1
|
Salmon-Divon M, Meyuchas R, Shpilberg O, Okon E, Benhamida J, Yabe M, Petrova-Drus K, Zvida-Bloch T, Basood M, Mazor R, Durham BH, Haroche J, Abdel-Wahab O, Diamond EL, Hershkovitz-Rokah O. The effect of methylation on the let-7-BCL2L1-BCL2 axis and the potential use of hypomethylating and BH3 mimetic drugs in histiocytic neoplasms. Leukemia 2025; 39:516-519. [PMID: 39516372 PMCID: PMC11794134 DOI: 10.1038/s41375-024-02459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Affiliation(s)
- Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Refael Meyuchas
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
| | - Ofer Shpilberg
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
| | - Elimelech Okon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariko Yabe
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kseniya Petrova-Drus
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tal Zvida-Bloch
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel
| | - May Basood
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
| | - Roei Mazor
- Clinic of Histiocytic Neoplasms, Institute of Hematology, Assuta Medical Center, Tel-Aviv, Israel
| | - Benjamin H Durham
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Julien Haroche
- Service de Médecine Interne, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Sorbonne Université, Faculté de Médecine, Paris, France
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eli L Diamond
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Eftekhari Kenzerki M, Mohajeri Khorasani A, Zare I, Amirmahani F, Ghasemi Y, Hamblin MR, Mousavi P. Deciphering the role of LOC124905135-related non-coding RNA cluster in human cancers: A comprehensive review. Heliyon 2024; 10:e39931. [PMID: 39641053 PMCID: PMC11617737 DOI: 10.1016/j.heliyon.2024.e39931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), are essential regulators of processes, such as the cell cycle and apoptosis. In addition to interacting with intracellular complexes and participating in diverse molecular pathways, ncRNAs can be used as clinical diagnostic biomarkers and therapeutic targets for fighting cancer. Studying ncRNA gene clusters is crucial for understanding their role in cancer and developing new treatments. LOC124905135 is a protein-coding gene encoding a collagen alpha-1(III) chain-like protein, and also acts as a gene for several ncRNAs, including miR-3619, PRR34 antisense RNA 1 (PRR34-AS1), PRR34, long intergenic ncRNA 2939 (LINC02939), LOC112268288, and MIRLET7BHG. It also serves as a host gene for three miRNAs (hsa-let7-A3, hsa-miR-4763, and hsa-let-7b). Notably, the ncRNAs derived from this particular genomic region significantly affect various cell functions, including the cell cycle and apoptosis. This cluster of ncRNAs is dysregulated in several types of cancer, exhibiting mutations, alterations in copy number, and being subject to DNA methylation and histone modification. In summary, the ncRNAs derived from the LOC124905135 cluster could be used as targets for diagnosis, therapy monitoring, and drug discovery in human cancers.
Collapse
Affiliation(s)
- Maryam Eftekhari Kenzerki
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
3
|
Tian C, Li Y, Si J, Kang J, Chen Z, Nuermaimaiti R, Wang Y, Yu Y, Zhao Z, Wang X, Zhang Y, Zhao H, Yang H, You MJ, Zheng G, Wang L. Knockdown of let-7b in leukemia associated macrophages inhibit acute myeloid leukemia progression. Hematol Oncol 2023; 41:510-519. [PMID: 36579468 DOI: 10.1002/hon.3120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/15/2022] [Accepted: 10/22/2022] [Indexed: 12/30/2022]
Abstract
Macrophages, critical components of bone marrow microenvironment, are reported to be remodeled into leukemia-associated macrophages (LAMs) in leukemic microenvironment where they contribute to leukemia development, characterized as M2 macrophages with pro-tumor effects. However, how leukemic microenvironment transforms macrophages into LAMs remains unknown. Here, we analyzed the clinical relevance of LAMs and profiled their RNA-Seq from acute myeloid leukemia (AML) patients with complete remission (CR) after induction treatment and refractory AML patients. Our results showed that the proportion and number of LAMs in refractory AML patients was higher than that in CR patients and LAM was a poor prognostic factor of AML patients. Furthermore, let-7b was a potentially aberrant gene in LAMs contributed to M2-subtype characteristics. Knockdown of let-7b in LAMs could inhibit the development of AML by repolarizing LAMs toward M1-subtype characteristics through the activation of Toll-like receptor and NF-κB pathway. Our study provides insight for future LAM-based immunotherapy strategies for AML.
