1
|
Zhang Q, Man J, Zhao T, Sun D, Zhang Z. YTHDF2 promotes arsenic-induced malignant phenotypes by degrading PIDD1 mRNA in human keratinocytes. Chem Biol Interact 2025; 406:111352. [PMID: 39675544 DOI: 10.1016/j.cbi.2024.111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Arsenic is a widespread environmental carcinogen, and its carcinogenic mechanism has been the focus of toxicology. N6-methyladenosine (m6A) binding protein YTH domain family protein 2 (YTHDF2) performs various biological functions by degrading m6A-modified mRNAs. However, the m6A-modified target mRNA of YTHDF2 in regulating arsenic carcinogenesis remains largely unknown. To explore the effect of YTHDF2 in regulating arsenic carcinogenicity, we exposed the human keratinocyte HaCaT cells to 1 μM sodium arsenite for 50 generations to create a cell model of arsenic carcinogenesis (HaCaT-T). Our results demonstrated that YTHDF2 protein levels were higher in HaCaT-T cells than HaCaT cells, and knockdown of YTHDF2 significantly inhibited arsenic-induced malignant phenotypes. In addition, m6A levels in HaCaT-T cells were remarkably elevated, accompanied by abnormal expression of m6A methyltransferases and m6A demethylases. Mechanistically, YTHDF2 bound to p53-induced death domain protein 1 (PIDD1) mRNA in an m6A-dependent manner, thereby promoting the degradation of PIDD1 mRNA. Moreover, the decay of PIDD1 mRNA inhibited the formation of PIDDosome complex that is essential for activating the apoptosis initiator caspase-2, leading to a decrease in caspase-2-dependent mitochondrial apoptosis and subsequently promoting the malignant phenotypes of HaCaT-T cells. Collectively, our study reveals the role of YTHDF2 in arsenic-induced malignant phenotypes of human keratinocytes through direct interaction with PIDD1 mRNA in an m6A-dependent manner, which provides new insight into the precise mechanism underlying arsenic-induced skin cancer.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Jin Man
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Donglei Sun
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
El Hajj H, Hermine O, Bazarbachi A. Therapeutic advances for the management of adult T cell leukemia: Where do we stand? Leuk Res 2024; 147:107598. [PMID: 39366194 DOI: 10.1016/j.leukres.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Adult T cell leukemia (ATL) is an aggressive blood malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-1) retrovirus. ATL encompasses four subtypes (acute, lymphoma, chronic, and smoldering), which exhibit different clinical characteristics and respond differently to various treatment strategies. Yet, all four subtypes are characterized by a dismal long-term prognosis and a low survival rate. While antiretroviral therapy improves overall survival outcomes in smoldering and chronic subtypes, survival remains poor in lymphoma subtypes despite their good response to intensive chemotherapy. Nonetheless, acute ATL remains the most aggressive form associated with profound immunosuppression, chemo-resistance and dismal prognosis. Targeted therapies such as monoclonal antibodies, epigenetic therapies, and arsenic/IFN, emerged as promising therapeutic approaches in ATL. Allogeneic hematopoietic cell transplantation is the only potentially curative modality, alas applicable to only a small percentage of patients. The recent findings demonstrating the expression of the viral oncoprotein Tax in primary ATL cells from patients with acute or chronic ATL, albeit at low levels, and their dependence on continuous Tax expression for their survival, position ATL as a virus-addicted leukemia and validates the rationale of anti-viral treatment strategies. This review provides a comprehensive overview on conventional, anti-viral and targeted therapies of ATL, with emphasis on Tax-targeted therapied in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Hermine
- Institut Imagine-INSERM, U1163, Necker Hospital, University of Paris, Paris, France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
3
|
Gholamzad A, Khakpour N, Gholamzad M, Roudaki Sarvandani MR, Khosroshahi EM, Asadi S, Rashidi M, Hashemi M. Stem cell therapy for HTLV-1 induced adult T-cell leukemia/lymphoma (ATLL): A comprehensive review. Pathol Res Pract 2024; 255:155172. [PMID: 38340584 DOI: 10.1016/j.prp.2024.155172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Adult T-cell leukemia/lymphoma (ATLL) is a rare and aggressive form of cancer associated with human T-cell lymphotropic virus type 1 (HTLV-1) infection. The emerging field of stem cell therapies for ATLL is discussed, highlighting the potential of hematopoietic stem cell transplantation (HSCT) and genetically modified stem cells. HSCT aims to eradicate malignant T-cells and restore a functional immune system through the infusion of healthy donor stem cells. Genetically modified stem cells show promise in enhancing their ability to target and eliminate ATLL cells. The article presents insights from preclinical studies and limited clinical trials, emphasizing the need for further research to establish the safety, efficacy, and long-term outcomes of stem cell therapies for ATLL and challenges associated with these innovative approaches are also explored. Overall, stem cell therapies hold significant potential in revolutionizing ATLL treatment, and ongoing clinical trials aim to determine their benefits in larger patient populations.
Collapse
Affiliation(s)
- Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloofar Khakpour
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Gholamzad
- Department of Microbiology and Immunology, Faculty of Medicine, Islamic Azad University of Medical Science, Tehran, Iran.
| | | | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Zhang Y, Zhang G, Wang Y, Ye L, Peng L, Shi R, Guo S, He J, Yang H, Dai Q. Current treatment strategies targeting histone deacetylase inhibitors in acute lymphocytic leukemia: a systematic review. Front Oncol 2024; 14:1324859. [PMID: 38450195 PMCID: PMC10915758 DOI: 10.3389/fonc.2024.1324859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Acute lymphocytic leukemia is a hematological malignancy that primarily affects children. Long-term chemotherapy is effective, but always causes different toxic side effects. With the application of a chemotherapy-free treatment strategy, we intend to demonstrate the most recent results of using one type of epigenetic drug, histone deacetylase inhibitors, in ALL and to provide preclinical evidence for further clinical trials. In this review, we found that panobinostat (LBH589) showed positive outcomes as a monotherapy, whereas vorinostat (SAHA) was a better choice for combinatorial use. Preclinical research has identified chidamide as a potential agent for investigation in more clinical trials in the future. In conclusion, histone deacetylase inhibitors play a significant role in the chemotherapy-free landscape in cancer treatment, particularly in acute lymphocytic leukemia.
