1
|
Hara R, Kitahara T, Numata H, Toyosaki M, Watanabe S, Kikkawa E, Ogawa Y, Kawada H, Ando K. Fetal hemoglobin level predicts lower-risk myelodysplastic syndrome. Int J Hematol 2022; 117:684-693. [PMID: 36574168 DOI: 10.1007/s12185-022-03523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The relationship between fetal hemoglobin (HbF) levels and disease prognosis in patients with myelodysplastic syndrome (MDS) is unclear. This study aimed to clarify the relationship between HbF level and the prognosis of MDS. To this end, data from 217 patients diagnosed with MDS between April 2006 and August 2020 at Ebina General Hospital were analyzed retrospectively. The primary endpoint was leukemia-free survival (LFS) for 5 years after diagnosis. HbF levels were significantly higher in patients with MDS than in control patients without MDS (n = 155), with a cut-off value of 0.4%. Higher-risk patients had a similar prognosis regardless of HbF level, but lower-risk patients had longer LFS at intermediate HbF levels. Although prognosis based on pre-treatment HbF levels did not differ significantly among azacitidine-treated patients, prognosis tended to be better in lower-risk patients with intermediate HbF levels. Multivariate analysis showed that the intermediate HbF category correlated with LFS, independently of MDS lower-risk prognostic scoring system (LR-PSS)-related factors. This study is the first to assess the association between HbF levels and the new World Health Organization 2016 criteria for MDS, demonstrating the significance of HbF levels in the prognosis of MDS.
Collapse
Affiliation(s)
- Ryujiro Hara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan.
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| | - Toshihiko Kitahara
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Hiroki Numata
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masako Toyosaki
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Shigeki Watanabe
- Department of Hematology, Ebina General Hospital, 1320 Kawaraguchi, Ebina, Kanagawa, 243-0433, Japan
| | - Eri Kikkawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Yoshiaki Ogawa
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Hiroshi Kawada
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Kiyoshi Ando
- Division of Hematology/Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa, Japan
| |
Collapse
|
2
|
Chandhok NS, Sekeres MA. What constitutes meaningful improvement in myelodysplastic syndromes? Leuk Lymphoma 2022; 63:2528-2535. [DOI: 10.1080/10428194.2022.2084732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Namrata S. Chandhok
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Mikkael A. Sekeres
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
3
|
Mohammadpour-Gharehbagh A, Jahantigh D, Eskandari M, Sadegh MH, Nematollahi MH, Rezaei M, Rasouli A, Eskandari F, Heydarabad MZ, Teimoori B, Salimi S. Genetic and epigenetic analysis of the BAX and BCL2 in the placenta of pregnant women complicated by preeclampsia. Apoptosis 2020; 24:301-311. [PMID: 30701356 DOI: 10.1007/s10495-018-1501-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The current study examined the effects of BAX and BCL2 polymorphisms and methylation as well as mRNA expression on susceptibility to PE. After delivery, the placentas were collected from 92 women with PE, as well as 106 normotensive pregnant women. The BAX rs4645878 and BCL2 rs2279115 polymorphisms were genotyped by the PCR-RFLP method. Methylation-specific PCR (MSP) was used for analysis of promoter methylation. mRNA expression was assayed by Quantitative RT-PCR. In addition, in silico analysis was performed by bioinformatics tools. There was no relationship between PE and placental BAX rs4645878 and BCL2 rs2279115 polymorphisms. The groups were not significantly different regarding the promoter methylation of BAX gene. Nonetheless, the MM status of BCL2 promoter had a significantly higher frequency in the PE group and was associated with 2.7-fold higher risk of PE (OR = 2.7, 95% CI = 1.3-5.6; P = 0.01). The relative mRNA expression of BCL2 was decreased in the placentas of PE women (P < 0.0001). The expression of BAX gene was not significantly different between the two groups. There was no association between placental BAX rs4645878 and BCL2 rs2279115 polymorphisms and mRNA expression levels. In silico analysis indicated that BAX rs4645878 and BCL2 rs2279115 polymorphisms were located in the core recognition site of different transcription factors and these substitutions of wild allele resulted in the loss and/ or change of these binding sites and subsequently may alter BCL2 and BAX expression. This study showed that the BAX and BCL2 polymorphisms and BAX promoter methylation were not associated with PE risk. The BCL2 promoter methylation was associated with lower BCL2 expression and higher PE susceptibility.