Collapse
Affiliation(s)
- Chen Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Hotan District People's Hospital, Hotan, Xinjiang, China
| | - Yueyang Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junqi Si
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Junnan Kang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zehui Chen
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | - Yafei Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yong Yu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofang Wang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haifeng Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongliang Yang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mingjian James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guoguang Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lina Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Pathania AS. Crosstalk between Noncoding RNAs and the Epigenetics Machinery in Pediatric Tumors and Their Microenvironment. Cancers (Basel) 2023; 15:2833. [PMID: 37345170 DOI: 10.3390/cancers15102833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
According to the World Health Organization, every year, an estimated 400,000+ new cancer cases affect children under the age of 20 worldwide. Unlike adult cancers, pediatric cancers develop very early in life due to alterations in signaling pathways that regulate embryonic development, and environmental factors do not contribute much to cancer development. The highly organized complex microenvironment controlled by synchronized gene expression patterns plays an essential role in the embryonic stages of development. Dysregulated development can lead to tumor initiation and growth. The low mutational burden in pediatric tumors suggests the predominant role of epigenetic changes in driving the cancer phenotype. However, one more upstream layer of regulation driven by ncRNAs regulates gene expression and signaling pathways involved in the development. Deregulation of ncRNAs can alter the epigenetic machinery of a cell, affecting the transcription and translation profiles of gene regulatory networks required for cellular proliferation and differentiation during embryonic development. Therefore, it is essential to understand the role of ncRNAs in pediatric tumor development to accelerate translational research to discover new treatments for childhood cancers. This review focuses on the role of ncRNA in regulating the epigenetics of pediatric tumors and their tumor microenvironment, the impact of their deregulation on driving pediatric tumor progress, and their potential as effective therapeutic targets.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
6
|
Meixell DA, Mamillapalli R, Taylor HS. Methylation of microribonucleic acid Let-7b regulatory regions in endometriosis. F&S SCIENCE 2022; 3:197-203. [PMID: 35560017 DOI: 10.1016/j.xfss.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate whether Let-7b regulatory regions are methylated in endometriosis and whether there are specific CpG methylation sites that can be identified as key epigenetic regulatory locations. DESIGN Laboratory study. SETTING Academic Medical Center. PATIENT(S) Twenty-one women with (n = 12) and without (n = 9) endometriosis. INTERVENTION(S) Laboratory investigation. In vitro assessment of Let-7b methylation. MAIN OUTCOME MEASURE(S) Four targeted regions upstream of Let-7b predicted to be the regulatory regions of this microribonucleic acid (miRNA) were amplified using bisulfite-specific polymerase chain reaction. Deoxyribonucleic acid sequences were analyzed to determine methylation status at each predicted regulatory region and CpG island. RESULT(S) Regions were chosen on the basis of percent (%) GC content and data from Ensembl/ENCODE databases, which predict locations of promoters, enhancers, CTCF, and transcription factor binding sites as well as candidate cis-regulatory elements. A region 1,161 base pairs upstream of the Let-7b coding region was significantly differentially methylated in ectopic samples compared with eutopic endometrium from patients with endometriosis. Four specific CpG islands within this region 2 were further analyzed individually, and 1 was found to be significantly methylated in endometriosis. We identified that transcription factor SP1 was predicted to bind to a sequence that contained this specific methylated CpG in endometriosis. CONCLUSION(S) We identified differential Let-7b methylation in endometriosis, demonstrating that the epigenetic nature of the disease extends to the regulation of miRNAs. Methylation of this novel Let-7b regulatory region explains the decreased levels of this miRNA in endometriosis and is distinct from the regions implicated in regulating Let-7b in cancer. Understanding of the disease-specific mechanisms leading to diminished expression may allow for better understanding of the etiology of endometriosis as well as development of new treatment options.
Collapse
Affiliation(s)
- Dana A Meixell
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut.
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Tomizawa D, Miyamura T, Koh K, Ishii E. Acute lymphoblastic leukemia in infants: A quarter century of nationwide efforts in Japan. Pediatr Int 2022; 64:e14935. [PMID: 34324764 DOI: 10.1111/ped.14935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/01/2022]
Abstract
Acute lymphoblastic leukemia (ALL) with KMT2A gene rearrangement (KMT2A-r) in infants is a biologically and clinically unique disease and one of the most difficult to cure forms of pediatric leukemia. Multicenter clinical trials have been carried out in Japan since the mid-1990s by introducing allogeneic hematopoietic stem cell transplantation (HSCT) in first remission, which led to a modest improvement in outcome of infants with KMT2A-r ALL. Because of the emerging evidence that HSCT does not benefit every infant with KMT2A-r ALL, the Japanese Pediatric Leukemia/Lymphoma Study Group trial MLL-10 introduced risk stratification using age and presence of central nervous system leukemia, and introduced intensive chemotherapy, including high-dose cytarabine in early consolidation; indication of HSCT was restricted to the patients with high-risk features. The trial resulted in excellent 3-year event-free survival of 66.2% (standard error, 5.6%) and overall survival of 83.9% (standard error, 4.3%) for 75 patients with KMT2A-r ALL recruited between 2011 and 2015. This Japanese experience and the results of the infant ALL trials worldwide suggest the importance of introducing effective therapy in the early phase of therapy, thus clearing minimal residual disease as rapidly as possible. However, further improvement in outcome is unlikely with conventional treatment approaches. Introduction of biology-driven novel agents and/or immunotherapies through international collaboration would be key solutions to overcome the disease.
Collapse
Affiliation(s)
- Daisuke Tomizawa
- Division of Leukemia and Lymphoma, Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsuyoshi Koh
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
8
|
Inzulza-Tapia A, Alarcón M. Role of Non-Coding RNA of Human Platelet in Cardiovascular Disease. Curr Med Chem 2021; 29:3420-3444. [PMID: 34967288 DOI: 10.2174/0929867329666211230104955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/12/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Cardiovascular diseases (CVD) are the major cause of death in the world. Numerous genetic studies involving transcriptomic approaches aimed at the detailed understanding of the disease and the development of new therapeutic strategies have been conducted over recent years. There has been an increase in research on platelets, which are implicated in CVD due to their capacity to release regulatory molecules that affect various pathways. Platelets secrete over 500 various kinds of molecules to plasma including large amounts of non-coding (nc) RNA (miRNA, lncRNA or circRNA). These ncRNA correspond to 98% of transcripts that are not translated into proteins as they are important regulators in physiology and disease. Thus, miRNAs can direct protein complexes to mRNAs through base-pairing interactions, thus causing translation blockage or/and transcript degradation. The lncRNAs act via different mechanisms by binding to transcription factors. Finally, circRNAs act as regulators of miRNAs, interfering with their action. Alteration in the repertoire and/or the amount of the platelet-secreted ncRNA can trigger CVD as well as other diseases. NcRNAs can serve as effective biomarkers for the disease or as therapeutic targets due to their disease involvement. In this review, we will focus on the most important ncRNAs that are secreted by platelets (9 miRNA, 9 lncRNA and 5 circRNA), their association with CVD, and the contribution of these ncRNA to CVD risk to better understand the relation between ncRNA of human platelet and CVD.
