1
|
Raimondi V, Vescovini R, Dessena M, Donofrio G, Storti P, Giuliani N. Oncolytic viruses: a potential breakthrough immunotherapy for multiple myeloma patients. Front Immunol 2024; 15:1483806. [PMID: 39539548 PMCID: PMC11557349 DOI: 10.3389/fimmu.2024.1483806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy represents an innovative and promising approach for the treatment of cancer, including multiple myeloma (MM), a currently incurable plasma cell (PC) neoplasm. Despite the advances that new therapies, particularly immunotherapy, have been made, relapses still occur in MM patients, highlighting the medical need for new treatment options. Oncolytic viruses (OVs) preferentially infect and destroy cancer cells, exerting a direct and/or indirect cytopathic effect, combined with a modulation of the tumor microenvironment leading to an activation of the immune system. Both naturally occurring and genetically modified viruses have demonstrated significant preclinical effects against MM cells. Currently, the OVs genetically modified measles virus strains, reovirus, and vesicular stomatitis virus are employed in clinical trials for MM. Nevertheless, significant challenges remain, including the efficiency of the virus delivery to the tumor, overcoming antiviral immune responses, and the specificity of the virus for MM cells. Different strategies are being explored to optimize OV therapy, including combining it with standard treatments and targeted therapies to enhance efficacy. This review will provide a comprehensive analysis of the mechanism of action of the different OVs, and preclinical and clinical evidence, focusing on the role of oncolytic virotherapy as a new possible immunotherapeutic approach also in combination with the current therapeutic armamentarium and underlying the future directions in the context of MM treatments.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosanna Vescovini
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Mattia Dessena
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Paola Storti
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola Giuliani
- Laboratory of Hematology, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Multiple Myeloma and Monoclonal Gammopathy Program, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
2
|
Franks ML, An JH, Leavenworth JW. The Role of Natural Killer Cells in Oncolytic Virotherapy: Friends or Foes? Vaccines (Basel) 2024; 12:721. [PMID: 39066359 PMCID: PMC11281503 DOI: 10.3390/vaccines12070721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Oncolytic virotherapy (OVT) has emerged as a promising cancer immunotherapy, and is capable of potentiating other immunotherapies due to its capacity to increase tumor immunogenicity and to boost host antitumor immunity. Natural killer (NK) cells are a critical cellular component for mediating the antitumor response, but hold a mixed reputation for their role in mediating the therapeutic efficacy of OVT. This review will discuss the pros and cons of how NK cells impact OVT, and how to harness this knowledge for the development of effective strategies that could modulate NK cells to improve OVT-based therapeutic outcomes.
Collapse
Affiliation(s)
- Michael L. Franks
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ju-Hyun An
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.L.F.)
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Makielski KM, Sarver AL, Henson MS, Stuebner KM, Borgatti A, Suksanpaisan L, Preusser C, Tabaran AF, Cornax I, O’Sullivan MG, Chehadeh A, Groschen D, Bergsrud K, Pracht S, Winter A, Mills LJ, Schwabenlander MD, Wolfe M, Farrar MA, Cutter GR, Koopmeiners JS, Russell SJ, Modiano JF, Naik S. Neoadjuvant systemic oncolytic vesicular stomatitis virus is safe and may enhance long-term survivorship in dogs with naturally occurring osteosarcoma. Mol Ther Oncolytics 2023; 31:100736. [PMID: 37965295 PMCID: PMC10641240 DOI: 10.1016/j.omto.2023.100736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Osteosarcoma is a devastating bone cancer that disproportionally afflicts children, adolescents, and young adults. Standard therapy includes surgical tumor resection combined with multiagent chemotherapy, but many patients still suffer from metastatic disease progression. Neoadjuvant systemic oncolytic virus (OV) therapy has the potential to improve clinical outcomes by targeting primary and metastatic tumor sites and inducing durable antitumor immune responses. Here we describe the first evaluation of neoadjuvant systemic therapy with a clinical-stage recombinant oncolytic vesicular stomatitis virus (VSV), VSV-IFNβ-NIS, in naturally occurring cancer, specifically appendicular osteosarcoma in companion dogs. Canine osteosarcoma has a similar natural disease history as its human counterpart. VSV-IFNβ-NIS was administered prior to standard of care surgical resection, permitting microscopic and genomic analysis of tumors. Treatment was well-tolerated and a "tail" of long-term survivors (∼35%) was apparent in the VSV-treated group, a greater proportion than observed in two contemporary control cohorts. An increase in tumor inflammation was observed in VSV-treated tumors and RNA-seq analysis showed that all the long-term responders had increased expression of a T cell anchored immune gene cluster. We conclude that neoadjuvant VSV-IFNβ-NIS is safe and may increase long-term survivorship in dogs with naturally occurring osteosarcoma, particularly those that exhibit pre-existing antitumor immunity.
