future directions. Leuk Lymphoma 2020; 61:2059-2067. [PMID: 32401109 DOI: 10.1080/10428194.2020.1762884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Wilms' tumor 1 (WT1) gene is an important regulatory molecule that plays a vital role in cell growth and development. Initially, knowledge of WT1 was mostly limited to Wilms' tumor. Over the past years, numerous studies have shown that WT1 is aberrant expressed or mutated in hematopoietic malignancies, including acute leukemia (AL), myelodysplastic syndrome (MDS) and chronic myelogenous leukemia (CML). Currently, many studies focus on exploring the role of WT1 in hematopoietic malignancies. Such studies improve the understanding of hematopoietic malignancies, and the collection of data about WT1 expression or mutation in hematopoietic malignancies over the past years can facilitate the risk stratification of hematopoietic malignancies. In this review, we highlight the important role of WT1 in hematopoietic malignancies, discuss its potential clinical applications as a minimal residual disease (MRD) and prognostic biomarker, and evaluate the possible therapy target of WT1 in hematopoietic malignancies.
Collapse
Affiliation(s)
- Ping Luo
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Jing
- Department of Clinical Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kezhen Yi
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
The Influence of Methylating Mutations on Acute Myeloid Leukemia: Preliminary Analysis on 56 Patients. Diagnostics (Basel) 2020; 10:diagnostics10050263. [PMID: 32365516 PMCID: PMC7277399 DOI: 10.3390/diagnostics10050263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy characterized by abnormal proliferation and a lack of differentiation of myeloid blasts. Considering the dismal prognosis this disease presents, several efforts have been made to better classify it and offer a tailored treatment to each subtype. This has been formally done by the World Health Organization (WHO) with the AML classification schemes from 2008 and 2016. Nonetheless, there are still mutations that are not currently included in the WHO AML classification, as in the case of some mutations that influence methylation. In this regard, the present study aimed to determine if some of the mutations that influence DNA methylation can be clustered together regarding methylation, expression, and clinical profile. Data from the TCGA LAML cohort were downloaded via cBioPortal. The analysis was performed using R 3.5.2, and the necessary packages for classical statistics, dimensionality reduction, and machine learning. We included only patients that presented mutations in DNMT3A, TET2, IDH1/2, ASXL1, WT1, and KMT2A. Afterwards, mutations that were present in too few patients were removed from the analysis, thus including a total of 57 AML patients. We observed that regarding expression, methylation, and clinical profile, patients with mutated TET2, IDH1/2, and WT1 presented a high degree of similarity, indicating the equivalence that these mutations present between themselves. Nonetheless, we did not observe this similarity between DNMT3A- and KMT2A-mutated AML. Moreover, when comparing the hypermethylating group with the hypomethylating one, we also observed important differences regarding expression, methylation, and clinical profile. In the current manuscript we offer additional arguments for the similarity of the studied hypermethylating mutations and suggest that those should be clustered together in further classifications. The hypermethylating and hypomethylating groups formed above were shown to be different from each other considering overall survival, methylation profile, expression profile, and clinical characteristics. In this manuscript, we present additional arguments for the similarity of the effect generated by TET2, IDH1/2, and WT1 mutations in AML patients. Thus, we hypothesize that hypermethylating mutations skew the AML cells to a similar phenotype with a possible sensitivity to hypermethylating agents.
Collapse
|
9
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
10
|
Bordin F, Piovan E, Masiero E, Ambesi-Impiombato A, Minuzzo S, Bertorelle R, Sacchetto V, Pilotto G, Basso G, Zanovello P, Amadori A, Tosello V. WT1 loss attenuates the TP53-induced DNA damage response in T-cell acute lymphoblastic leukemia. Haematologica 2017; 103:266-277. [PMID: 29170254 PMCID: PMC5792271 DOI: 10.3324/haematol.2017.170431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
Loss-of-function mutations and deletions in Wilms tumor 1 (WT1) gene are present in approximately 10% of T-cell acute lymphoblastic leukemia. Clinically, WT1 mutations are enriched in relapsed series and are associated to inferior relapse-free survival in thymic T-cell acute lymphoblastic leukemia cases. Here we demonstrate that WT1 plays a critical role in the response to DNA damage in T-cell leukemia. WT1 loss conferred resistance to DNA damaging agents and attenuated the transcriptional activation of important apoptotic regulators downstream of TP53 in TP53-competent MOLT4 T-leukemia cells but not in TP53-mutant T-cell acute lymphoblastic leukemia cell lines. Notably, WT1 loss positively affected the expression of the X-linked inhibitor of apoptosis protein, XIAP, and genetic or chemical inhibition with embelin (a XIAP inhibitor) significantly restored sensitivity to γ-radiation in both T-cell acute lymphoblastic leukemia cell lines and patient-derived xenografts. These results reveal an important role for the WT1 tumor suppressor gene in the response to DNA damage, and support the view that anti-XIAP targeted therapies could have a role in the treatment of WT1-mutant T-cell leukemia.