Collapse
Affiliation(s)
- Inzulza-Tapia A
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| | - Alarcón M
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
- Thrombosis Research Center, University of Talca, 2 Norte 685, Talca, Chile
| |
Collapse
|
9
|
Yazarlou F, Kadkhoda S, Ghafouri-Fard S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed Pharmacother 2021; 144:112334. [PMID: 34656064 DOI: 10.1016/j.biopha.2021.112334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Let-7 includes a family of miRNA which are implicated in the developmental processes as well as carcinogenesis. This miRNA family has been shown to influence pathogenesis of a variety of hematological malignancies through changing expression of a number of oncogenic pathways, particularly those related with MYC. Expression of these miRNAs has been found to be different between distinct hematological malignancies or even between cytogenetically-defined subgroups of a certain malignancy. In the current review, we summarize the data regarding biogenesis, genomic locations, targets and regulatory network of this miRNA family in the context of hematological malignancies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gregorova J, Vychytilova-Faltejskova P, Sevcikova S. Epigenetic Regulation of MicroRNA Clusters and Families during Tumor Development. Cancers (Basel) 2021; 13:1333. [PMID: 33809566 PMCID: PMC8002357 DOI: 10.3390/cancers13061333] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs are small non-coding single-stranded RNA molecules regulating gene expression on a post-transcriptional level based on the seed sequence similarity. They are frequently clustered; thus, they are either simultaneously transcribed into a single polycistronic transcript or they may be transcribed independently. Importantly, microRNA families that contain the same seed region and thus target related signaling proteins, may be localized in one or more clusters, which are in a close relationship. MicroRNAs are involved in basic physiological processes, and their deregulation is associated with the origin of various pathologies, including solid tumors or hematologic malignancies. Recently, the interplay between the expression of microRNA clusters and families and epigenetic machinery was described, indicating aberrant DNA methylation or histone modifications as major mechanisms responsible for microRNA deregulation during cancerogenesis. In this review, the most studied microRNA clusters and families affected by hyper- or hypomethylation as well as by histone modifications are presented with the focus on particular mechanisms. Finally, the diagnostic and prognostic potential of microRNA clusters and families is discussed together with technologies currently used for epigenetic-based cancer therapies.
Collapse
Affiliation(s)
- Jana Gregorova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
| | - Petra Vychytilova-Faltejskova
- Department of Molecular Medicine, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic;
| | - Sabina Sevcikova
- Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic;
- Department of Clinical Hematology, University Hospital Brno, 625 00 Brno, Czech Republic
| |
Collapse
|
11
|
Johnson DT, Davis AG, Zhou JH, Ball ED, Zhang DE. MicroRNA let-7b downregulates AML1-ETO oncogene expression in t(8;21) AML by targeting its 3'UTR. Exp Hematol Oncol 2021; 10:8. [PMID: 33531067 PMCID: PMC7856722 DOI: 10.1186/s40164-021-00204-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Acute myeloid leukemia (AML) with the t(8;21)(q22;q22) chromosomal translocation is among the most common subtypes of AML and produces the AML1-ETO (RUNX1-ETO, RUNX1-RUNX1T1) oncogenic fusion gene. AML1-ETO functions as an aberrant transcription factor which plays a key role in blocking normal hematopoiesis. Thus, the expression of AML1-ETO is critical to t(8;21) AML leukemogenesis and maintenance. Post-transcriptional regulation of gene expression is often mediated through interactions between trans-factors and cis-elements within transcript 3′-untranslated regions (UTR). AML1-ETO uses the 3′UTR of the ETO gene, which is not normally expressed in hematopoietic cells. Therefore, the mechanisms regulating AML1-ETO expression via the 3’UTR are attractive therapeutic targets. Methods We used RNA-sequencing of t(8;21) patients and cell lines to examine the 3′UTR isoforms used by AML1-ETO transcripts. Using luciferase assay approaches, we test the relative contribution of 3′UTR cis elements to AML1-ETO expression. We further use let-7b microRNA mimics and anti-let-7b sponges for functional studies of t(8;21) AML cell lines. Results In this study, we examine the regulation of AML1-ETO via the 3’UTR. We demonstrate that AML1-ETO transcripts primarily use a 3.7 kb isoform of the ETO 3′UTR in both t(8;21) patients and cell lines. We identify a negative regulatory element within the AML1-ETO 3′UTR. We further demonstrate that the let-7b microRNA directly represses AML1-ETO through this site. Finally, we find that let-7b inhibits the proliferation of t(8;21) AML cell lines, rescues expression of AML1-ETO target genes, and promotes differentiation. Conclusions AML1-ETO is post-transcriptionally regulated by let-7b, which contributes to the leukemic phenotype of t(8;21) AML and may be important for t(8;21) leukemogenesis and maintenance.