Collapse
Affiliation(s)
- Kelly M. Makielski
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Aaron L. Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael S. Henson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Kathleen M. Stuebner
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | | | - Caitlin Preusser
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Ingrid Cornax
- Department of Veterinary Population Medicine, St. Paul, MN 55108, USA
| | | | - Andrea Chehadeh
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Donna Groschen
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Kelly Bergsrud
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Sara Pracht
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Amber Winter
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Lauren J. Mills
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Marc D. Schwabenlander
- Veterinary Diagnostic Laboratory, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Melissa Wolfe
- Veterinary Diagnostic Laboratory, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
| | - Michael A. Farrar
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Gary R. Cutter
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph S. Koopmeiners
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Biostatistics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Vyriad, Inc., 2900 37th St NW, Rochester, MN 55901, USA
| | - Jaime F. Modiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN 55108, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Engineering and Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Vyriad, Inc., 2900 37th St NW, Rochester, MN 55901, USA
| |
Collapse
|
4
|
Makielski KM, Sarver AL, Henson MS, Stuebner KM, Borgatti A, Suksanpaisan L, Preusser C, Tabaran AF, Cornax I, O'Sullivan MG, Chehadeh A, Groschen D, Bergsrud K, Pracht S, Winter A, Mills LJ, Schwabenlander MD, Wolfe M, Farrar MA, Cutter GR, Koopmeiners JS, Russell SJ, Modiano JF, Naik S. Neoadjuvant systemic oncolytic vesicular stomatitis virus is safe and may enhance long-term survivorship in dogs with naturally occurring osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.533664. [PMID: 37131624 PMCID: PMC10153185 DOI: 10.1101/2023.04.16.533664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteosarcoma is a devastating bone cancer that disproportionally afflicts children, adolescents, and young adults. Standard therapy includes surgical tumor resection combined with multiagent chemotherapy, but many patients still suffer from metastatic disease progression. Neoadjuvant systemic oncolytic virus (OV) therapy has the potential to improve clinical outcomes by targeting primary and metastatic tumor sites and inducing durable antitumor immune responses. Here we described the first evaluation of neoadjuvant systemic therapy with a clinical-stage recombinant oncolytic Vesicular stomatitis virus (VSV), VSV-IFNβ-NIS, in naturally occurring cancer, specifically appendicular osteosarcoma in companion dogs. Canine osteosarcoma has a similar natural disease history as its human counterpart. VSV-IFNβ-NIS was administered prior to standard of care surgical resection, permitting microscopic and genomic analysis of tumors. Treatment was well-tolerated and a 'tail' of long-term survivors (~35%) was apparent in the VSV-treated group, a greater proportion than observed in two contemporary control cohorts. An increase in tumor inflammation was observed in VSV-treated tumors and RNAseq analysis showed that all the long-term responders had increased expression of a T-cell anchored immune gene cluster. We conclude that neoadjuvant VSV-IFNβ-NIS is safe and may increase long-term survivorship in dogs with naturally occurring osteosarcoma, particularly those that exhibit pre-existing antitumor immunity.