Collapse
Affiliation(s)
- Fulvio Bordin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Erich Piovan
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Elena Masiero
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Alberto Ambesi-Impiombato
- Institute for Cancer Genetics, Columbia University, New York, NY, USA.,PsychoGenics Inc., Tarrytown, New York, NY, USA
| | - Sonia Minuzzo
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Roberta Bertorelle
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Valeria Sacchetto
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Giorgia Pilotto
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy
| | - Giuseppe Basso
- Dipartimento di Salute della Donna e del Bambino, Università degli Studi di Padova, Italy
| | - Paola Zanovello
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Alberto Amadori
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Università degli Studi di Padova, Italy.,U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | - Valeria Tosello
- U.O.C. Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| |
Collapse
|
11
|
Rampal R, Figueroa ME. Wilms tumor 1 mutations in the pathogenesis of acute myeloid leukemia. Haematologica 2017; 101:672-9. [PMID: 27252512 DOI: 10.3324/haematol.2015.141796] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/05/2016] [Indexed: 12/30/2022] Open
Abstract
Wilms tumor 1 (WT1) has long been implicated in acute myeloid leukemia. It has been described to be both overexpressed and mutated in different forms of acute myeloid leukemia, and overexpression has been reported to play a prognostic role in this disease. However, the precise mechanism through which WT1 may play a role in leukemogenesis has remained elusive. In recent years, new evidence has emerged that points towards a novel role of WT1 mutations in the deregulation of epigenetic programs in leukemic cells through its interaction with TET proteins. Herein we review the current status of the field and its therapeutic and prognostic implications in acute myeloid leukemia.
Collapse
Affiliation(s)
- Raajit Rampal
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Figueroa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Pastore F, Levine RL. Epigenetic regulators and their impact on therapy in acute myeloid leukemia. Haematologica 2017; 101:269-78. [PMID: 26928248 DOI: 10.3324/haematol.2015.140822] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genomic studies of hematologic malignancies have identified a spectrum of recurrent somatic alterations that contribute to acute myeloid leukemia initiation and maintenance, and which confer sensitivities to molecularly targeted therapies. The majority of these genetic events are small, site-specific alterations in DNA sequence. In more than two thirds of patients with de novo acute myeloid leukemia mutations epigenetic modifiers are detected. Epigenetic modifiers encompass a large group of proteins that modify DNA at cytosine residues or cause post-translational histone modifications such as methylations or acetylations. Altered functions of these epigenetic modifiers disturb the physiological balance between gene activation and gene repression and contribute to aberrant gene expression regulation found in acute myeloid leukemia. This review provides an overview of the epigenetic modifiers mutated in acute myeloid leukemia, their clinical relevance and how a deeper understanding of their biological function has led to the discovery of new specific targets, some of which are currently tested in mechanism-based clinical trials.
Collapse
Affiliation(s)
- Friederike Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center
| | - Ross L Levine
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
13
|
Hansen MC, Herborg LL, Hansen M, Roug AS, Hokland P. Combination of RNA- and exome sequencing: Increasing specificity for identification of somatic point mutations and indels in acute leukaemia. Leuk Res 2016; 51:27-31. [DOI: 10.1016/j.leukres.2016.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 02/03/2023]
|
14
|
Meldi KM, Figueroa ME. Cytosine modifications in myeloid malignancies. Pharmacol Ther 2015; 152:42-53. [DOI: 10.1016/j.pharmthera.2015.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/16/2023]
|
15
|
DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 2014; 9:1841-1855. [PMID: 25482556 DOI: 10.1016/j.celrep.2014.11.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/04/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Somatic mutations in IDH1/IDH2 and TET2 result in impaired TET2-mediated conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). The observation that WT1 inactivating mutations anticorrelate with TET2/IDH1/IDH2 mutations in acute myeloid leukemia (AML) led us to hypothesize that WT1 mutations may impact TET2 function. WT1 mutant AML patients have reduced 5hmC levels similar to TET2/IDH1/IDH2 mutant AML. These mutations are characterized by convergent, site-specific alterations in DNA hydroxymethylation, which drive differential gene expression more than alterations in DNA promoter methylation. WT1 overexpression increases global levels of 5hmC, and WT1 silencing reduced 5hmC levels. WT1 physically interacts with TET2 and TET3, and WT1 loss of function results in a similar hematopoietic differentiation phenotype as observed with TET2 deficiency. These data provide a role for WT1 in regulating DNA hydroxymethylation and suggest that TET2 IDH1/IDH2 and WT1 mutations define an AML subtype defined by dysregulated DNA hydroxymethylation.