Collapse
Affiliation(s)
- Abbas Mohammadpour-Gharehbagh
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Danial Jahantigh
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | - Moein Eskandari
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati Sadegh
- Department of Genetics, Fars Science and Research Branch, Islamic Azad University, Marvdasht, Iran.,Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | | | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ava Rasouli
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Eskandari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Batool Teimoori
- Department of Obstetrics and Gynecology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Saeedeh Salimi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran. .,Department of Clinical Biochemistry, School of Medicine, and Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
4
|
Genome-wide transcriptomics leads to the identification of deregulated genes after deferasirox therapy in low-risk MDS patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:664-671. [DOI: 10.1038/s41397-020-0154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022]
|
5
|
Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E, Zoulia E, Vrachiolias G, Papoutselis M, Bernard E, Papaemmanuil E, Kotsianidis I, Kassiotis G. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 2019; 11:86. [PMID: 31870430 PMCID: PMC6929315 DOI: 10.1186/s13073-019-0707-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML) are characterised by abnormal epigenetic repression and differentiation of bone marrow haematopoietic stem cells (HSCs). Drugs that reverse epigenetic repression, such as 5-azacytidine (5-AZA), induce haematological improvement in half of treated patients. Although the mechanisms underlying therapy success are not yet clear, induction of endogenous retroelements (EREs) has been hypothesised. METHODS Using RNA sequencing (RNA-seq), we compared the transcription of EREs in bone marrow HSCs from a new cohort of MDS and chronic myelomonocytic leukaemia (CMML) patients before and after 5-AZA treatment with HSCs from healthy donors and AML patients. We further examined ERE transcription using the most comprehensive annotation of ERE-overlapping transcripts expressed in HSCs, generated here by de novo transcript assembly and supported by full-length RNA-seq. RESULTS Consistent with prior reports, we found that treatment with 5-AZA increased the representation of ERE-derived RNA-seq reads in the transcriptome. However, such increases were comparable between treatment responses and failures. The extended view of HSC transcriptional diversity offered by de novo transcript assembly argued against 5-AZA-responsive EREs as determinants of the outcome of therapy. Instead, it uncovered pre-treatment expression and alternative splicing of developmentally regulated gene transcripts as predictors of the response of MDS and CMML patients to 5-AZA treatment. CONCLUSIONS Our study identifies the developmentally regulated transcriptional signatures of protein-coding and non-coding genes, rather than EREs, as correlates of a favourable response of MDS and CMML patients to 5-AZA treatment and offers novel candidates for further evaluation.
Collapse
Affiliation(s)
- Anastasiya Kazachenka
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick Institute, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Chrysoula Kordella
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Eleftheria Lamprianidou
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Emmanuela Zoulia
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Vrachiolias
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Menelaos Papoutselis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Elsa Bernard
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Elli Papaemmanuil
- Center for Molecular Oncology, Center for Heme Malignancies and Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ioannis Kotsianidis
- Department of Haematology, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Medicine, Faculty of Medicine, Imperial College London, London, W2 1PG, UK.
| |
Collapse
|
6
|
Zhong H, Kim S, Zhi D, Cui X. Predicting gene expression using DNA methylation in three human populations. PeerJ 2019; 7:e6757. [PMID: 31106051 PMCID: PMC6500370 DOI: 10.7717/peerj.6757] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 03/10/2019] [Indexed: 12/30/2022] Open
Abstract
Background DNA methylation, an important epigenetic mark, is well known for its regulatory role in gene expression, especially the negative correlation in the promoter region. However, its correlation with gene expression across genome at human population level has not been well studied. In particular, it is unclear if genome-wide DNA methylation profile of an individual can predict her/his gene expression profile. Previous studies were mostly limited to association analyses between single CpG site methylation and gene expression. It is not known whether DNA methylation of a gene has enough prediction power to serve as a surrogate for gene expression in existing human study cohorts with DNA samples other than RNA samples. Results We examined DNA methylation in the gene region for predicting gene expression across individuals in non-cancer tissues of three human population datasets, adipose tissue of the Multiple Tissue Human Expression Resource Projects (MuTHER), peripheral blood mononuclear cell (PBMC) from Asthma and normal control study participates, and lymphoblastoid cell lines (LCL) from healthy individuals. Three prediction models were investigated, single linear regression, multiple linear regression, and least absolute shrinkage and selection operator (LASSO) penalized regression. Our results showed that LASSO regression has superior performance among these methods. However, the prediction power is generally low and varies across datasets. Only 30 and 42 genes were found to have cross-validation R2 greater than 0.3 in the PBMC and Adipose datasets, respectively. A substantially larger number of genes (258) were identified in the LCL dataset, which was generated from a more homogeneous cell line sample source. We also demonstrated that it gives better prediction power not to exclude any CpG probe due to cross hybridization or SNP effect. Conclusion In our three population analyses DNA methylation of CpG sites at gene region have limited prediction power for gene expression across individuals with linear regression models. The prediction power potentially varies depending on tissue, cell type, and data sources. In our analyses, the combination of LASSO regression and all probes not excluding any probe on the methylation array provides the best prediction for gene expression.
Collapse
Affiliation(s)
- Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Soyeon Kim
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Degui Zhi
- School of Biomendical Informatics, University of Texas Health Center at Houston, Houston, TX, United States of America
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
7
|
Murakami Y, Kimura Y, Kawahara A, Mitsuyasu S, Miyake H, Tohyama K, Endo Y, Yoshida N, Imamura Y, Watari K, Ono M, Okamura T, Kuwano M. The augmented expression of the cytidine deaminase gene by 5-azacytidine predicts therapeutic efficacy in myelodysplastic syndromes. Oncotarget 2019; 10:2270-2281. [PMID: 31040918 PMCID: PMC6481348 DOI: 10.18632/oncotarget.26784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/04/2019] [Indexed: 11/25/2022] Open
Abstract
5-Azacytidine (5AC), a hypomethylating agent, is clinically used for the treatment of patients with myelodysplastic syndromes (MDS). Cytidine deaminase (CDA) is a key enzyme in the detoxification of 5AC. We investigated whether the CDA expression could predict response to 5AC in MDS. Among leukemia-derived cell lines, MDS-L, an MDS-derived cell line with a relatively low CDA expression level, was found to be the most sensitive to 5AC. Combination with tetrahydrouridine, an inhibitor of CDA, synergistically potentiated the cytotoxic effect of 5AC. Treatment with 5AC markedly enhanced the expression level of CDA mRNA and showed demethylation at CpG sites in the 5′-flanking region of the CDA gene. We further compared the protein expression levels of CDA in matched clinical samples before and after treatment with 5AC in bone marrow cells from 8 MDS patients by an immunohistochemical analysis. The CDA expression level showed an approximately 2- to 3-fold increase after 5AC treatment in 3 of these cases, and these three patients with relatively higher CDA expression levels after 5AC treatment all showed better clinical responses to 5AC. In contrast, the 5 remaining patients, whose CDA expression showed no augmentation, observed no clinical benefit. Taken together, the optimized determination of the CDA expression levels before and after 5AC treatment, and the methylation status at CpG sites of 5′-flanking region of the CDA gene, may contribute to the development of precise 5AC therapy for MDS.