Collapse
|
5
|
Lee N, Jeon YH, Yoo J, Shin SK, Lee S, Park MJ, Jung BJ, Hong YK, Lee DS, Oh K. Generation of novel oncolytic vaccinia virus with improved intravenous efficacy through protection against complement-mediated lysis and evasion of neutralization by vaccinia virus-specific antibodies. J Immunother Cancer 2023; 11:jitc-2022-006024. [PMID: 36717184 PMCID: PMC9887704 DOI: 10.1136/jitc-2022-006024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Oncolytic virus immunotherapy has revolutionized cancer immunotherapy by efficiently inducing both oncolysis and systemic immune activation. Locoregional administration has been used for oncolytic virus therapy, but its applications to deep-seated cancers have been limited. Although systemic delivery of the oncolytic virus would maximize viral immunotherapy's potential, this remains a hurdle due to the rapid removal of the administered virus by the complement and innate immune system. Infected cells produce some vaccinia viruses as extracellular enveloped virions, which evade complement attack and achieve longer survival by expressing host complement regulatory proteins (CRPs) on the host-derived envelope. Here, we generated SJ-600 series oncolytic vaccinia viruses that can mimic complement-resistant extracellular enveloped virions by incorporating human CRP CD55 on the intracellular mature virion (IMV) membrane. METHODS The N-terminus of the human CD55 protein was fused to the transmembrane domains of the six type I membrane proteins of the IMV; the resulting recombinant viruses were named SJ-600 series viruses. The SJ-600 series viruses also expressed human granulocyte-macrophage colony-stimulating factor (GM-CSF) to activate dendritic cells. The viral thymidine kinase (J2R) gene was replaced by genes encoding the CD55 fusion proteins and GM-CSF. RESULTS SJ-600 series viruses expressing human CD55 on the IMV membrane showed resistance to serum virus neutralization. SJ-607 virus, which showed the highest CD55 expression and the highest resistance to serum complement-mediated lysis, exhibited superior anticancer activity in three human cancer xenograft models, compared with the control Pexa-Vec (JX-594) virus, after single-dose intravenous administration. The SJ-607 virus administration elicited neutralizing antibody formation in two immunocompetent mouse strains like the control JX-594 virus. Remarkably, we found that the SJ-607 virus evades neutralization by vaccinia virus-specific antibodies. CONCLUSION Our new oncolytic vaccinia virus platform, which expresses human CD55 protein on its membrane, prolonged viral survival by protecting against complement-mediated lysis and by evading neutralization by vaccinia virus-specific antibodies; this may provide a continuous antitumor efficacy until a complete remission has been achieved. Such a platform may expand the target cancer profile to include deep-seated cancers and widespread metastatic cancers.
Collapse
Affiliation(s)
- Namhee Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Hui Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Jiyoon Yoo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Suk-kyung Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Songyi Lee
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Mi-Ju Park
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Byung-Jin Jung
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Yun-Kyoung Hong
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea,Wide River Institute of Immunology, Seoul National University, Gangwon, Republic of Korea
| | - Keunhee Oh
- Research Center, SillaJen, Inc, Seongnam, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Nonclinical pharmacokinetics and biodistribution of VSV-GP using methods to decouple input drug disposition and viral replication. Mol Ther Methods Clin Dev 2022; 28:190-207. [PMID: 36700123 PMCID: PMC9843450 DOI: 10.1016/j.omtm.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Viral replication places oncolytic viruses (OVs) in a unique niche in the field of drug pharmacokinetics (PK) as their self-amplification obscures exposure-response relationships. Moreover, standard bioanalytical techniques are unable to distinguish the input from replicated drug products. Here, we combine two novel approaches to characterize PK and biodistribution (BD) after systemic administration of vesicular stomatitis virus pseudotyped with lymphocytic choriomeningitis virus glycoprotein (VSV-GP) in healthy mice. First: to decouple input drug PK/BD versus replication PK/BD, we developed and fully characterized a replication-incompetent tool virus that retained all other critical attributes of the drug. We used this approach to quantify replication in blood and tissues and to determine its impact on PK and BD. Second: to discriminate the genomic and antigenomic viral RNA strands contributing to replication dynamics in tissues, we developed an in situ hybridization method using strand-specific probes and assessed their spatiotemporal distribution in tissues. This latter approach demonstrated that distribution, transcription, and replication localized to tissue-resident macrophages, indicating their role in PK and BD. Ultimately, our study results in a refined PK/BD profile for a replicating OV, new proposed PK parameters, and deeper understanding of OV PK/BD using unique approaches that could be applied to other replicating vectors.