Collapse
Affiliation(s)
- Daniel T Johnson
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Amanda G Davis
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA.,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Jie-Hua Zhou
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Edward D Ball
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.,BMT Division, Department of Medicine, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA. .,Biological Sciences Graduate Program, University of California San Diego, La Jolla, San Diego, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, San Diego, CA, USA. .,Department of Pathology, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
12
|
The Tumor Suppressive mir-148a Is Epigenetically Inactivated in Classical Hodgkin Lymphoma. Cells 2020; 9:cells9102292. [PMID: 33066457 PMCID: PMC7602210 DOI: 10.3390/cells9102292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/06/2023] Open
Abstract
DNA methylation was shown previously to be a crucial mechanism responsible for transcriptional deregulation in the pathogenesis of classical Hodgkin lymphoma (cHL). To identify epigenetically inactivated miRNAs in cHL, we have analyzed the set of miRNAs downregulated in cHL cell lines using bisulfite pyrosequencing. We focused on miRNAs with promoter regions located within or <1000 bp from a CpG island. Most promising candidate miRNAs were further studied in primary Hodgkin and Reed-Sternberg (HRS) cells obtained by laser capture microdissection. Last, to evaluate the function of identified miRNAs, we performed a luciferase reporter assay to confirm miRNA: mRNA interactions and therefore established cHL cell lines with stable overexpression of selected miRNAs for proliferation tests. We found a significant reverse correlation between DNA methylation and expression levels of mir-339-3p, mir-148a-3p, mir-148a-5p and mir-193a-5 demonstrating epigenetic regulation of these miRNAs in cHL cell lines. Moreover, we demonstrated direct interaction between miR-148a-3p and IL15 and HOMER1 transcripts as well as between mir-148a-5p and SUB1 and SERPINH1 transcripts. Furthermore, mir-148a overexpression resulted in reduced cell proliferation in the KM-H2 cell line. In summary, we report that mir-148a is a novel tumor suppressor inactivated in cHL and that epigenetic silencing of miRNAs is a common phenomenon in cHL.
Collapse
|
13
|
Minervini A, Coccaro N, Anelli L, Zagaria A, Specchia G, Albano F. HMGA Proteins in Hematological Malignancies. Cancers (Basel) 2020; 12:E1456. [PMID: 32503270 PMCID: PMC7353061 DOI: 10.3390/cancers12061456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The high mobility group AT-Hook (HMGA) proteins are a family of nonhistone chromatin remodeling proteins known as "architectural transcriptional factors". By binding the minor groove of AT-rich DNA sequences, they interact with the transcription apparatus, altering the chromatin modeling and regulating gene expression by either enhancing or suppressing the binding of the more usual transcriptional activators and repressors, although they do not themselves have any transcriptional activity. Their involvement in both benign and malignant neoplasias is well-known and supported by a large volume of studies. In this review, we focus on the role of the HMGA proteins in hematological malignancies, exploring the mechanisms through which they enhance neoplastic transformation and how this knowledge could be exploited to devise tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy; (A.M.); (N.C.); (L.A.); (A.Z.); (G.S.)
| |
Collapse
|
14
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
15
|
Gutierrez-Camino A, Garcia-Obregon S, Lopez-Lopez E, Astigarraga I, Garcia-Orad A. miRNA deregulation in childhood acute lymphoblastic leukemia: a systematic review. Epigenomics 2019; 12:69-80. [PMID: 31833405 DOI: 10.2217/epi-2019-0154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite remarkable improvements in survival of childhood acute lymphoblastic leukemia (ALL), nonresponding or relapsing patients still represent one of the most frequent causes of death by disease in children. Accurate patient risk stratification based on genetic markers could increases survival rates. miRNAs can represent novel candidates with diagnostic, predictive and prognostic potential; however, many groups investigated their involvement with contradictory results. Aim: To clarify the role of miRNAs as biomarkers through a systematic review. Results: From a revision of 45 manuscripts, we found that miR-128 and miR-181 overexpression could represent markers for ALL diagnosis and underexpression of miR-708 and miR-99a could be markers for bad prognosis. Conclusion: These signatures could refine classification and risk stratification of patients and improve ALL outcome.
Collapse
Affiliation(s)
- Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Division of Hematology-Oncology, Research Center, Sainte-Justine University Health Center, Montreal, QC H3T 1C5, Canada
| | - Susana Garcia-Obregon
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| | - Itziar Astigarraga
- BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain.,Department of Pediatrics, University Hospital Cruces, Barakaldo, 48903, Spain.,Department of Pediatrics, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.,BioCruces Bizkaia Health Research Institute, Pediatric Oncology Group, Barakaldo, 48903, Spain
| |
Collapse
|
16
|
Cao YX, Wen F, Luo ZY, Long XX, Luo C, Liao P, Li JJ. Downregulation of microRNA let-7f mediated the Adriamycin resistance in leukemia cell line. J Cell Biochem 2019; 121:4022-4033. [PMID: 31793054 DOI: 10.1002/jcb.29541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/10/2019] [Indexed: 11/07/2022]
Abstract
Multidrug resistance (MDR) has become the major cause of failure chemotherapy for leukemia and high mortality of leukemia. The study aimed to investigate whether the let-7f mediate the Adriamycin (ADR) resistance of leukemia, and to explore the potential molecular mechanism. Cell proliferation was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the soft agar clone formation assay. Flow cytometry was performed to detected cell cycle and apoptosis. The targeted regulationship was analyzed by dual-luciferase assay. Real-time polymerase chain reaction and Western blot were used to measure the expressions of let-7f, ABCC5, ABCC10, cell cycle-related proteins, and apoptosis-related proteins. The xenograft mouse model was used to conduct the tumor formation assay in vivo. The results demonstrated that the expression of let-7f was lower in multidrug-resistant K562/A02 cell lines compared to that in K562, while ABCC5 and ABCC10 were upregulated. Overexpression of let-7f in K562/A02 cell lines downregulated the ABCC5 and ABCC10 expression, enhanced cell sensitivity to ADR, promoted cell apoptosis, and inhibited cell proliferation. let-7f was proved to negatively regulate ABCC5 and ABCC10. Tumor formation assay further determined that let-7f overexpression increased sensitivity to ADR. Taken together, the let-7f downregulation induced the ADR resistance of leukemia by upregulating ABCC5 and ABCC10 expression. Our study provided a novel perspective to study the mechanism of MDR and a new target for the reversal of MDR.