Collapse
Affiliation(s)
- Yingjun Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Ge Zhang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yuefang Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Lei Ye
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Luyun Peng
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Rui Shi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Siqi Guo
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jiajing He
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hao Yang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Qingkai Dai
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
6
|
Bosc E, Anastasie J, Soualmia F, Coric P, Kim JY, Wang LQ, Lacin G, Zhao K, Patel R, Duplus E, Tixador P, Sproul AA, Brugg B, Reboud-Ravaux M, Troy CM, Shelanski ML, Bouaziz S, Karin M, El Amri C, Jacotot ED. Genuine selective caspase-2 inhibition with new irreversible small peptidomimetics. Cell Death Dis 2022; 13:959. [PMID: 36379916 PMCID: PMC9666555 DOI: 10.1038/s41419-022-05396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with β-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.
Collapse
Affiliation(s)
- Elodie Bosc
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Julie Anastasie
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Feryel Soualmia
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Pascale Coric
- Université de Paris, CNRS, CiTCoM, F-75006, Paris, France
| | - Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lily Q Wang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Gullen Lacin
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
- MicroBrain Biotech S.A.S. 52 Avenue de l'Europe, Marly-Le-Roi, F-78160, France
| | - Kaitao Zhao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ronak Patel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Eric Duplus
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Philippe Tixador
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Bernard Brugg
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Michelle Reboud-Ravaux
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Carol M Troy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Michael L Shelanski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Serge Bouaziz
- Université de Paris, CNRS, CiTCoM, F-75006, Paris, France
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Chahrazade El Amri
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Etienne D Jacotot
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Schnell AP, Kohrt S, Aristodemou A, Taylor GP, Bangham CRM, Thoma-Kress AK. HDAC inhibitors Panobinostat and Romidepsin enhance tax transcription in HTLV-1-infected cell lines and freshly isolated patients’ T-cells. Front Immunol 2022; 13:978800. [PMID: 36052071 PMCID: PMC9424546 DOI: 10.3389/fimmu.2022.978800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The viral transactivator Tax plays a key role in HTLV-1 reactivation and de novo infection. Previous approaches focused on the histone deacetylase inhibitor (HDACi) Valproate as a latency-reversing agent to boost Tax expression and expose infected cells to the host’s immune response. However, following treatment with Valproate proviral load decreases in patients with HAM/TSP were only transient. Here, we hypothesize that other compounds, including more potent and selective HDACi, might prove superior to Valproate in manipulating Tax expression. Thus, a panel of HDACi (Vorinostat/SAHA/Zolinza, Panobinostat/LBH589/Farydak, Belinostat/PXD101/Beleodaq, Valproate, Entinostat/MS-275, Romidepsin/FK228/Istodax, and MC1568) was selected and tested for toxicity and potency in enhancing Tax expression. The impact of the compounds was evaluated in different model systems, including transiently transfected T-cells, chronically HTLV-1-infected T-cell lines, and freshly isolated PBMCs from HTLV-1 carriers ex vivo. We identified the pan-HDACi Panobinostat and class I HDACi Romidepsin as particularly potent agents at raising Tax expression. qRT-PCR analysis revealed that these inhibitors considerably boost tax and Tax-target gene transcription. However, despite this significant increase in tax transcription and histone acetylation, protein levels of Tax were only moderately enhanced. In conclusion, these data demonstrate the ability of Panobinostat and Romidepsin to manipulate Tax expression and provide a foundation for further research into eliminating latently infected cells. These findings also contribute to a better understanding of conditions limiting transcription and translation of viral gene products.
Collapse
Affiliation(s)
- Annika P. Schnell
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Kohrt
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aris Aristodemou
- Section of Immunology of Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Section of Immunology of Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Andrea K. Thoma-Kress,
| |
Collapse
|
8
|
Utsunomiya A, Izutsu K, Jo T, Yoshida S, Tsukasaki K, Ando K, Choi I, Imaizumi Y, Kato K, Kurosawa M, Kusumoto S, Miyagi T, Ohtsuka E, Sasaki O, Shibayama H, Shimoda K, Takamatsu Y, Takano K, Yonekura K, Makita S, Taguchi J, Gillings M, Onogi H, Tobinai K. Oral HDAC Inhibitor Tucidinostat (HBI-8000) in Patients with Relapsed or Refractory Adult T-cell Leukemia/Lymphoma: Phase IIb Results. Cancer Sci 2022; 113:2778-2787. [PMID: 35579212 PMCID: PMC9357668 DOI: 10.1111/cas.15431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/01/2022] Open
Abstract
This multicenter, prospective phase IIb trial evaluating the efficacy and safety of tucidinostat (HBI‐8000) in patients with relapsed or refractory (R/R) adult T‐cell leukemia/lymphoma (ATLL) was undertaken in Japan. Eligible patients had R/R ATLL and had failed standard of care treatment with chemotherapy and with mogamulizumab. Twenty‐three patients received tucidinostat 40 mg orally twice per week and were included in efficacy and safety analyses. The primary end‐point was objective response rate (ORR) assessed by an independent committee. The ORR was 30.4% (95% confidence interval [CI], 13.2, 52.9]. Median progression‐free survival was 1.7 months (95% CI, 0.8, 7.4), median duration of response was 9.2 months (95% CI, 2.6, not reached), and median overall survival was 7.9 months (95% CI, 2.3, 18.0). All patients experienced adverse events (AEs), which were predominantly hematologic and gastrointestinal. Incidence of grade 3 or higher AEs was 78.3%; most were laboratory abnormalities (decreases in platelets, neutrophils, white blood cells, and hemoglobin). Tucidinostat was well tolerated with AEs that could be mostly managed with supportive care and dose modifications. Tucidinostat is a meaningful treatment option for R/R ATLL patients; further investigation is warranted.