Collapse
|
7
|
Larrieux A, Sanjuán R. Cellular resistance to an oncolytic virus is driven by chronic activation of innate immunity. iScience 2022; 26:105749. [PMID: 36590165 PMCID: PMC9794979 DOI: 10.1016/j.isci.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cellular resistances to oncolytic viruses is an underexplored process that could compromise the efficacy of cancer virotherapy. Here, we isolated and characterized B16 mouse melanoma cells that evolved resistance to an oncolytic vesicular stomatitis virus (VSV-D51). RNA-seq revealed that resistance was associated to broad changes in gene expression, which typically involved chronic upregulation of interferon-stimulated genes. Innate immunity activation was maintained in the absence of the virus or other infection signals, and conferred cross-resistance to wild-type VSV and the unrelated Sindbis virus. Furthermore, we identified differentially expressed genes with no obvious role in antiviral immunity, such as Mnda, Psmb8 and Btn2a2, suggesting novel functions for these genes. Transcriptomic changes associated to VSV resistance were similar among B16 clones and in some clones derived from the mouse colon carcinoma cell line CT26, suggesting that oncolytic virus resistance involves certain conserved mechanisms and is therefore a potentially predictable process.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, València 46980, Spain,Corresponding author
| |
Collapse
|
8
|
Ailia MJ, Yoo SY. In Vivo Oncolytic Virotherapy in Murine Models of Hepatocellular Carcinoma: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10091541. [PMID: 36146619 PMCID: PMC9505175 DOI: 10.3390/vaccines10091541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality worldwide. Current therapies often provide marginal survival benefits at the expense of undesirable side effects. Oncolytic viruses represent a novel strategy for the treatment of HCC due to their inherent ability to cause direct tumor cell lysis while sparing normal tissue and their capacity to stimulate potent immune responses directed against uninfected tumor cells and distant metastases. Oncolytic virotherapy (OVT) is a promising cancer treatment, but before it can become a standard option in practice, several challenges-systemic viral delivery optimization/enhancement, inter-tumoral virus dispersion, anti-cancer immunity cross-priming, and lack of artificial model systems-need to be addressed. Addressing these will require an in vivo model that accurately mimics the tumor microenvironment and allows the scientific community to design a more precise and accurate OVT. Due to their close physiologic resemblance to humans, murine cancer models are the likely preferred candidates. To provide an accurate assessment of the current state of in vivo OVT in HCC, we have reviewed a comprehensively searched body of work using murine in vivo HCC models for OVT.