Collapse
Affiliation(s)
- Yi-Xiong Cao
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Feng Wen
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Ze-Yu Luo
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xing-Xing Long
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Cong Luo
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Pei Liao
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Jun-Jun Li
- Department Of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
17
|
Marcos-Villar L, Nieto A. The DOT1L inhibitor Pinometostat decreases the host-response against infections: Considerations about its use in human therapy. Sci Rep 2019; 9:16862. [PMID: 31727944 PMCID: PMC6856118 DOI: 10.1038/s41598-019-53239-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022] Open
Abstract
Patients with acute myeloid leukemia frequently present translocations of MLL gene. Rearrangements of MLL protein (MLL-r) in complexes that contain the histone methyltransferase DOT1L are common, which elicit abnormal methylation of lysine 79 of histone H3 at MLL target genes. Phase 1 clinical studies with pinometostat (EPZ-5676), an inhibitor of DOT1L activity, demonstrated the therapeutic potential for targeting DOT1L in MLL-r leukemia patients. We previously reported that down-regulation of DOT1L increases influenza and vesicular stomatitis virus replication and decreases the antiviral response. Here we show that DOT1L inhibition also reduces Sendai virus-induced innate response and its overexpression decreases influenza virus multiplication, reinforcing the notion of DOT1L controlling viral replication. Accordingly, genes involved in the host innate response against pathogens (RUBICON, TRIM25, BCL3) are deregulated in human lung epithelial cells treated with pinometostat. Concomitantly, deregulation of some of these genes together with that of the MicroRNA let-7B, may account for the beneficial effects of pinometostat treatment in patients with MLL-r involving DOT1L. These results support a possible increased vulnerability to infection in MLL-r leukemia patients undergoing pinometostat treatment. Close follow up of infection should be considered in pinometostat therapy to reduce some severe side effects during the treatment.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| | - Amelia Nieto
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Cantoblanco, 28049, Madrid, Spain. .,CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain.
| |
Collapse
|
18
|
Bhargava A, Shukla A, Bunkar N, Shandilya R, Lodhi L, Kumari R, Gupta PK, Rahman A, Chaudhury K, Tiwari R, Goryacheva IY, Mishra PK. Exposure to ultrafine particulate matter induces NF-κβ mediated epigenetic modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:39-50. [PMID: 31146237 DOI: 10.1016/j.envpol.2019.05.065] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
Exposure to ultrafine particulate matter (PM0.1) is positively associated with the etiology of different acute and chronic disorders; however, the in-depth biological imprints that link these submicron particles with the disturbances in the epigenomic machinery are not well defined. Earlier, we showed that exposure to these particles causes significant disturbances in the mitochondrial machinery and triggers PI-3-kinase mediated DNA damage responses. In the present study, we aimed to further understand the epigenomic insights of the ultrafine PM exposure. The higher levels of intracellular reactive oxygen species and depleted Nrf-2 in ultrafine PM exposed cells reconfirmed its potential to induce oxidative stress. Importantly, the observed increase in the levels of NF-κβ and associated cytokines among exposed cells suggested the activation of NF-κβ mediated inflammatory loop which potentially serves as a platform for initiating epigenetic insinuations. This fact was strongly supported by the altered miRNA expression profile of the ultrafine PM exposed cells. These NF-κβ induced miRNA alterations were also found to be associated with other epigenetic targets as the exposed cells showed higher expression levels of DNA methyltransferases which positively corresponded with the global changes in DNA methylation levels. Upon further analysis, significant alterations in histone code were also reported in ultrafine PM exposed cells. Conclusively our results suggested that NF-κβ acts as an inflammatory switch that possesses the potential to induce genome-wide epigenetic modification upon ultrafine PM exposure.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Lalit Lodhi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Akhlaqur Rahman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
19
|
Abstract
Leukemia in infants is rare but generates tremendous interest due to its aggressive clinical presentation in a uniquely vulnerable host, its poor response to current therapies, and its fascinating biology. Increasingly, these biological insights are pointing the way toward novel therapeutic approaches. Using representative clinical case presentations, we review the key clinical, pathologic, and epidemiologic features of infant leukemia, including the high frequency of KMT2A gene rearrangements. We describe the current approach to risk-stratified treatment of infant leukemia in the major international cooperative groups. We highlight recent discoveries that elucidate the molecular biology of infant leukemia and suggest novel targeted therapeutic strategies, including modulation of aberrant epigenetic programs, inhibition of signaling pathways, and immunotherapeutics. Finally, we underscore the need for increased global collaboration to translate these discoveries into improved outcomes.
Collapse
|
20
|
Salas LA, Wiencke JK, Koestler DC, Zhang Z, Christensen BC, Kelsey KT. Tracing human stem cell lineage during development using DNA methylation. Genome Res 2018; 28:1285-1295. [PMID: 30072366 PMCID: PMC6120629 DOI: 10.1101/gr.233213.117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Stem cell maturation is a fundamental, yet poorly understood aspect of human development. We devised a DNA methylation signature deeply reminiscent of embryonic stem cells (a fetal cell origin signature, FCO) to interrogate the evolving character of multiple human tissues. The cell fraction displaying this FCO signature was highly dependent upon developmental stage (fetal versus adult), and in leukocytes, it described a dynamic transition during the first 5 yr of life. Significant individual variation in the FCO signature of leukocytes was evident at birth, in childhood, and throughout adult life. The genes characterizing the signature included transcription factors and proteins intimately involved in embryonic development. We defined and applied a DNA methylation signature common among human fetal hematopoietic progenitor cells and have shown that this signature traces the lineage of cells and informs the study of stem cell heterogeneity in humans under homeostatic conditions.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - John K Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Devin C Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Ze Zhang
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA.,Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire 03756, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
21
|
Tarasov VA, Tyutyakina MG, Makhotkin MA, Shin EF, Naboka AV, Mashkarina AN, Chebotarev DA, Cherkasova EN, Kogan MI, Chibichyan MB, Matishov DG. MicroRNA-Dependent Regulation of IGF1R Gene Expression in Hormone-Sensitive and Hormone-Resistant Prostate Cancer Cells. DOKL BIOCHEM BIOPHYS 2018; 479:101-104. [PMID: 29779108 DOI: 10.1134/s1607672918020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 11/23/2022]
Abstract
Using multiple parallel sequencing on Illumina platform, we identified eight microRNAs that showed significant opposite changes of gene expression in cells of the hormone-sensitive LNCaP prostate cancer cell line and in cells of the hormone-resistant DU-145 cell line, in comparison to the microRNA expression in the normal prostate tissue cells. We found that the insulin-like growth factor 1 receptor (IGF1R) gene is a target of five microRNAs whose expression is increased in LNCaP cells and reduced in DU-145 cells.