Collapse
Affiliation(s)
- Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Shinichiro Yoshida
- Department of Hematology, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Kiyoshi Ando
- Department of Hematology/Oncology, Tokai University Hospital, Kanagawa, Japan
| | - Ilseung Choi
- Department of Hematology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | | | - Koji Kato
- Department of Hematology, Oncology & Cardiovascular medicine, Kyushu University Hospital, Fukuoka, Japan
| | | | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
| | - Takashi Miyagi
- Department of Hematology, Heartlife Hospital, Okinawa, Japan
| | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | - Osamu Sasaki
- Division of Hematology, Miyagi Cancer Center, Miyagi, Japan
| | - Hirohiko Shibayama
- Department of Hematology and Oncology, Osaka University Hospital, Suita, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasushi Takamatsu
- Department of Medical Oncology, Hematology and Infectious Diseases, Fukuoka University Hospital, Fukuoka, Japan
| | - Kuniko Takano
- Department of Medical Oncology and Hematology, Faculty of Medicine, Oita University, Hospital, Oita University, Oita, Japan
| | - Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | - Shinichi Makita
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Jun Taguchi
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | | | | | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Adult T-Cell Leukemia: a Comprehensive Overview on Current and Promising Treatment Modalities. Curr Oncol Rep 2021; 23:141. [PMID: 34735653 DOI: 10.1007/s11912-021-01138-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF THE REVIEW Adult T-cell leukemia (ATL) is an aggressive chemo-resistant malignancy secondary to HTLV-1 retrovirus. Prognosis of ATL remains dismal. Herein, we emphasized on the current ATL treatment modalities and their drawbacks, and opened up on promising targeted therapies with special focus on the HTLV-1 regulatory proteins Tax and HBZ. RECENT FINDINGS Indolent ATL and a fraction of acute ATL exhibit long-term survival following antiviral treatment with zidovudine and interferon-alpha. Monoclonal antibodies such as mogamulizumab improved response rates, but with little effect on survival. Allogeneic hematopoietic cell transplantation results in long-term survival in one third of transplanted patients, alas only few patients are transplanted. Salvage therapy with lenalidomide in relapsed/refractory patients leads to prolonged survival in some of them. ATL remains an unmet medical need. Targeted therapies focusing on the HTLV-1 viral replication and/or viral regulatory proteins, as well as on the host antiviral immunity, represent a promising approach for the treatment of ATL.
Collapse
|
10
|
Schnell AP, Kohrt S, Thoma-Kress AK. Latency Reversing Agents: Kick and Kill of HTLV-1? Int J Mol Sci 2021; 22:ijms22115545. [PMID: 34073995 PMCID: PMC8197370 DOI: 10.3390/ijms22115545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the cause of adult T-cell leukemia/lymphoma (ATLL), is a retrovirus, which integrates into the host genome and persistently infects CD4+ T-cells. Virus propagation is stimulated by (1) clonal expansion of infected cells and (2) de novo infection. Viral gene expression is induced by the transactivator protein Tax, which recruits host factors like positive transcription elongation factor b (P-TEFb) to the viral promoter. Since HTLV-1 gene expression is repressed in vivo by viral, cellular, and epigenetic mechanisms in late phases of infection, HTLV-1 avoids an efficient CD8+ cytotoxic T-cell (CTL) response directed against the immunodominant viral Tax antigen. Hence, therapeutic strategies using latency reversing agents (LRAs) sought to transiently activate viral gene expression and antigen presentation of Tax to enhance CTL responses towards HTLV-1, and thus, to expose the latent HTLV-1 reservoir to immune destruction. Here, we review strategies that aimed at enhancing Tax expression and Tax-specific CTL responses to interfere with HTLV-1 latency. Further, we provide an overview of LRAs including (1) histone deacetylase inhibitors (HDACi) and (2) activators of P-TEFb, that have mainly been studied in context of human immunodeficiency virus (HIV), but which may also be powerful in the context of HTLV-1.