Collapse
|
9
|
Clinical activity of single-dose systemic oncolytic VSV virotherapy in patients with relapsed refractory T-cell lymphoma. Blood Adv 2022; 6:3268-3279. [PMID: 35175355 PMCID: PMC9198941 DOI: 10.1182/bloodadvances.2021006631] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Clinical success with intravenous (IV) oncolytic virotherapy (OV) has to-date been anecdotal. We conducted a phase 1 clinical trial of systemic OV and investigated the mechanisms of action in responding patients. A single IV dose of vesicular stomatitis virus (VSV) interferon-β (IFN-β) with sodium iodide symporter (NIS) was administered to patients with relapsed/refractory hematologic malignancies to determine safety and efficacy across 4 dose levels (DLs). Correlative studies were undertaken to evaluate viremia, virus shedding, virus replication, and immune responses. Fifteen patients received VSV-IFNβ-NIS. Three patients were treated at DL1 through DL3 (0.05, 0.17, and 0.5 × 1011 TCID50), and 6 were treated at DL4 (1.7 × 1011 TCID50) with no dose-limiting toxicities. Three of 7 patients with T-cell lymphoma (TCL) had responses: a 3-month partial response (PR) at DL2, a 6-month PR, and a complete response (CR) ongoing at 20 months at DL4. Viremia peaked at the end of infusion, g was detected. Plasma IFN-β, a biomarker of VSV-IFNβ-NIS replication, peaked between 4 hours and 48 hours after infusion. The patient with CR had robust viral replication with increased plasma cell-free DNA, high peak IFN-β of 18 213 pg/mL, a strong anti-VSV neutralizing antibody response, and increased numbers of tumor reactive T-cells. VSV-IFNβ-NIS as a single agent was effective in patients with TCL, resulting in durable disease remissions in heavily pretreated patients. Correlative analyses suggest that responses may be due to a combination of direct oncolytic tumor destruction and immune-mediated tumor control. This trial is registered at www.clinicaltrials.gov as #NCT03017820.
Collapse
|
10
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
11
|
Lei W, Ye Q, Hao Y, Chen J, Huang Y, Yang L, Wang S, Qian W. CD19-targeted BiTE expression by an oncolytic vaccinia virus significantly augments therapeutic efficacy against B-cell lymphoma. Blood Cancer J 2022; 12:35. [PMID: 35228544 PMCID: PMC8885649 DOI: 10.1038/s41408-022-00634-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy with CD19-targeting bispecific T-cell engagers (CD19BiTEs) has demonstrated highly effective killing of cancer cells in patients with precursor acute lymphoblastic leukemia and non-Hodgkin's lymphomas. However, there are some drawbacks to this therapy, such as toxicity, short half-life in the serum, and immunosuppressive tumor microenvironment that could limit the use of CD19BiTEs in the clinic. Here, we generate an oncolytic vaccinia virus (OVV) encoding a CD19-specific BiTE (OVV-CD19BiTE). We demonstrate that OVV-CD19BiTE's ability to replicate and induce oncolysis was similar to that of its parental counterpart. Supernatants from OVV-CD19BiTE-infected cells could induce activation and proliferation of human T cells, and the bystander effect of the virus was also demonstrated. In vivo study showed that OVV-CD19BiTE selectively replicated within tumor tissue, and contributed to a more significantly increased percentage of CD3, CD8, and naïve CD8 T subpopulations within tumors in contrast to blinatumomab. More importantly, treatment with OVV-CD19BiTE both in vitro and in vivo resulted in potent antitumor activity in comparison with control OVV or blinatumomab, a first-in-class BiTE, thereby resulting in long-term tumor remissions without relapse. The study provides strong evidence for the therapeutic benefits of CD19-targeting BiTE expression by OVV, and suggests the feasibility of testing the approach in clinical trials.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Qian Ye
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yuanyuan Hao
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China.,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China
| | - Jie Chen
- Hangzhou RongGu Biotechnology Limited Company, 310056, Hangzhou, Zhejiang, P. R. China
| | - Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang, P. R. China
| | - Liu Yang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China
| | - Shibing Wang
- Cancer Center, Molecular Diagnosis Laboratory, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, P. R. China.