Collapse
Affiliation(s)
- V A Tarasov
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - M G Tyutyakina
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.
| | - M A Makhotkin
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - E F Shin
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - A V Naboka
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - A N Mashkarina
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - D A Chebotarev
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - E N Cherkasova
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| | - M I Kogan
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.,Rostov State Medical University, Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russia
| | - M B Chibichyan
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia.,Rostov State Medical University, Ministry of Healthcare of the Russian Federation, Rostov-on-Don, Russia
| | - D G Matishov
- Southern Scientific Center, Russian Academy of Sciences, Rostov-on-Don, 3444006, Russia
| |
Collapse
|
22
|
Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, Sidransky D, Hoque MO. YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res 2017; 78:168-181. [PMID: 29180467 DOI: 10.1158/0008-5472.can-17-0836] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/30/2017] [Accepted: 11/03/2017] [Indexed: 12/24/2022]
Abstract
Overcoming acquired drug resistance remains a core challenge in the clinical management of human cancer, including in urothelial carcinoma of the bladder (UCB). Cancer stem-like cells (CSC) have been implicated in the emergence of drug resistance but mechanisms and intervention points are not completely understood. Here, we report that the proinflammatory COX2/PGE2 pathway and the YAP1 growth-regulatory pathway cooperate to recruit the stem cell factor SOX2 in expanding and sustaining the accumulation of urothelial CSCs. Mechanistically, COX2/PGE2 signaling induced promoter methylation of let-7, resulting in its downregulation and subsequent SOX2 upregulation. YAP1 induced SOX2 expression more directly by binding its enhancer region. In UCB clinical specimens, positive correlations in the expression of SOX2, COX2, and YAP1 were observed, with coexpression of COX2 and YAP1 particularly commonly observed. Additional investigations suggested that activation of the COX2/PGE2 and YAP1 pathways also promoted acquired resistance to EGFR inhibitors in basal-type UCB. In a mouse xenograft model of UCB, dual inhibition of COX2 and YAP1 elicited a long-lasting therapeutic response by limiting CSC expansion after chemotherapy and EGFR inhibition. Our findings provide a preclinical rationale to target these pathways concurrently with systemic chemotherapy as a strategy to improve the clinical management of UCB.Significance: These findings offer a preclinical rationale to target the COX2 and YAP1 pathways concurrently with systemic chemotherapy to improve the clinical management of UCB, based on evidence that these two pathways expand cancer stem-like cell populations that mediate resistance to chemotherapy. Cancer Res; 78(1); 168-81. ©2017 AACR.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Luigi Marchionni
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wikum Dinalankara
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asma Begum
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Noah M Hahn
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Zeshaan A Rasheed
- The Sidney Kimmel Comprehensive Cancer, Johns Hopkins University, Baltimore, Maryland
| | - Shifeng Mao
- Allegheny Health Network Cancer Institute, Pittsburgh, Pennsylvania
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mohammad O Hoque
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
23
|
Xiao X, Xu Q, Sun Y, Lu Z, Li R, Wang X, Jiang X, Zhang G, Xiao Y. 5-aza-2′-deoxycytidine promotes migration of acute monocytic leukemia cells via activation of CCL2-CCR2-ERK signaling pathway. Mol Med Rep 2017. [DOI: 10.3892/mmr.2017.6737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
24
|
Tanaka S, Hosokawa M, Matsumura J, Matsubara E, Kobori A, Ueda K, Iwakawa S. Effects of Zebularine on Invasion Activity and Intracellular Expression Level of let-7b in Colorectal Cancer Cells. Biol Pharm Bull 2017; 40:1320-1325. [PMID: 28539527 DOI: 10.1248/bpb.b16-00687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of zebularine, a DNA methyltransferase inhibitor, on the invasion activity as well as intracellular expression level of let-7b, tumor suppressor microRNA, were examined in three human colorectal cancer (CRC) cell lines: SW480, SW620, and oxaliplatin-resistant SW620 (SW620/OxR). Zebularine suppressed the invasion activity of SW620 and SW620/OxR cells. The intracellular expression level of let-7b was up-regulated by zebularine in SW620 and SW620/OxR cells. The overexpression of let-7b by the transfection of let-7b mimic suppressed invasion activity in SW620 and SW620/OxR cells. These results suggest that zebularine may inhibit invasion activity by up-regulating the intracellular expression level of let-7b in high-invasive CRC cells.