Collapse
Affiliation(s)
- Yuichi Murakami
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan.,Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshizo Kimura
- Department of Pathology, St. Mary's Hospital, Kurume, Japan
| | - Akihiko Kawahara
- Department of Diagnostic Pathology, Kurume University Hospital, Kurume, Japan
| | | | | | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Nao Yoshida
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Yutaka Imamura
- Department of Hematology, St. Mary's Hospital, Kurume, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Okamura
- Hematology and Oncology Center, St. Mary's Hospital, Kurume, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| |
Collapse
|
8
|
Zhao G, Li N, Li S, Wu W, Wang X, Gu J. High methylation of the 4-aminobutyrate aminotransferase gene predicts a poor prognosis in patients with myelodysplastic syndrome. Int J Oncol 2018; 54:491-504. [PMID: 30535457 PMCID: PMC6317695 DOI: 10.3892/ijo.2018.4652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
In our previous study, the 4‑aminobutyrate aminotransferase (ABAT) gene was screened and selected as a target gene that may affect the prognosis of myelodysplastic syndrome (MDS). The present study aimed to determine the prognostic value of ABAT in 152 patients with MDS, 29 patients with acute myeloid leukemia (AML) and 40 controls, by detecting the expression and methylation levels of the ABAT gene. In patients with MDS, the expression levels of ABAT were significantly reduced compared with in the controls (P<0.0001), and the degree of DNA methylation was increased in MDS subjects (P<0.0001). Age, hemoglobin level, marrow blasts, International Prognostic Scoring System karyotype, and the expression and methylation levels of ABAT were associated with overall survival (OS), as determined by univariate analysis. Multivariate analysis revealed that older age, higher marrow blasts and higher methylation percentage were independent risk factors for OS. In addition, a functional study demonstrated that ABAT gene silencing increased cell apoptosis and blocked the G1/S phase in SKM‑1 and THP‑1 human leukemia cells. A γ‑aminobutyrate aminotransferase inhibitor also blocked the G1/S phase; however, it had no effect on cell apoptosis. In conclusion, the present study demonstrated that ABAT methylation served an essential role in the progression of MDS and therefore may be considered an indicator of poor prognosis for hematological malignancies.
Collapse
Affiliation(s)
- Guangjie Zhao
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Nianyi Li
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Shuang Li
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Wanling Wu
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Xiaoqin Wang
- Department of Haematology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Jingwen Gu
- Worldwide Medical Center, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
9
|
Zhang Z, Zhao L, Wei X, Guo Q, Zhu X, Wei R, Yin X, Zhang Y, Wang B, Li X. Integrated bioinformatic analysis of microarray data reveals shared gene signature between MDS and AML. Oncol Lett 2018; 16:5147-5159. [PMID: 30214614 PMCID: PMC6126153 DOI: 10.3892/ol.2018.9237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid disorders, especially myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), cause significant mobility and high mortality worldwide. Despite numerous attempts, the common molecular events underlying the development of MDS and AML remain to be established. In the present study, 18 microarray datasets were selected, and a meta-analysis was conducted to identify shared gene signatures and biological processes between MDS and AML. Using NetworkAnalyst, 191 upregulated and 139 downregulated genes were identified in MDS and AML, among which, PTH2R, TEC, and GPX1 were the most upregulated genes, while MME, RAG1, and CD79B were mostly downregulated. Comprehensive functional enrichment analyses revealed oncogenic signaling related pathway, fibroblast growth factor receptor (FGFR) and immune response related events, 'interleukine-6/interferon signaling pathway, and B cell receptor signaling pathway', were the most upregulated and downregulated biological processes, respectively. Network based meta-analysis ascertained that HSP90AA1 and CUL1 were the most important hub genes. Interestingly, our study has largely clarified the link between MDS and AML in terms of potential pathways, and genetic markers, which shed light on the molecular mechanisms underlying the development and transition of MDS and AML, and facilitate the understanding of novel diagnostic, therapeutic and prognostic biomarkers.
Collapse
Affiliation(s)
- Zhen Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Lin Zhao
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xijin Wei
- Department of Peripheral Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Qiang Guo
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xiaoxiao Zhu
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Ran Wei
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Xunqiang Yin
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yunhong Zhang
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Bin Wang
- Department of Peripheral Vascular Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Xia Li
- Laboratory for Molecular Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
10
|
Tobiasson M, Abdulkadir H, Lennartsson A, Katayama S, Marabita F, De Paepe A, Karimi M, Krjutskov K, Einarsdottir E, Grövdal M, Jansson M, Ben Azenkoud A, Corddedu L, Lehmann S, Ekwall K, Kere J, Hellström-Lindberg E, Ungerstedt J. Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease. Oncotarget 2018; 8:28812-28825. [PMID: 28427179 PMCID: PMC5438694 DOI: 10.18632/oncotarget.15807] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/01/2017] [Indexed: 02/07/2023] Open
Abstract
Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median β-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.