Collapse
|
11
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Ishikawa C, Mori N. The role of CUDC-907, a dual phosphoinositide-3 kinase and histone deacetylase inhibitor, in inhibiting proliferation of adult T-cell leukemia. Eur J Haematol 2020; 105:763-772. [PMID: 32780889 DOI: 10.1111/ejh.13508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES New effective therapeutic strategies for human T-cell leukemia virus type 1 (HTLV-1)-driven adult T-cell leukemia (ATL) are required because of resistance to chemotherapeutic agents. Here, we aimed to determine the therapeutic efficacy of a dual phosphoinositide 3 kinase (PI3K)/histone deacetylase (HDAC) inhibitor, CUDC-907. METHODS Cell viability, cell cycle progression, and apoptotic events were examined by WST-8 assay, flow cytometry, and Hoechst 33342 staining. Caspase activity was determined using Calorimetric Caspase Assay kits. Immunoblotting and electrophoretic mobility shift assay were used to assess the intracellular signaling cascades. RESULTS The combination of PI3K inhibitor BKM120 and HDAC inhibitor LBH589 resulted in a synergistic cytotoxic effect in HTLV-1-infected T cells. CUDC-907 was more efficacious than BKM120 and LBH589. It induced G1 cell cycle arrest with downregulation of cyclin D1/D2, CDK4/6, c-Myc, and phosphorylated retinoblastoma protein expression. Apoptosis was induced via caspase-3/8/9 activation along with downregulation of Bcl-XL , Bcl-2, XIAP, survivin, and cIAP1/2, and upregulation of Bax and Bak. Histone H3 acetylation, H2AX activation, Hsp27 phosphorylation, and Hsp70 and Hsp27 upregulation were observed after treatment. CUDC-907 suppressed Akt, NF-κB, and AP-1 by downregulating phosphorylated and/or total Akt, IKKα/β, RelA, JunB, and JunD. CONCLUSION CUDC-907 may be a potential therapeutic agent for ATL.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
13
|
El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T, Hermine O. Novel Treatments of Adult T Cell Leukemia Lymphoma. Front Microbiol 2020; 11:1062. [PMID: 32547515 PMCID: PMC7270167 DOI: 10.3389/fmicb.2020.01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Adult T cell leukemia-lymphoma (ATL) is an aggressive malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-I) retrovirus. ATL carries a dismal prognosis. ATL classifies into four subtypes (acute, lymphoma, chronic, and smoldering) which display different clinical features, prognosis and response to therapy, hence requiring different clinical management. Smoldering and chronic subtypes respond well to antiretroviral therapy using the combination of zidovudine (AZT) and interferon-alpha (IFN) with a significant prolongation of survival. Conversely, the watch and wait strategy or chemotherapy for these indolent subtypes allies with a poor long-term outcome. Acute ATL is associated with chemo-resistance and dismal prognosis. Lymphoma subtypes respond better to intensive chemotherapy but survival remains poor. Allogeneic hematopoietic stem cell transplantation (HSCT) results in long-term survival in roughly one third of transplanted patients but only a small percentage of patients can make it to transplant. Overall, current treatments of aggressive ATL are not satisfactory. Prognosis of refractory or relapsed patients is dismal with some encouraging results when using lenalidomide or mogamulizumab. To overcome resistance and prevent relapse, preclinical or pilot clinical studies using targeted therapies such as arsenic/IFN, monoclonal antibodies, epigenetic therapies are promising but warrant further clinical investigation. Anti-ATL vaccines including Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients. Finally, based on the progress in understanding the pathophysiology of ATL, and the risk-adapted treatment approaches to different ATL subtypes, treatment strategies of ATL should take into account the host immune responses and the host microenvironment including HTLV-1 infected non-malignant cells. Herein, we will provide a summary of novel treatments of ATL in vitro, in vivo, and in early clinical trials.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Morgane Cheminant
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Toshiki Watanabe
- Department of Medical Genome Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
14
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
15
|
Molecular targeting for treatment of human T-lymphotropic virus type 1 infection. Biomed Pharmacother 2019; 109:770-778. [DOI: 10.1016/j.biopha.2018.10.139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
|
16
|
Jing B, Jin J, Xiang R, Liu M, Yang L, Tong Y, Xiao X, Lei H, Liu W, Xu H, Deng J, Zhou L, Wu Y. Vorinostat and quinacrine have synergistic effects in T-cell acute lymphoblastic leukemia through reactive oxygen species increase and mitophagy inhibition. Cell Death Dis 2018; 9:589. [PMID: 29789603 PMCID: PMC5964102 DOI: 10.1038/s41419-018-0679-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Despite recent progress in the treatment, the outcome of adult acute T-cell lymphoblastic leukemia (T-ALL) is poor. Development of novel approach to combat this disease is urgently required. Vorinostat, a pan-histone deacetylase (HDAC) inhibitor, exerts promising anticancer activity in a variety of solid and hematologic malignancies. However, the efficacy of vorinostat monotherapy is unsatisfactory. Here, we show that quinacrine (QC), an anti-malaria drug with potent autophagy inhibitory activity, could synergistically enhance vorinostat-induced cell death at a non-toxic concentration. Compared to the single treatment, QC plus vorinostat significantly induced apoptosis, disrupted the mitochondrial transmembrane potential, and decreased Mcl-1 and Bcl-2/Bax ratio. Interestingly, the application of QC plus vorinostat resulted in mitophagy blockade, as reflected by the increase in the K63-linked ubiquitination of mitochondria protein and the formation of mitochondrial aggresomes. QC plus vorinostat markedly increased the reactive oxygen species (ROS) level in cells. Moreover, the ROS scavenger N-acetylcysteine (NAC) abrogated QC plus vorinostat-induced ROS, decreased the ubiquitination of mitochondria proteins, and cell death. Finally, using a xenograft mouse model, we demonstrated that QC plus vorinostat significantly reduced cell proliferation and induced cell death in vivo. Taken together, our results showed that the combination of QC with vorinostat may represent a novel regimen for the treatment of T-cell acute lymphoblastic leukemia, which deserves clinical evaluation in the future.
Collapse
Affiliation(s)
- Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jin Jin
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Rufang Xiang
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China
| | - Meng Liu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Li Yang
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yin Tong
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Xinhua Xiao
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hu Lei
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Wei Liu
- Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Hanzhang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Li Zhou
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin Er Road, Shanghai, China.
| | - Yingli Wu
- Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Chemical Biology Division of Shanghai Universities E-Institutes, Shanghai Tongren Hospital/Faculty of Basic Medicine, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
17
|
Amin SA, Adhikari N, Jha T. Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol Res 2017; 122:8-19. [DOI: 10.1016/j.phrs.2017.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/17/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022]
|
18
|
Watanabe T. Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1-infected T cells. Blood 2017; 129:1071-1081. [PMID: 28115366 PMCID: PMC5374731 DOI: 10.1182/blood-2016-09-692574] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.