Collapse
Affiliation(s)
- Shota Tanaka
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Mika Hosokawa
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | | | - Emi Matsubara
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Aika Kobori
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Kumiko Ueda
- Department of Pharmaceutics, Kobe Pharmaceutical University
| | - Seigo Iwakawa
- Department of Pharmaceutics, Kobe Pharmaceutical University
| |
Collapse
|
25
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression mainly at the posttranscriptional level. Similar to protein-coding genes, their expression is also controlled by genetic and epigenetic mechanisms. Disruption of these control processes leads to abnormal expression of miRNAs in cancer. In this chapter, we discuss the supportive links between miRNAs and epigenetics in the context of carcinogenesis. miRNAs can be epigenetically regulated by DNA methylation and/or specific histone modifications. However, they can themselves (epi-miRNAs) repress key enzymes that drive epigenetic remodeling and also bind to complementary sequences in gene promoters, recruiting specific protein complexes that modulate chromatin structure and gene expression. All these issues affect the transcriptional landscape of cells. Most important, in the cancer clinical scenario, knowledge about miRNAs epigenetic dysregulation can not only be beneficial as a prognostic biomarker, but can also help in the design of new therapeutic approaches.
Collapse
Affiliation(s)
- Catia Moutinho
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain; School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain.
| |
Collapse
|
26
|
Doerrenberg M, Kloetgen A, Hezaveh K, Wössmann W, Bleckmann K, Stanulla M, Schrappe M, McHardy AC, Borkhardt A, Hoell JI. T-cell acute lymphoblastic leukemia in infants has distinct genetic and epigenetic features compared to childhood cases. Genes Chromosomes Cancer 2016; 56:159-167. [DOI: 10.1002/gcc.22423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mareike Doerrenberg
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Andreas Kloetgen
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Wilhelm Wössmann
- Department of Pediatric Hematology and Oncology; University Hospital Gießen and Marburg; Gießen Germany
| | - Kirsten Bleckmann
- ALL BFM Trial Center; University Hospital Schleswig-Holstein; Kiel Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology; Hannover Medical School; Hannover Germany
| | - Martin Schrappe
- Department of Pediatrics; University Medical Center Schleswig-Holstein; Kiel Germany
| | - Alice C McHardy
- Computational Biology of Infection Research, Helmholtz Center for Infection Research; Braunschweig Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| | - Jessica I Hoell
- Department of Pediatric Oncology, Hematology and Clinical Immunology; Heinrich-Heine-University, Medical Faculty; Düsseldorf Germany
| |
Collapse
|
27
|
Yang JX, Rastetter RH, Wilhelm D. Non-coding RNAs: An Introduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:13-32. [PMID: 26659485 DOI: 10.1007/978-94-017-7417-8_2] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For many years the main role of RNA, it addition to the housekeeping functions of for example tRNAs and rRNAs, was believed to be a messenger between the genes encoded on the DNA and the functional units of the cell, the proteins. This changed drastically with the identification of the first small non-coding RNA, termed microRNA, some 20 years ago. This discovery opened the field of regulatory RNAs with no or little protein-coding potential. Since then many new classes of regulatory non-coding RNAs, including endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs (piRNAs), and long non-coding RNAs, have been identified and we have made amazing progress in elucidating their expression, biogenesis, mechanisms and mode of action, and function in many, if not all, biological processes. In this chapter we provide an introduction about the current knowledge of the main classes of non-coding RNAs, what is know about their biogenesis and mechanism of function.
Collapse
Affiliation(s)
- Jennifer X Yang
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Raphael H Rastetter
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Dagmar Wilhelm
- Department of Anatomy and Neuroscience, The University of Melbourne, Medical Building (181) Grattan Street, Parkville, VIC, 3800, Australia.
| |
Collapse
|
28
|
Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases. Genes Chromosomes Cancer 2015; 55:193-214. [PMID: 26651018 DOI: 10.1002/gcc.22332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andreia S Machado
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
29
|
Wu Z, Eguchi-Ishimae M, Yagi C, Iwabuki H, Gao W, Tauchi H, Inukai T, Sugita K, Ishii E, Eguchi M. HMGA2 as a potential molecular target in KMT2A-AFF1-positive infant acute lymphoblastic leukaemia. Br J Haematol 2015; 171:818-29. [PMID: 26403224 DOI: 10.1111/bjh.13763] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/29/2015] [Indexed: 12/30/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) in infants is an intractable cancer in childhood. Although recent intensive chemotherapy progress has considerably improved ALL treatment outcome, disease cure is often accompanied by undesirable long-term side effects, and efficient, less toxic molecular targeting therapies have been anticipated. In infant ALL cells with KMT2A (MLL) fusion, the microRNA let-7b (MIRLET7B) is significantly downregulated by DNA hypermethylation of its promoter region. We show here that the expression of HMGA2, one of the oncogenes repressed by MIRLET7B, is reversely upregulated in infant ALL leukaemic cells, particularly in KMT2A-AFF1 (MLL-AF4) positive ALL. In addition to the suppression of MIRLET7B, KMT2A fusion proteins positively regulate the expression of HMGA2. HMGA2 is one of the negative regulators of CDKN2A gene, which encodes the cyclin-dependent kinase inhibitor p16(INK4A) . The HMGA2 inhibitor netropsin, when combined with demethylating agent 5-azacytidine, upregulated and sustained the expression of CDKN2A, which resulted in growth suppression of KMT2A-AFF1-expressing cell lines. This effect was more apparent compared to treatment with 5-azacytidine alone. These results indicate that the MIRLET7B-HMGA2-CDKN2A axis plays an important role in cell proliferation of leukaemic cells and could be a possible molecular target for the therapy of infant ALL with KMT2A-AFF1.