Collapse
Affiliation(s)
- Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Hani Abdulkadir
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Francesco Marabita
- Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, Stockholm, Sweden
| | - Ayla De Paepe
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Kaarel Krjutskov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland.,Competence Centre on Health Technologies, Tartu, Estonia
| | - Elisabet Einarsdottir
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Michael Grövdal
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Monika Jansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Asmaa Ben Azenkoud
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lina Corddedu
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm County, Sweden.,Molecular Neurology Research Program, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Division of Hematology Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| |
Collapse
|
11
|
Xu R, Chen W, Zhang Z, Qiu Y, Wang Y, Zhang B, Lu W. Integrated data analysis identifies potential inducers and pathways during the endothelial differentiation of bone-marrow stromal cells by DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine. Gene 2018. [PMID: 29514045 DOI: 10.1016/j.gene.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bone-Marrow Stromal Cells (BMSCs)-derived vascular endothelial cells (VECs) is regarded as an important therapeutic strategy for spinal cord injury, disc degeneration, cerebral ischemic disease and diabetes. The change in DNA methylation level is essential for stem cell differentiation. However, the DNA methylation related mechanisms underlying the endothelial differentiation of BMSCs are not well understood. In this study, DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC) significantly elevated the endothelial markers expression (CD31/PECAM1, CD105/ENG, eNOS and VE-cadherin), as well as promoted the capacity of angiogenesis on Matrigel. The result of Alexa 488-Ac-LDL uptake assay indicated that the differentiation ratio of BMSCs into VECs was 68.7% in 5-azaz-dC induced differentiation. And then we screened differentiation inducers with altered expression patterns and DNA methylation levels in four important families (VEGF, ANG, FGF and ETS). By integrating these data, five endothelial differentiation inducers (VEGFA, ANGPT2, FGF2, FGF9 and ETS1) which were directly upregulated by 5-aza-dC and five indirect factors (FGF1, FGF3, ETS2, ETV1 and ETV4) were identified. These data suggested that 5-aza-dC is an excellent chemical molecule for BMSCs differentiation into functional VECs and also provided essential clues for DNA methylation related signaling during 5-aza-dC induced endothelial differentiation of BMSCs.
Collapse
Affiliation(s)
- Rui Xu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wenbin Chen
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhifen Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yang Qiu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Bingchang Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Lu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
12
|
Palomo L, Malinverni R, Cabezón M, Xicoy B, Arnan M, Coll R, Pomares H, García O, Fuster-Tormo F, Grau J, Feliu E, Solé F, Buschbeck M, Zamora L. DNA methylation profile in chronic myelomonocytic leukemia associates with distinct clinical, biological and genetic features. Epigenetics 2018; 13:8-18. [PMID: 29160764 DOI: 10.1080/15592294.2017.1405199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chromosomal abnormalities are detected in 20-30% of patients with chronic myelomonocytic leukemia (CMML) and correlate with prognosis. On the mutation level, disruptive alterations are particularly frequent in chromatin regulatory genes. However, little is known about the consequential alterations in the epigenetic marking of the genome. Here, we report the analysis of genomic DNA methylation patterns of 64 CMML patients and 10 healthy controls, using a DNA methylation microarray focused on promoter regions. Differential methylation analysis between patients and controls allowed us to identify abnormalities in DNA methylation, including hypermethylation of specific genes and large genome regions with aberrant DNA methylation. Unsupervised hierarchical cluster analysis identified two main clusters that associated with the clinical, biological, and genetic features of patients. Group 1 was enriched in patients with adverse clinical and biological characteristics and poorer overall and progression-free survival. In addition, significant differences in DNA methylation were observed between patients with low risk and intermediate/high risk karyotypes and between TET2 mutant and wild type patients. Taken together, our results demonstrate that altered DNA methylation patterns reflect the CMML disease state and allow to identify patient groups with distinct clinical features.