Collapse
Affiliation(s)
- Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University Graduate School of Medicine, Kanagawa, Japan; and Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Miles M, Kitevska-Ilioski T, Hawkins C. Old and Novel Functions of Caspase-2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:155-212. [DOI: 10.1016/bs.ircmb.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Karimi M, Mohammadi H, Hemmatzadeh M, Mohammadi A, Rafatpanah H, Baradaran B. Role of the HTLV-1 viral factors in the induction of apoptosis. Biomed Pharmacother 2016; 85:334-347. [PMID: 27887847 DOI: 10.1016/j.biopha.2016.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression.
Collapse
Affiliation(s)
- Mohammad Karimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tabriz University of Medical Sciences, International Branch (Aras), Tabriz, Iran
| | - Hamed Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hemmatzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Mohammadi
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Wasim L, Chopra M. Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells. Biomed Pharmacother 2016; 84:1393-1405. [PMID: 27802904 DOI: 10.1016/j.biopha.2016.10.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023] Open
Abstract
Cervical cancer is the fourth major cause of cancer-related deaths in women worldwide and is the most common cancer in developing countries. Therefore, a search for novel treatment modalities is warranted. The present study is designed to investigate the effect of pan histone deacetylase inhibitor, 'panobinostat', on cervical cancer cells alone and in combination with topoisomerase inhibitors. We assessed the effect of panobinostat on two cervical cancer cell lines, HeLa and SiHa, for cell viability, apoptosis, oxidative stress and mitochondrial function using various assays. The results indicate that panobinostat reduces the viability of cervical cancer cells in a dose- and time-dependent manner; it arrests HeLa cells in G0/G1 and SiHa cells in G2/M phase of the cell cycle. Panobinostat induced apoptosis through an increase in the ROS production and the disruption of mitochondrial membrane potential. Concomitantly the expression of anti-apoptotic gene Bcl-xL was reduced, while levels of CDK inhibitor p21 and caspase-9 were increased. Panobinostat increased the acetylation of histone H3 indicating HDAC inhibition. In addition, panobinostat also showed synergistic effect with topoisomerase inhibitors mediated by increased activation of caspase-3/7 activity compared to that in cells treated with panobinostat alone. These results suggest a combination therapy using inhibitors of histone deacetylase and topoisomerase together could hold the promise for an effective targeted therapeutic strategy.
Collapse
Affiliation(s)
- Lubna Wasim
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
22
|
Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y. Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther 2016; 16:1784-93. [PMID: 26529495 DOI: 10.1080/15384047.2015.1095406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MK-1775 is the first-in-class selective Wee1 inhibitor which has been demonstrated to synergize with CHK1 inhibitors in various malignancies. In this study, we report that the pan-histone deacetylase inhibitor (HDACI) panobinostat synergizes with MK-1775 in acute myeloid leukemia (AML), a malignancy which remains a clinical challenge and requires more effective therapies. Using both AML cell line models and primary patient samples, we demonstrated that panobinostat and MK-1775 synergistically induced proliferation arrest and cell death. We also demonstrated that panobinostat had equal anti-leukemic activities against primary AML blasts derived from patients either at initial diagnosis or at relapse. Interestingly, treatment with panobinostat alone or in combination with MK-1775 resulted in decreased Wee1 protein levels as well as downregulation of the CHK1 pathway. shRNA knockdown of CHK1 significantly sensitized AML cells to MK-1775 treatment, while knockdown of Wee1 significantly enhanced both MK-1775- and panobinostat-induced cell death. Our results demonstrate that panobinostat synergizes with MK-1775 in AML cells, at least in part through downregulation of CHK1 and/or Wee1, providing compelling evidence for the clinical development of the combination treatment in AML.
Collapse
Affiliation(s)
- Wenxiu Qi
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Wenbo Zhang
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Holly Edwards
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| | - Roland Chu
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | | | - Jeffrey W Taub
- c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA.,d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Zhihong Wang
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Yue Wang
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Chunhuai Li
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Hai Lin
- g Department of Hematology and Oncology; The First Hospital of Jilin University ; Changchun , China
| | - Yubin Ge
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| |
Collapse
|
23
|
Hasegawa H, Bissonnette RP, Gillings M, Sasaki D, Taniguchi H, Kitanosono H, Tsuruda K, Kosai K, Uno N, Morinaga Y, Imaizumi Y, Miyazaki Y, Yanagihara K. Induction of apoptosis by HBI-8000 in adult T-cell leukemia/lymphoma is associated with activation of Bim and NLRP3. Cancer Sci 2016; 107:1124-33. [PMID: 27193821 PMCID: PMC4982578 DOI: 10.1111/cas.12971] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 12/18/2022] Open
Abstract
Adult T‐cell leukemia/lymphoma (ATL) is an aggressive T‐cell malignancy caused by human T‐cell lymphotropic virus 1. Treatment options for acute ATL patients include chemotherapy, stem cell transplantation, and recently the anti‐chemokine (C‐C motif) receptor 4 antibody, although most patients still have a poor prognosis and there is a clear need for additional options. HBI‐8000 is a novel oral histone deacetylase inhibitor with proven efficacy for treatment of T‐cell lymphomas that recently received approval in China. In the present study, we evaluated the effects of HBI‐8000 on ATL‐derived cell lines and primary cells obtained from Japanese ATL patients. In most cases HBI‐8000 induced apoptosis in both primary ATL cells and cell lines. In addition, findings obtained with DNA microarray suggested Bim activation and, interestingly, the contribution of the NLR family, pyrin domain containing 3 (NLRP3) inflammasome pathway in HBI‐8000‐induced ATL cell death. Further investigations using siRNAs confirmed that Bim contributes to HBI‐8000‐induced apoptosis. Our results provide a rationale for a clinical investigation of the efficacy of HBI‐8000 in patients with ATL. Although the role of NLRP3 inflammasome activation in ATL cell death remains to be verified, HBI‐8000 may be part of a novel therapeutic strategy for cancer based on the NLRP3 pathway.