Collapse
Affiliation(s)
- Zhouying Wu
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | - Chihiro Yagi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hidehiko Iwabuki
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Wenming Gao
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hisamichi Tauchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takeshi Inukai
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kanji Sugita
- Department of Paediatrics, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiichi Ishii
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mariko Eguchi
- Department of Paediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
30
|
Jin H, Wang N, Wang C, Qin W. MicroRNAs in hypoxia and acidic tumor microenvironment. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11434-014-0273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Kotecha RS, Gottardo NG, Kees UR, Cole CH. The evolution of clinical trials for infant acute lymphoblastic leukemia. Blood Cancer J 2014; 4:e200. [PMID: 24727996 PMCID: PMC4003413 DOI: 10.1038/bcj.2014.17] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 02/07/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) in infants has a significantly inferior outcome in comparison with older children. Despite initial improvements in survival of infants with ALL since establishment of the first pediatric cooperative group ALL trials, the poor outcome has plateaued in recent years. Historically, infants were treated on risk-adapted childhood ALL protocols. These studies were pivotal in identifying the need for infant-specific protocols, delineating prognostic categories and the requirement for a more unified approach between study groups to overcome limitations in accrual because of low incidence. This subsequently led to the development of collaborative infant-specific studies. Landmark outcomes have included the elimination of cranial radiotherapy following the discovery of intrathecal and high-dose systemic therapy as a superior and effective treatment strategy for central nervous system disease prophylaxis, with improved neurodevelopmental outcome. Universal prospective identification of independent adverse prognostic factors, including presence of a mixed lineage leukemia rearrangement and young age, has established the basis for risk stratification within current trials. The infant-specific trials have defined limits to which conventional chemotherapeutic agents can be intensified to optimize the balance between treatment efficacy and toxicity. Despite variations in therapeutic intensity, there has been no recent improvement in survival due to the equilibrium between relapse and toxicity. Ultimately, to improve the outcome for infants with ALL, key areas still to be addressed include identification and adaptation of novel prognostic markers and innovative therapies, establishing the role of hematopoietic stem cell transplantation in first complete remission, treatment strategies for relapsed/refractory disease and monitoring and timely intervention of late effects in survivors. This would be best achieved through a single unified international trial.
Collapse
Affiliation(s)
- R S Kotecha
- 1] Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Western Australia, Australia [2] Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia [3] School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - N G Gottardo
- 1] Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Western Australia, Australia [2] Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia [3] School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| | - U R Kees
- Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - C H Cole
- 1] Department of Haematology and Oncology, Princess Margaret Hospital for Children, Perth, Western Australia, Australia [2] Telethon Institute for Child Health Research, University of Western Australia, Perth, Western Australia, Australia [3] School of Paediatrics and Child Health, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
32
|
Epigenetically regulated microRNAs in Alzheimer's disease. Neurobiol Aging 2014; 35:731-45. [DOI: 10.1016/j.neurobiolaging.2013.10.082] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
|
33
|
Burke MJ, Bhatla T. Epigenetic modifications in pediatric acute lymphoblastic leukemia. Front Pediatr 2014; 2:42. [PMID: 24860797 PMCID: PMC4030177 DOI: 10.3389/fped.2014.00042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/29/2014] [Indexed: 12/22/2022] Open
Abstract
Aberrant epigenetic modifications are well-recognized drivers for oncogenesis. Pediatric acute lymphoblastic leukemia (ALL) is no exception and serves as a model toward the significant impact these heritable alterations can have in leukemogenesis. In this brief review, we will focus on the main aspects of epigenetics, which control leukemogenesis in pediatric ALL, mainly DNA methylation, histone modification, and microRNA alterations. As we continue to gain better understanding of the driving mechanisms for pediatric ALL at both diagnosis and relapse, therapeutic interventions directed toward these pathways and mechanisms can be harnessed and introduced into clinical trials for pediatric ALL.
Collapse
Affiliation(s)
- Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin , Milwaukee, WI , USA
| | - Teena Bhatla
- Division of Pediatric Hematology-Oncology, New York University Langone Medical Center , New York, NY , USA
| |
Collapse
|
34
|
Dai CW, Bai QW, Zhang GS, Cao YX, Shen JK, Pei MF, Yin CC. MicroRNA let-7f is down-regulated in patients with refractory acute myeloid leukemia and is involved in chemotherapy resistance of adriamycin-resistant leukemic cells. Leuk Lymphoma 2013; 55:1645-8. [DOI: 10.3109/10428194.2013.847936] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Abstract
The molecular mechanisms underlying oncogenesis in leukemias associated with rearrangement of the Mixed Lineage Leukemia (MLL) gene have received a considerable amount of attention over the last two decades. In this review we will focus on recent studies, published over the past year, that reveal new insights into the multi-protein complexes formed by MLL and MLL fusion proteins, the role of epigenetic deregulation in MLL fusion function, downstream transcriptional target genes, the importance of the leukemia cell of origin, the role played by microRNAs, cooperating mutations and the implications that recent research has for the therapy of MLL-rearranged leukemia.
Collapse
|
36
|
Brown P. Treatment of infant leukemias: challenge and promise. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2013; 2013:596-600. [PMID: 24319237 PMCID: PMC4729208 DOI: 10.1182/asheducation-2013.1.596] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Leukemia in infants is rare but generates tremendous interest due to its aggressive clinical presentation in a uniquely vulnerable host, its poor response to current therapies, and its unique biology that is increasingly pointing the way toward novel therapeutic approaches. This review highlights the key clinical, pathologic, and epidemiologic features of infant leukemia, including the high frequency of mixed lineage leukemia (MLL) gene rearrangements. The state of the art with regard to current approaches to risk stratified treatment of infant leukemia in the major international cooperative groups is discussed. Finally, exciting recent discoveries elucidating the molecular biology of infant leukemia are reviewed and novel targeted therapeutic strategies, including FLT3 inhibition and modulation of aberrant epigenetic programs, are suggested.
Collapse
Affiliation(s)
- Patrick Brown
- Departments of Oncology and Pediatrics, Johns Hopkins University School of Medicine
| |
Collapse
|