Collapse
Affiliation(s)
- Laura Palomo
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain.,b Departament de Bioquímica i Biologia Molecular , Universitat Autònoma de Barcelona , Campus de la UAB, Plaça Cívica, s/n. 08913, Bellaterra ( Barcelona ), Spain
| | - Roberto Malinverni
- c Chromatin, Metabolism and Cell Fate Group. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol , Program for Predictive and Personalized Medicine of Cancer at the Institute Germans Trias i Pujol (PMPPC-IGTP) , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Marta Cabezón
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Blanca Xicoy
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Montserrat Arnan
- e Hematology Service , ICO-Hospital Duran i Reynals , Avinguda de la Gran Via de l'Hospitalet, 199-203, 08908 Hospitalet de Llobregat ( Barcelona ), Spain
| | - Rosa Coll
- f Hematology Service , ICO-Girona Hospital Josep Trueta, Girona, Spain , Avenida França, s/n. 17007 Girona , Spain
| | - Helena Pomares
- e Hematology Service , ICO-Hospital Duran i Reynals , Avinguda de la Gran Via de l'Hospitalet, 199-203, 08908 Hospitalet de Llobregat ( Barcelona ), Spain
| | - Olga García
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Francisco Fuster-Tormo
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Javier Grau
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Evarist Feliu
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Francesc Solé
- a MDS Group. Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital Germans Trias i Pujol , Universitat Autònoma de Barcelona , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Marcus Buschbeck
- c Chromatin, Metabolism and Cell Fate Group. Josep Carreras Leukaemia Research Institute (IJC), Campus ICO-Hospital Germans Trias i Pujol , Program for Predictive and Personalized Medicine of Cancer at the Institute Germans Trias i Pujol (PMPPC-IGTP) , Carretera de Can Ruti, Camí de les Escoles, s/n. 08916, Badalona ( Barcelona ), Spain
| | - Lurdes Zamora
- d Hematology Service, ICO-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute (IJC) , Universitat Autònoma de Barcelona , Carretera del Canyet, s/n. 08916, Badalona ( Barcelona ), Spain
| |
Collapse
|
13
|
Mutations in the DNA methylation pathway and number of driver mutations predict response to azacitidine in myelodysplastic syndromes. Oncotarget 2017; 8:106948-106961. [PMID: 29291002 PMCID: PMC5739787 DOI: 10.18632/oncotarget.22157] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/03/2017] [Indexed: 11/25/2022] Open
Abstract
We evaluated the association of mutations in 34 candidate genes and response to azacitidine in 84 patients with myelodysplastic syndrome (MDS), with 217 somatic mutations identified by next-generation sequencing. Most patients (93%) had ≥1 mutation (mean=2.6/patient). The overall response rate to azacitidine was 42%. No clinical characteristic was associated with response to azacitidine. However, total number of mutations/patient was negatively associated with overall drug response (odds ratio [OR]: 0.56, 95% confidence interval [CI]: 0.33–0.94; p=0.028), and a positive association was found for having ≥1 mutation in a DNA methylation-related gene: TET2, DNMT3A, IDH1 and/or IDH2 (OR: 4.76, 95%CI: 1.31–17.27; p=0.017). Mutations in TP53 (hazard ratio [HR]: 3.88; 95%CI: 1.94–7.75) and EZH2 (HR: 2.50; 95%CI: 1.23–5.09) were associated with shorter overall survival. Meta-analysis of 6 studies plus present data (n=815 patients) allowed assessment of the association of drug response with mutations in 9 candidate genes: ASXL1, CBL, EZH2, SF3B1, SRSF2, TET2, DNMT3A, IDH1/2 and TP53. TET2 mutations predicted a more favorable drug response compared with ‘wild-type’ peers (pooled OR: 1.67, 95%CI: 1.14–2.44; p=0.01). In conclusion, mutations in the DNA methylation pathway, especially TET2 mutations, and low number of total mutations are associated with a better response to azacitidine.
Collapse
|
14
|
Rinke J, Müller JP, Blaess MF, Chase A, Meggendorfer M, Schäfer V, Winkelmann N, Haferlach C, Cross NCP, Hochhaus A, Ernst T. Molecular characterization of EZH2 mutant patients with myelodysplastic/myeloproliferative neoplasms. Leukemia 2017. [DOI: 10.1038/leu.2017.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Indications to Epigenetic Dysfunction in the Pathogenesis of Common Variable Immunodeficiency. Arch Immunol Ther Exp (Warsz) 2016; 65:101-110. [DOI: 10.1007/s00005-016-0414-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/10/2016] [Indexed: 12/12/2022]
|
16
|
Williamson BT, Foltz L, Leitch HA. Autoimmune Syndromes Presenting as a Paraneoplastic Manifestation of Myelodysplastic Syndromes: Clinical Features, Course, Treatment and Outcome. Hematol Rep 2016; 8:6480. [PMID: 27499837 PMCID: PMC4961871 DOI: 10.4081/hr.2016.6480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/30/2016] [Accepted: 05/02/2016] [Indexed: 12/28/2022] Open
Abstract
Autoimmune manifestations (AIM) are reported in up to 10-30% of myelodysplastic syndromes (MDS) patients; this association is not well defined. We present herein a retrospective chart review of single center MDS patients for AIM, a case discussion and a literature review. Of 252 MDS patients examined, 11 (4.4%) had AIM around MDS diagnosis. International Prognostic Scoring System scores were: low or intermediate (int)-1 (n=7); int-2 or high (n=4). AIM were: culture negative sepsis (n=7); inflammatory arthritis (n=3); vasculitis (n=4); sweats; pericarditis; polymyalgia rheumatica (n=2 each); mouth ulcers; pulmonary infiltrates; suspicion for Behcet's; polychondritis and undifferentiated (n=1 each). AIM treatment and outcome were: prednisone +/- steroid sparing agents, n=8, ongoing symptoms in 5; azacitidine (n=3), 2 resolved; and observation, n=1, ongoing symptoms. At a median follow up of 13 months, seven patients are alive. In summary, 4.4% of MDS patients presented with concomitant AIM. MDS should remain on the differential diagnosis of patients with inflammatory symptoms.