Collapse
Affiliation(s)
- Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | - Daisuke Sasaki
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroaki Taniguchi
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Kazuto Tsuruda
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kousuke Kosai
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoki Uno
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | - Yasushi Miyazaki
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan.,Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan.,Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
24
|
Roles of HTLV-1 basic Zip Factor (HBZ) in Viral Chronicity and Leukemic Transformation. Potential New Therapeutic Approaches to Prevent and Treat HTLV-1-Related Diseases. Viruses 2015; 7:6490-505. [PMID: 26690203 PMCID: PMC4690875 DOI: 10.3390/v7122952] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/16/2022] Open
Abstract
More than thirty years have passed since human T-cell leukemia virus type 1 (HTLV-1) was described as the first retrovirus to be the causative agent of a human cancer, adult T-cell leukemia (ATL), but the precise mechanism behind HTLV-1 pathogenesis still remains elusive. For more than two decades, the transforming ability of HTLV-1 has been exclusively associated to the viral transactivator Tax. Thirteen year ago, we first reported that the minus strand of HTLV-1 encoded for a basic Zip factor factor (HBZ), and since then several teams have underscored the importance of this antisense viral protein for the maintenance of a chronic infection and the proliferation of infected cells. More recently, we as well as others have demonstrated that HBZ has the potential to transform cells both in vitro and in vivo. In this review, we focus on the latest progress in our understanding of HBZ functions in chronicity and cellular transformation. We will discuss the involvement of this paradigm shift of HTLV-1 research on new therapeutic approaches to treat HTLV-1-related human diseases.
Collapse
|
25
|
Characteristics of Adult T-Cell Leukemia/Lymphoma Patients with Long Survival: Prognostic Significance of Skin Lesions and Possible Beneficial Role of Valproic Acid. LEUKEMIA RESEARCH AND TREATMENT 2015. [PMID: 26199759 PMCID: PMC4496652 DOI: 10.1155/2015/476805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe the clinical and biological features of ten patients with a survival superior to ten years (long survival), out of 175 patients diagnosed with Adult T-cell Leukemia/Lymphoma (ATL) in Martinique (1983–2013). There were 5 lymphoma and 5 chronic subtypes. Five of them (3 chronic, 2 lymphoma) had been treated with valproic acid (VA) for neurological disorders developed before or after ATL diagnosis, suggesting a beneficial role for VA as a histone deacetylase inhibitor (HDI) in ATL treatment. Total duration of uninterrupted VA treatment ranged from 8 to 37 years. Overall, the 175 incident ATL cases presented with a median survival of 5.43 months. The five VA-treated (VA+) patients presented with longer survival compared to VA treatment-free patients (VA−). For chronic subtypes, survival periods were of 213 months for 3 VA+ patients and of 33 months for 11 VA− patients (p = 0.023). For lymphoma subtypes, survival periods were of 144 months for 2 VA+ patients versus 6 months for 49 VA− patients (p = 0.0046). ATL cases with skin lesions, particularly lymphoma subtypes, had a longer survival (13.96 months) compared to those without skin lesions (6.06 months, p = 0.002). Eight out of the 10 patients presenting with long survival had skin lesions.
Collapse
|
26
|
Peintner L, Dorstyn L, Kumar S, Aneichyk T, Villunger A, Manzl C. The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd. Cell Death Differ 2015; 22:1803-11. [PMID: 25857265 PMCID: PMC4648327 DOI: 10.1038/cdd.2015.31] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/20/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022] Open
Abstract
The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eμ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eμ-Myc/Raidd−/− mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context.
Collapse
Affiliation(s)
- L Peintner
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - L Dorstyn
- Centre for Cancer Biology - An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - S Kumar
- Centre for Cancer Biology - An Alliance between SA Pathology and the University of South Australia, Adelaide, SA 5001, Australia
| | - T Aneichyk
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - A Villunger
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - C Manzl
- Division of Developmental Immunology, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Department of General Pathology, Medical University of Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
27
|
Saito S, Kawamura T, Higuchi M, Kobayashi T, Yoshita-Takahashi M, Yamazaki M, Abe M, Sakimura K, Kanda Y, Kawamura H, Jiang S, Naito M, Yoshizaki T, Takahashi M, Fujii M. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells. Eur J Immunol 2015; 45:1512-23. [PMID: 25652366 DOI: 10.1002/eji.201444977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 01/30/2023]
Abstract
Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toshihiko Kawamura
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Kobayashi
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Manami Yoshita-Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Fostering Innovative Leadership, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Manabu Abe
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Yasuhiro Kanda
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroki Kawamura
- Department of Clinical Engineering and Medical Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Shuying Jiang
- Division of Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Niigata College of Medical Technology, Niigata, Japan
| | - Makoto Naito
- Division of Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takumi Yoshizaki
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
28
|
Tsukasaki K, Tobinai K. Human T-cell Lymphotropic Virus Type I–Associated Adult T-cell Leukemia–Lymphoma: New Directions in Clinical Research. Clin Cancer Res 2014; 20:5217-25. [DOI: 10.1158/1078-0432.ccr-14-0572] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Shen Q, Tang W, Sun J, Feng L, Jin H, Wang X. Regulation of CRADD-caspase 2 cascade by histone deacetylase 1 in gastric cancer. Am J Transl Res 2014; 6:538-547. [PMID: 25360218 PMCID: PMC4212928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/04/2014] [Indexed: 06/04/2023]
Abstract
CRADD, also referred as RAIDD, is an adaptor protein that could interact with both caspase 2 and RIP that can promote apoptosis once activated. HDAC inhibitors are promising anti-cancer agents by inducing apoptosis of various cancer cells. In this study, we found that CRADD was induced by TSA (trichostatin A) to activate caspase 2-dependent apoptosis. CRADD was downregulated in gastric cancer and the restoration of its expression suppressed the viability of gastric cancer cells. HDAC1 was responsible for its downregulation in gastric cancer since HDAC1 siRNA upregulated CRADD expression and HDAC1 directly bound to the promoter of CRADD. Therefore, the high expression of HDAC1 can downregulate CRADD to confer gastric cancer cells the resistance to caspase 2-dependent apoptosis. HDAC inhibitors, potential anti-cancer drugs under investigation, can promote caspase 2-dependent apoptosis by inducing the expression of CRADD.