Collapse
|
16
|
The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J Virol 2012; 86:7530-43. [PMID: 22553336 DOI: 10.1128/jvi.07021-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report, we analyzed whether the degradation of mRNAs by the nonsense-mediated mRNA decay (NMD) pathway was affected in human T-lymphotropic virus type 1 (HTLV-1)-infected cells. This pathway was indeed strongly inhibited in C91PL, HUT102, and MT2 cells, and such an effect was also observed by the sole expression of the Tax protein in Jurkat and HeLa cells. In line with this activity, Tax binds INT6/EIF3E (here called INT6), which is a subunit of the translation initiation factor eukaryotic initiation factor 3 (eIF3) required for efficient NMD, as well as the NMD core factor upstream frameshift protein 1 (UPF1). It was also observed that Tax expression alters the morphology of processing bodies (P-bodies), the cytoplasmic structures which concentrate RNA degradation factors. The presence of UPF1 in these subcellular compartments was increased by Tax, whereas that of INT6 was decreased. In line with these effects, the level of the phosphorylated form of UPF1 was increased in the presence of Tax. Analysis of several mutants of the viral protein showed that the interaction with INT6 is necessary for NMD inhibition. The alteration of mRNA stability was observed to affect viral transcripts, such as that coding for the HTLV-1 basic leucine zipper factor (HBZ), and also several cellular mRNAs sensitive to the NMD pathway. Our data indicate that the effect of Tax on viral and cellular gene expression is not restricted to transcriptional control but can also involve posttranscriptional regulation.
Collapse
|
17
|
Sharma S, Liao W, Zhou X, Wong DTW, Lichtenstein A. Exon 11 skipping of E-cadherin RNA downregulates its expression in head and neck cancer cells. Mol Cancer Ther 2011; 10:1751-9. [PMID: 21764905 DOI: 10.1158/1535-7163.mct-11-0248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
E-cadherin is an important tumor suppressor gene whose expression is lost when cells acquire a metastatic phenotype. We analyzed the role of E-cadherin missplicing as a mechanism of its downregulation by analyzing a misspliced E-cadherin transcript that lacks exon 11 of this gene. This results in a frameshift and a premature termination codon that targets this transcript for degradation. Tumor tissues, including breast (20%, n = 9), prostate (30%, n = 9) and head and neck (75%, n = 8) cancer, express the exon 11-skipped transcripts (vs. nonmalignant controls) and its levels inversely correlate with E-cadherin expression. This is a novel mechanism of E-cadherin downregulation by missplicing in tumor cells, which is observed in highly prevalent human tumors. In the head and neck cancer model, nontumorigenic keratinocytes express exon 11-skipped splice product two- to sixfold lower than the head and neck tumor cell lines. Mechanistic studies reveal that SFRS2 (SC35), a splicing factor, as one of the regulators that increases missplicing and downregulates E-cadherin expression. Furthermore, this splicing factor was found to be overexpressed in 5 of 7 head and neck cell lines and primary head and neck tumors. Also, methylation of E-cadherin gene acts as a regulator of this aberrant splicing process. In 2 head and neck cell lines, wild-type transcript expression increased 16- to 25-folds, whereas the percentage of exon 11-skipped transcripts in both the cell lines decreased five- to 30-folds when cells were treated with a hypomethylating agent, azacytidine. Our findings reveal that promoter methylation and an upregulated splicing factor (SFRS2) are involved in the E-cadherin missplicing in tumors.
Collapse
Affiliation(s)
- Sanjai Sharma
- Division of Hematology Oncology, UCLA West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Bldg 304, Rm E1-115, Los Angeles, CA 90073, USA.
| | | | | | | | | |
Collapse
|
18
|
|