Collapse
Affiliation(s)
- Bradley T. Williamson
- Departments of Medicine, St. Paul’s Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Lynda Foltz
- Departments of Hematology, St. Paul’s Hospital and the University of British Columbia, Vancouver, BC, Canada
| | - Heather A. Leitch
- Departments of Hematology, St. Paul’s Hospital and the University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Abou Zahr A, Bernabe Ramirez C, Wozney J, Prebet T, Zeidan AM. New Insights into the Pathogenesis of MDS and the rational therapeutic opportunities. Expert Rev Hematol 2016; 9:377-88. [DOI: 10.1586/17474086.2016.1135047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Milunović V, Mandac Rogulj I, Planinc-Peraica A, Bulycheva E, Kolonić Ostojić S. The role of microRNA in myelodysplastic syndromes: beyond DNA methylation and histone modification. Eur J Haematol 2016; 96:553-63. [PMID: 26773284 DOI: 10.1111/ejh.12735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 12/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are heterogeneous group of hematologic disorders of mostly elderly and based on distinct clinical phenotypes. Current paradigm of their pathogenesis relies on somatic gene mutations combined with the predisposing defective osteohematopoietic niche, but due to the breakout in epigenetic research scientific focus has steered toward two most common epigenetic modifications: methylation mechanisms and histone modification. At the same time, relatively few studies have been undertaken regarding the third epigenetic pathway - microRNAs - in MDS. The main aim of this review is to provide the basics of microRNA biology and function in oncogenesis, showing the complexity of mechanisms behind this single-stranded 22 nucleotides long RNA molecule, with further focus on its implication in MDS pathology and clinical context. By extensive literature search, we have shown enough evidence for their deregulation in MDS. However, few studies have addressed the issue on pathogenic events in MDS and its association with specific microRNAs. Preliminary research in clinical setting has shown the possible utility of microRNAs in terms of prognosis and therapy, although we are only beginning to understand various implications of microRNAs in MDS and further extensive research is warranted to answer multiple questions arising from interconnection of this epigenetic mechanism in MDS.
Collapse
Affiliation(s)
- Vibor Milunović
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,Lombardi Comprehensive Cancer Centre, Georgetown University, Washington, DC, USA
| | - Inga Mandac Rogulj
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia
| | - Ana Planinc-Peraica
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ekaterina Bulycheva
- Medizinische Klinic und Poliklinik I, Universitatsklinikum Carl-Gustav-Carus, Technische Universitat, Dresden, Germany
| | - Slobodanka Kolonić Ostojić
- Division of Hematology, Clinical Hospital Centre Merkur, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
19
|
Guerenne L, Beurlet S, Said M, Gorombei P, Le Pogam C, Guidez F, de la Grange P, Omidvar N, Vanneaux V, Mills K, Mufti GJ, Sarda-Mantel L, Noguera ME, Pla M, Fenaux P, Padua RA, Chomienne C, Krief P. GEP analysis validates high risk MDS and acute myeloid leukemia post MDS mice models and highlights novel dysregulated pathways. J Hematol Oncol 2016; 9:5. [PMID: 26817437 PMCID: PMC4728810 DOI: 10.1186/s13045-016-0235-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
Background In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease. Methods We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively. Results Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples. Conclusions These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura Guerenne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Stéphanie Beurlet
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Mohamed Said
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Petra Gorombei
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Carole Le Pogam
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Fabien Guidez
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| | - Pierre de la Grange
- GenoSplice technology, iPEPS-ICM, Hôpital de la Pitié Salpêtrière, Paris, France.
| | - Nader Omidvar
- Haematology Department, Cardiff University School of Medicine, Cardiff, UK.
| | - Valérie Vanneaux
- Assistance Publique-Hôpitaux de Paris (AP-HP), Unité de Thérapie Cellulaire, Hôpital Saint Louis, Paris, France.
| | - Ken Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | - Ghulam J Mufti
- Department of Haematological Medicine, King's College London and Kings College Hospital, London, UK.
| | - Laure Sarda-Mantel
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie Hôpital Saint Louis, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France.
| | - Maria Elena Noguera
- Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Marika Pla
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Université Paris-Diderot, Sorbonne Paris Cité, Département d'Expérimentation Animale, Institut Universitaire d'Hématologie, Paris, France.
| | - Pierre Fenaux
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Rose Ann Padua
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Christine Chomienne
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France. .,Assistance Publique-Hôpitaux de Paris (AP-HP), Laboratoire d'Hématologie, Hôpital Saint Louis, Paris, France.
| | - Patricia Krief
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Unité Mixte de Recherche (UMR-S) 1131, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 1131, Paris, France.
| |
Collapse
|
20
|
Higher Risk Myelodysplastic Syndromes in Patients with Well-Controlled HIV Infection: Clinical Features, Treatment, and Outcome. Case Rep Hematol 2016; 2016:8502641. [PMID: 26904323 PMCID: PMC4745308 DOI: 10.1155/2016/8502641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/27/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction. In advanced HIV prior to combination antiretroviral therapy (ART), dysplastic marrow changes occurred and resolved with ART. Few reports of myelodysplastic syndromes (MDS) in well-controlled HIV exist and management is undefined. Methods. Patients with well-controlled HIV and higher risk MDS were identified; characteristics, treatment, and outcomes were reviewed. Results. Of 292 MDS patients since 1996, 1 (0.3%) was HIV-positive. A 56-year-old woman presented with cytopenias. CD4 was 1310 cells/mL and HIV viral load <40 copies/mL. Bone marrow biopsy showed RCMD and karyotype included del(5q) and del(7q); IPSS was intermediate-2 risk. She received azacitidine at 75% dose. Cycle 2, at full dose, was complicated by marrow aplasia and possible AML; she elected palliation. Three additional HIV patients with higher risk MDS, aged 56-64, were identified from the literature. All had deletions involving chromosomes 5 and 7. MDS treatment of 2 was not reported and one received palliation; all died of AML. Conclusion. Four higher risk MDS in well-controlled HIV were below the median age of diagnosis for HIV-negative patients; all had adverse karyotype. This is the first report of an HIV patient receiving MDS treatment with azacitidine. Cytopenias were profound and dosing in HIV patients should be considered with caution.