Collapse
Affiliation(s)
- Qi Shen
- Department of Medical Oncology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
| | - Wanfen Tang
- Department of Medical Oncology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
- Department of Medical Oncology, Jinhua Guangfu HospitalJinhua, Zhejiang, China
| | - Jie Sun
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
| | - Lifeng Feng
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
| | - Xian Wang
- Department of Medical Oncology, Biomedical Research Center, Sir Runrun Shaw Hospital, School of Medicine, Zhejiang UniversityChina
| |
Collapse
|
30
|
Warner K, Crispatzu G, Al-Ghaili N, Weit N, Florou V, You MJ, Newrzela S, Herling M. Models for mature T-cell lymphomas--a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts. Crit Rev Oncol Hematol 2013; 88:680-95. [PMID: 23972664 DOI: 10.1016/j.critrevonc.2013.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 02/03/2023] Open
Abstract
Mature T-cell lymphomas/leukemias (MTCL) have been understudied lymphoid neoplasms that currently receive growing attention. Our historically rudimentary molecular understanding and dissatisfactory interventional success in this complex and for the most part poor-prognostic group of tumors is only slightly improving. A major limiting aspect in further progress in these rare neoplasms is the lack of suitable model systems that would substantially facilitate pathogenic studies and pre-clinical drug evaluations. Such representations of MTCL have thus far not been systematically appraised. We therefore provide an overview on existing models and point out their particular advantages and limitations in the context of the specific scientific questions. After addressing issues of species-specific differences and classifications, we summarize data on MTCL cell lines of human as well as murine origin, on murine strain predispositions to MTCL, on available models of genetically engineered mice, and on transplant systems. From an in-silico meta-analysis of available primary data of gene expression profiles on human MTCL we cross-reference genes reported to transform T-cells in mice and reflect on their general vs entity-restricted relevance and on target-promoter influences. Overall, we identify the urgent need for new models of higher fidelity to human MTCL with respect to their increasingly recognized diversity and to predictions of drug response.
Collapse
Affiliation(s)
- Kathrin Warner
- Laboratory of lymphocyte signaling and oncoproteome, CECAD, Cologne University, Cologne, Germany; Senckenberg Institute of Pathology, Goethe-University, Frankfurt/M., Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
SOX4 is a direct target gene of FRA-2 and induces expression of HDAC8 in adult T-cell leukemia/lymphoma. Blood 2013; 121:3640-9. [DOI: 10.1182/blood-2012-07-441022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Key Points
SOX4 is consistently expressed in ATL, is involved in ATL cell growth, and induces genes such as GCRK, NAP1, and HDAC8 in ATL. FRA-2/JUND and SOX4 form an important oncogenic cascade in ATL, leading to upregulation of genes such as HDAC8.
Collapse
|
32
|
Miyatake Y, Oliveira ALA, Jarboui MA, Ota S, Tomaru U, Teshima T, Hall WW, Kasahara M. Protective roles of epithelial cells in the survival of adult T-cell leukemia/lymphoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1832-42. [PMID: 23474084 DOI: 10.1016/j.ajpath.2013.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/14/2012] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is a highly invasive and intractable T-cell malignancy caused by human T-cell leukemia virus-1 infection. We demonstrate herein that normal tissue-derived epithelial cells (NECs) exert protective effects on the survival of leukemic cells, which may partially account for high resistance to antileukemic therapies in patients with ATL. Viral gene-silenced, ATL-derived cell lines (ATL cells) dramatically escaped from histone deacetylase inhibitor-induced apoptosis by direct co-culture with NECs. Adhesions to NECs suppressed p21(Cip1) expression and increased a proportion of resting G0/G1 phase cells in trichostatin A (TSA)-treated ATL cells. ATL cells adhering to NECs down-regulated CD25 expression and enhanced vimentin expression, suggesting that most ATL cells acquired a quiescent state by cell-cell interactions with NECs. ATL cells adhering to NECs displayed highly elevated expression of the cancer stem cell marker CD44. Blockade of CD44 signaling diminished the NEC-conferred resistance of ATL cells to TSA-induced apoptosis. Co-culture with NECs also suppressed the expression of NKG2D ligands on TSA-treated ATL cells, resulting in decreased natural killer cell-mediated cytotoxicity. Combined evidence suggests that interactions with normal epithelial cells augment the resistance of ATL cells to TSA-induced apoptosis and facilitate immune evasion by ATL cells.