| | - Wenbin Qian
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, P. R. China. .,Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
The Use of Oncolytic Viruses in the Treatment of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13225687. [PMID: 34830842 PMCID: PMC8616105 DOI: 10.3390/cancers13225687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Multiple myeloma is a type of blood cancer caused by the uncontrolled growth of antibody producing B cells (known as plasma cells) that reside in the bone marrow. It is classed as a largely incurable cancer as whilst patients respond well to initial chemotherapy treatments, unfortunately after periods of disease remission, relapse usually occurs with the emergence of chemotherapy resistance. Therefore, there is a need for new approaches that not only reduce tumour load but also prevent tumour relapse. Oncolytic viruses (OVs) (tumour killing viruses) are being explored as a therapy for various cancers, including multiple myeloma. This review discusses the use of OVs in myeloma in preclinical model systems and early phase clinical trials, and discusses some of the hurdles involved in the translation to myeloma patients. Abstract Multiple myeloma accounts for 1% of all new cancers worldwide. It is the second most common haematological malignancy and has a low five-year survival rate (53.2%). Myeloma remains an incurable disease and is caused by the growth of malignant plasma cells in the bone marrow. Current anti-myeloma therapies (conventional chemotherapies, immunomodulatory drugs i.e., thalidomide and its’ analogues, proteasome inhibitors, monoclonal antibodies, and radiotherapy) initially substantially debulk tumour burden, but after a period of remission ‘plateau phase’ disease invariably relapses due to tumour recrudescence from foci of minimal residual disease (MRD) and accumulating drug resistance. Therefore, there is a compelling clinical need for the development of novel treatment regimens to target MRD and effectively eliminate all remaining tumour cells. This review will discuss the potential use of oncolytic virus (OV) therapies in the treatment of myeloma. Specifically, it will focus on preclinical studies using DNA viruses (adenovirus (Ad), vaccinia virus (VV), myxoma virus (MYXV), and herpes simplex virus (HSV)), RNA viruses (reovirus (reo), coxsackie virus, measles virus (MV) and bovine viral diarrhoea virus (BVDV), and vesicular stomatitis virus (VSV)), and on four types of viruses (VV, reo, MV-NIS and VSV-IFNβ-NIS) that have been assessed clinically in a small number of myeloma patients.
Collapse
|
13
|
Cook J, Acosta-Medina AA, Peng KW, Lacy M, Russell S. Oncolytic virotherapy - Forging its place in the immunomodulatory paradigm for Multiple Myeloma. Cancer Treat Res Commun 2021; 29:100473. [PMID: 34673439 DOI: 10.1016/j.ctarc.2021.100473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
The treatment focus for multiple myeloma (MM) has recently pivoted towards immune modulating strategies, with T-cell redirection therapies currently at the forefront of drug development. Yet, despite this revolution in treatment, MM remains without a sustainable cure. At the same time, tremendous advancement has been made in recombinant and gene editing techniques for oncolytic viruses (OV), which have increased their tumor specificity, improved safety, and enhanced the oncolytic and immunostimulatory potential. These breakthrough developments in oncolytic virotherapy have opened new avenues for OVs to be used in combination with other immune-based therapies such as checkpoint inhibitors, chimeric antigen receptor T-cells (CAR-T) and bispecific T-cell engagers. In this review, the authors place the spotlight on systemic oncolytic virotherapy as an adaptable immunotherapeutic for MM, highlight the unique mechanism of OVs in activating the immune-suppressive marrow microenvironment, and lastly showcase the OV platforms and the promising combination strategies in the pipeline for MM.
Collapse
Affiliation(s)
- Joselle Cook
- Division of Hematology, Mayo Clinic, Rochester MN, United States.
| | | | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| | - Martha Lacy
- Division of Hematology, Mayo Clinic, Rochester MN, United States
| | - Stephen Russell
- Division of Hematology, Mayo Clinic, Rochester MN, United States; Department of Molecular Medicine, Mayo Clinic, Rochester MN , United States
| |
Collapse
|
14
|
Sarwar A, Hashim L, Faisal MS, Haider MZ, Ahmed Z, Ahmed TF, Shahzad M, Ansar I, Ali S, Aslam MM, Anwer F. Advances in viral oncolytics for treatment of multiple myeloma - a focused review. Expert Rev Hematol 2021; 14:1071-1083. [PMID: 34428997 DOI: 10.1080/17474086.2021.1972802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Oncolytic viruses are genetically engineered viruses that target myeloma-affected cells by detecting specific cell surface receptors (CD46, CD138), causing cell death by activating the signaling pathway to induce apoptosis or by immune-mediated cellular destruction. AREAS COVERED This article summarizes oncolytic virotherapy advancements such as the therapeutic use of viruses by targeting cell surface proteins of myeloma cells as well as the carriers to deliver viruses to the target tissues safely. The major classes of viruses that have been studied for this include measles, myxoma, adenovirus, reovirus, vaccinia, vesicular-stomatitis virus, coxsackie, and others. The measles virus acts as oncolytic viral therapy by binding to the CD46 receptors on the myeloma cells to utilize its surface H protein. These H-protein and CD46 interactions lead to cellular syncytia formation resulting in cellular apoptosis. Vesicular-stomatitis virus acts by downregulation of anti-apoptotic factors (Mcl-2, BCL-2). Based upon the published literature searches till December 2020, we have summarized the data supporting the advances in viral oncolytic for the treatment of MM. EXPERT OPINION Oncolytic virotherapy is an experimental approach in multiple myeloma (MM); many issues need to be addressed for safe viral delivery to the target tissue.
Collapse
Affiliation(s)
- Ayesha Sarwar
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | | | - Muhammad Salman Faisal
- Department of Internal Medicine, Division of Hematology, The Ohio State University Columbus Oh, USA
| | | | - Zahoor Ahmed
- Department of Internal Medicine, King Edward Medical University, Lahore, Pakistan
| | - Tehniat Faraz Ahmed
- Department of Biochemistry, Dow University of Health Sciences, Karachi, Pakistan
| | - Moazzam Shahzad
- Department of Internal Medicine, St Mary's Medical Center, Huntington, WV, USA
| | - Iqraa Ansar
- Department of Internal medicine, Riverside Methodist hospital, Columbus OH
| | - Sundas Ali
- Department of Internal medicine, Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Faiz Anwer
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Ohio, USA
| |
Collapse
|
15
|
Immunomodulatory Arming Factors-The Current Paradigm for Oncolytic Vectors Relies on Immune Stimulating Molecules. Int J Mol Sci 2021; 22:ijms22169051. [PMID: 34445759 DOI: 10.3390/ijms22169051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The dogma of engineering oncolytic viral vectors has shifted from emphasizing the viral lysis of individual cancer cells to the recruitment and coordination of the adaptive immune system to clear the tumor. To accomplish this, researchers have been adding several classes of transgenes to their preferred viral platforms. The most prevalent of these include antibodies and targeting moieties, interleukins and cytokines, and genes which rely on small molecule co-administration for tumor killing. Most current vectors rely exclusively on one of these types of transgenes to elicit the desired immune response to clear tumors, but are not mutually exclusive, with several larger OVs armed with several of these factors. The common theme of emerging armed vectors is to simply initiate or enhance infiltration of effector CD8+ T cells to clear the tumor locally at OV infection sites, and systemically throughout the body where the OV has not infected tumor cells. The precision of oncolytic vectors to target a cell type or tissue remains its key advantage over small-molecule drugs. Unlike chemo- and other drug therapies, viral vectors can be made to specifically infect and grow within tumor cells. This ensures localized expression of the therapeutic transgene to the diseased tissue, thereby limiting systemic toxicity. This review will examine the immunomodulating transgenes of current OVs, describe their general effect on the immune system, and provide the rationale for each vector's use in clearing its targeted tumor.