Collapse
|
21
|
del Rey M, Benito R, Fontanillo C, Campos-Laborie FJ, Janusz K, Velasco-Hernández T, Abáigar M, Hernández M, Cuello R, Borrego D, Martín-Zanca D, De Las Rivas J, Mills KI, Hernández-Rivas JM. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts. PLoS One 2015; 10:e0126555. [PMID: 25955609 PMCID: PMC4425562 DOI: 10.1371/journal.pone.0126555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 04/03/2015] [Indexed: 12/02/2022] Open
Abstract
The presence of SF3B1 gene mutations is a hallmark of refractory anemia with ring sideroblasts (RARS). However, the mechanisms responsible for iron accumulation that characterize the Myelodysplastic Syndrome with ring sideroblasts (MDS-RS) are not completely understood. In order to gain insight in the molecular basis of MDS-RS, an integrative study of the expression and mutational status of genes related to iron and mitochondrial metabolism was carried out. A total of 231 low-risk MDS patients and 81 controls were studied. Gene expression analysis revealed that iron metabolism and mitochondrial function had the highest number of genes deregulated in RARS patients compared to controls and the refractory cytopenias with unilineage dysplasia (RCUD). Thus mitochondrial transporters SLC25 (SLC25A37 and SLC25A38) and ALAD genes were over-expressed in RARS. Moreover, significant differences were observed between patients with SF3B1 mutations and patients without the mutations. The deregulation of genes involved in iron and mitochondrial metabolism provides new insights in our knowledge of MDS-RS. New variants that could be involved in the pathogenesis of these diseases have been identified.
Collapse
Affiliation(s)
- Mónica del Rey
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Rocío Benito
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Celia Fontanillo
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Francisco J. Campos-Laborie
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Kamila Janusz
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | | | - María Abáigar
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - María Hernández
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Rebeca Cuello
- Servicio de Hematología, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Daniel Borrego
- Servicio de Hematología, Hospital Clínico de Valladolid, Valladolid, Spain
| | - Dionisio Martín-Zanca
- Instituto de Biología Funcional y Genómica, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Javier De Las Rivas
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
| | - Ken I. Mills
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, Belfast, United Kingdom
| | - Jesús M. Hernández-Rivas
- IBMCC, Centro de Investigación del Cáncer (CIC), Universidad de Salamanca-CSIC, Salamanca, Spain
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
22
|
Folkerts H, Hazenberg CL, Houwerzijl EJ, van den Heuvel FA, Mulder AB, van der Want JJ, Vellenga E. Erythroid progenitors from patients with low-risk myelodysplastic syndromes are dependent on the surrounding micro environment for their survival. Exp Hematol 2015; 43:215-222.e2. [DOI: 10.1016/j.exphem.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 10/16/2014] [Accepted: 11/11/2014] [Indexed: 10/24/2022]
|
23
|
Itzykson R, Kosmider O, Fenaux P. Somatic mutations and epigenetic abnormalities in myelodysplastic syndromes. Best Pract Res Clin Haematol 2014; 26:355-64. [PMID: 24507812 DOI: 10.1016/j.beha.2014.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During many years, very limited data had been available on specific gene mutations in MDS in particular due to the fact that balanced chromosomal translocations (which have allowed to discover many "leukemia" genes) are very rare in MDS, while chromosomal deletions are generally very large, making it difficult to identify genes of interest. Recently, the advent of next generation sequencing (NGS) techniques has helped identify somatic gene mutations in 75-80% of MDS, that cluster mainly in four functional groups, i.e. cytokine signaling (RAS genes), DNA methylation, (TET2, IDH1/2, DNMT3a genes) histone modifications (ASXL1 and EZH2 genes), and spliceosome (SF3B1 and SRSF2 genes) along with mutations of RUNX1 and TP 53 genes. Most of those mutations, except SF3B1 and TET2 mutations, are associated with an overall poorer prognosis, while some gene mutations (mainly TET2 mutation), may be associated to better response to hypomethylating agents. The frequent mutations of epigenetic modulators in MDS appear to largely contribute to the importance of epigenetic deregulation (in particular gene hypermethylation and histone deacetylation) in MDS progression, and may account at least partially for the efficacy of hypomethylating agents in the treatment of MDS.
Collapse
Affiliation(s)
- Raphael Itzykson
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM Unit U944, Hôpital St Louis, Paris, France
| | - Olivier Kosmider
- Laboratoire d'hématologie, Hôpital Cochin, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 5, France
| | - Pierre Fenaux
- Hematology Department, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris (AP-HP), France; Université Paris 7, France; INSERM UMR-S-940, Hôpital St Louis, Paris, France.