Collapse
Affiliation(s)
- Yukiko Miyatake
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tsukasaki K, Tobinai K. Biology and treatment of HTLV-1 associated T-cell lymphomas. Best Pract Res Clin Haematol 2013; 26:3-14. [DOI: 10.1016/j.beha.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Currer R, Van Duyne R, Jaworski E, Guendel I, Sampey G, Das R, Narayanan A, Kashanchi F. HTLV tax: a fascinating multifunctional co-regulator of viral and cellular pathways. Front Microbiol 2012; 3:406. [PMID: 23226145 PMCID: PMC3510432 DOI: 10.3389/fmicb.2012.00406] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2-5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.
Collapse
Affiliation(s)
- Robert Currer
- National Center for Biodefense and Infectious Diseases, George Mason University Manassas, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gillet N, Vandermeers F, de Brogniez A, Florins A, Nigro A, François C, Bouzar AB, Verlaeten O, Stern E, Lambert DM, Wouters J, Willems L. Chemoresistance to Valproate Treatment of Bovine Leukemia Virus-Infected Sheep; Identification of Improved HDAC Inhibitors. Pathogens 2012; 1:65-82. [PMID: 25436765 PMCID: PMC4235689 DOI: 10.3390/pathogens1020065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/24/2012] [Accepted: 10/02/2012] [Indexed: 12/30/2022] Open
Abstract
We previously proved that a histone deacetylase inhibitor (valproate, VPA) decreases the number of leukemic cells in bovine leukemia virus (BLV)-infected sheep. Here, we characterize the mechanisms initiated upon interruption of treatment. We observed that VPA treatment is followed by a decrease of the B cell counts and proviral loads (copies per blood volume). However, all sheep eventually relapsed after different periods of time and became refractory to further VPA treatment. Sheep remained persistently infected with BLV. B lymphocytes isolated throughout treatment and relapse were responsive to VPA-induced apoptosis in cell culture. B cell proliferation is only marginally affected by VPA ex vivo. Interestingly, in four out of five sheep, ex vivo viral expression was nearly undetectable at the time of relapse. In two sheep, a new tumoral clone arose, most likely revealing a selection process exerted by VPA in vivo. We conclude that the interruption of VPA treatment leads to the resurgence of the leukemia in BLV-infected sheep and hypothesize that resistance to further treatment might be due to the failure of viral expression induction. The development of more potent HDAC inhibitors and/or the combination with other compounds can overcome chemoresistance. These observations in the BLV model may be important for therapies against the related Human T-lymphotropic virus type 1.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Alix de Brogniez
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Arnaud Florins
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Annamaria Nigro
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Carole François
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Amel-Baya Bouzar
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Olivier Verlaeten
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| | - Eric Stern
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Didier M Lambert
- Pharmaceutic Chemistry and Radiopharmacy Unit, Louvain Drug Research Institute, University of Louvain, Brussels 1000, Belgium.
| | - Johan Wouters
- Biological Chemistry, Facultés Universitaires Notre-Dame de la Paix, Namur 5000, Belgium.
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (GxABT), University of Liège, Liège 4000, Belgium.
| |
Collapse
|
36
|
Bock FJ, Peintner L, Tanzer M, Manzl C, Villunger A. P53-induced protein with a death domain (PIDD): master of puppets? Oncogene 2012; 31:4733-9. [PMID: 22266869 DOI: 10.1038/onc.2011.639] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P53-induced protein with a death domain (PIDD) has been described as primary p53 target gene, induced upon DNA damage. More than 10 years after its discovery, its physiological role in the DNA damage response remains enigmatic, as it seems to be able to execute life-death decisions in vitro, yet genetic ablation in mice failed to reveal an obvious phenotype. Nonetheless, evidence is accumulating that it contributes to the fine-tuning of the DNA-damage response by orchestrating critical processes such as caspase activation or nuclear factor κB translocation and can also exert additional nuclear functions, for example, the modulation of translesion synthesis. In this review, we aim to integrate these observations and propose possible unexplored functions of PIDD.
Collapse
Affiliation(s)
- F J Bock
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
37
|
Clinical Trials and Treatment of ATL. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:101754. [PMID: 23259064 PMCID: PMC3505932 DOI: 10.1155/2012/101754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/29/2011] [Indexed: 12/03/2022]
Abstract
ATL is a distinct peripheral T-lymphocytic malignancy associated with human T-cell lymphotropic virus type I (HTLV-1). The diversity in clinical features and prognosis of patients with this disease has led to its subtype-classification into four categories, acute, lymphoma, chronic, and smoldering types, defined by organ involvement, and LDH and calcium values. In case of acute, lymphoma, or unfavorable chronic subtypes (aggressive ATL), intensive chemotherapy like the LSG15 regimen (VCAP-AMP-VECP) is usually recommended if outside of clinical trials, based on the results of a phase 3 trial. In case of favorable chronic or smoldering ATL (indolent ATL), watchful waiting until disease progression has been recommended, although the long-term prognosis was inferior to those of, for instance, chronic lymphoid leukemia. Retrospective analysis suggested that the combination of interferon alpha and zidovudine was apparently promising for the treatment of ATL, especially for types with leukemic manifestation. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is also promising for the treatment of aggressive ATL possibly reflecting graft versus ATL effect. Several new agent trials for ATL are ongoing and in preparation, including a defucosylated humanized anti-CC chemokine receptor 4 monoclonal antibody, IL2-fused with diphtheria toxin, histone deacetylase inhibitors, a purine nucleoside phosphorylase inhibitor, a proteasome inhibitor, and lenalidomide.
Collapse
|
38
|
Harrod R. Inhibiting HDACs in a preclinical model of HTLV-1-induced adult T-cell lymphoma. Leuk Res 2011; 35:1436-7. [DOI: 10.1016/j.leukres.2011.07.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 07/29/2011] [Accepted: 07/31/2011] [Indexed: 01/29/2023]
|