| |
Collapse
|
24
|
Itzykson R, Fenaux P. Epigenetics of myelodysplastic syndromes. Leukemia 2013; 28:497-506. [DOI: 10.1038/leu.2013.343] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 12/23/2022]
|
25
|
Heinrichs S, Conover LF, Bueso-Ramos CE, Kilpivaara O, Stevenson K, Neuberg D, Loh ML, Wu WS, Rodig SJ, Garcia-Manero G, Kantarjian HM, Look AT. MYBL2 is a sub-haploinsufficient tumor suppressor gene in myeloid malignancy. eLife 2013; 2:e00825. [PMID: 23878725 PMCID: PMC3713455 DOI: 10.7554/elife.00825] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/14/2013] [Indexed: 01/12/2023] Open
Abstract
A common deleted region (CDR) in both myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN) affects the long arm of chromosome 20 and has been predicted to harbor a tumor suppressor gene. Here we show that MYBL2, a gene within the 20q CDR, is expressed at sharply reduced levels in CD34+ cells from most MDS cases (65%; n = 26), whether or not they harbor 20q abnormalities. In a murine competitive reconstitution model, Mybl2 knockdown by RNAi to 20-30% of normal levels in multipotent hematopoietic progenitors resulted in clonal dominance of these 'sub-haploinsufficient' cells, which was reflected in all blood cell lineages. By 6 months post-transplantation, the reconstituted mice had developed a clonal myeloproliferative/myelodysplastic disorder originating from the cells with aberrantly reduced Mybl2 expression. We conclude that downregulation of MYBL2 activity below levels predicted by classical haploinsufficiency underlies the clonal expansion of hematopoietic progenitors in a large fraction of human myeloid malignancies. DOI:http://dx.doi.org/10.7554/eLife.00825.001.
Collapse
Affiliation(s)
- Stefan Heinrichs
- Institute of Transfusion Medicine , University Hospital Essen , Essen , Germany ; Department of Pediatric Oncology , Dana-Farber Cancer Institute , Boston , United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vajen B, Thomay K, Schlegelberger B. Induction of Chromosomal Instability via Telomere Dysfunction and Epigenetic Alterations in Myeloid Neoplasia. Cancers (Basel) 2013; 5:857-74. [PMID: 24202323 PMCID: PMC3795368 DOI: 10.3390/cancers5030857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/17/2013] [Accepted: 06/25/2013] [Indexed: 12/19/2022] Open
Abstract
Chromosomal instability (CIN) is a characteristic feature of cancer. In this review, we concentrate on mechanisms leading to CIN in myeloid neoplasia, i.e., myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). The pathogenesis of myeloid neoplasia is complex and involves genetic and epigenetic alterations. Chromosome aberrations define specific subgroups and guide clinical decisions. Genomic instability may play an essential role in leukemogenesis by promoting the accumulation of genetic lesions responsible for clonal evolution. Indeed, disease progression is often driven by clonal evolution into complex karyotypes. Earlier studies have shown an association between telomere shortening and advanced MDS and underlined the important role of dysfunctional telomeres in the development of genetic instability and cancer. Several studies link chromosome rearrangements and aberrant DNA and histone methylation. Genes implicated in epigenetic control, like DNMT3A, ASXL1, EZH2 and TET2, have been discovered to be mutated in MDS. Moreover, gene-specific hypermethylation correlates highly significantly with the risk score according to the International Prognostic Scoring System. In AML, methylation profiling also revealed clustering dependent on the genetic status. Clearly, genetic instability and clonal evolution are driving forces for leukemic transformation. Understanding the mechanisms inducing CIN will be important for prevention and for novel approaches towards therapeutic interventions.
Collapse
Affiliation(s)
- Beate Vajen
- Institute of Cell and Molecular Pathology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | | | | |
Collapse
|
27
|
Breitling LP. Current Genetics and Epigenetics of Smoking/Tobacco-Related Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2013; 33:1468-72. [DOI: 10.1161/atvbaha.112.300157] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic and epigenetic factors are of great importance in cardiovascular biology and disease. Tobacco-smoking, one of the most important cardiovascular risk factors, is itself partially determined by genetic background and is associated with altered epigenetic patterns. This could render the genetics and epigenetics of smoking-related cardiovascular disease a textbook example of environmental epigenetics and modern approaches to multimodal data analysis. A pronounced association of smoking-related methylation patterns in the
F2RL3
gene with prognosis in patients with stable coronary heart disease has recently been described. Nonetheless, surprisingly little concrete knowledge on the role of specific genetic variants and epigenetic modifications in the development of cardiovascular diseases in people who smoke has been accumulated. Beyond the current knowledge, the present review briefly outlines some chief challenges and priorities for moving forward in this field.
Collapse
|
28
|
Kerkhoff N, Bontkes HJ, Westers TM, de Gruijl TD, Kordasti S, van de Loosdrecht AA. Dendritic cells in myelodysplastic syndromes: from pathogenesis to immunotherapy. Immunotherapy 2013; 5:621-37. [DOI: 10.2217/imt.13.51] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are clonal disorders of the hematopoietic stem cell characterized by ineffective hematopoiesis leading to peripheral cytopenias. Different processes are involved in its pathogenesis, such as (epi)genetic alterations and immunological dysfunctions. The nature of immune dysregulation is markedly different between various MDS risk groups. In low-risk MDS, the immune system is in a proinflammatory state, whereas in high-risk disease, immunosuppressive features facilitate expansion of the dysplastic clone and can eventually lead to disease progression to acute myeloid leukemia. Various cell types contribute to dysregulation of immune responses in MDS. Dendritic cells (DCs) are important regulators of immunity. However, the role of DCs in MDS has yet to be elucidated. It has been suggested that impaired DC function can hamper adequate immune responses. This review focuses on the involvement of DCs in immune dysregulation in low- and high-risk MDS and the implications for DC-targeted therapies.
Collapse
Affiliation(s)
- Nathalie Kerkhoff
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Hetty J Bontkes
- Department of Pathology, Unit Medical Immunology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Theresia M Westers
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Shahram Kordasti
- Department of Haematological Medicine, King’s College Hospital London, Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Arjan A van de Loosdrecht
- Department of Hematology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| |
Collapse
|