Collapse
|
16
|
Robertson MG, Eidenschink BB, Iguchi E, Zakharkin SO, LaRocca CJ, Tolosa EJ, Truty MJ, Jacobsen K, Fernandez-Zapico ME, Davydova J. Cancer imaging and therapy utilizing a novel NIS-expressing adenovirus: The role of adenovirus death protein deletion. MOLECULAR THERAPY-ONCOLYTICS 2021; 20:659-668. [PMID: 33816784 PMCID: PMC7985464 DOI: 10.1016/j.omto.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022]
Abstract
Encoding the sodium iodide symporter (NIS) by an adenovirus (Ad) is a promising strategy to facilitate non-invasive imaging and radiotherapy of pancreatic cancer. However, insufficient levels of NIS expression in tumor cells have limited its clinical translation. To optimize Ad-based radiotherapy and imaging, we investigated the effect of Ad death protein (ADP) deletion on NIS expression. We cloned two sets of oncolytic NIS-expressing Ads that differed only in the presence or absence of ADP. We found that ADP expression negatively affected NIS membrane localization and inhibited radiotracer uptake. ADP deletion significantly improved NIS-based imaging in pancreatic cancer models including patient-derived xenografts, where effective imaging was possible for up to 6 weeks after a single virus injection. This study demonstrates that improved oncolysis may hinder the therapeutic effect of oncolytic viruses designed to express NIS. In vivo studies in combination with 131I showed potential for effective radiotherapy. This also highlights the need for further investigation into optimal timing of 131I administration and suggests that repeated doses of 131I should be considered to improve efficacy in clinical trials. We conclude that ADP deletion is essential for effective NIS-based theranostics in cancer.
Collapse
Affiliation(s)
| | - Benjamin Bruce Eidenschink
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.,School of Medicine, University of Missouri at Kansas City, MO 64110, USA
| | - Eriko Iguchi
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA.,Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Ezequiel J Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Kari Jacobsen
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Oncolytic Virotherapy and Microenvironment in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22052259. [PMID: 33668361 PMCID: PMC7956262 DOI: 10.3390/ijms22052259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of bone marrow (BM) clonal plasma cells, which are strictly dependent on the microenvironment. Despite the improvement of MM survival with the use of new drugs, MM patients still relapse and become always refractory to the treatment. The development of new therapeutic strategies targeting both tumor and microenvironment cells are necessary. Oncolytic virotherapy represent a promising approach in cancer treatment due to tumor-specific oncolysis and activation of the immune system. Different types of human viruses were checked in preclinical MM models, and the use of several viruses are currently investigated in clinical trials in MM patients. More recently, the use of alternative non-human viruses has been also highlighted in preclinical studies. This strategy could avoid the antiviral immune response of the patients against human viruses due to vaccination or natural infections, which could invalid the efficiency of virotherapy approach. In this review, we explored the effects of the main oncolytic viruses, which act through both direct and indirect mechanisms targeting myeloma and microenvironment cells inducing an anti-MM response. The efficacy of the oncolytic virus-therapy in combination with other anti-MM drugs targeting the microenvironment has been also discussed.
Collapse
|
18
|
Hwang JK, Hong J, Yun CO. Oncolytic Viruses and Immune Checkpoint Inhibitors: Preclinical Developments to Clinical Trials. Int J Mol Sci 2020; 21:E8627. [PMID: 33207653 PMCID: PMC7697902 DOI: 10.3390/ijms21228627] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) has been an active area of oncology research. Following US FDA approval of the first immune checkpoint inhibitor (ICI), ipilimumab (human IgG1 k anti-CTLA-4 monoclonal antibody), in 2011, and of the first oncolytic virus, Imlygic (talimogene laherparepvec), in 2015, there has been renewed interest in IO. In the past decade, ICIs have changed the treatment paradigm for many cancers by enabling better therapeutic control, resuming immune surveillance, suppressing tumor immunosuppression, and restoring antitumor immune function. However, ICI therapies are effective only in a small subset of patients and show limited therapeutic potential due to their inability to demonstrate efficacy in 'cold' or unresponsive tumor microenvironments (TMEs). Relatedly, oncolytic viruses (OVs) have been shown to induce antitumor immune responses, augment the efficacy of existing cancer treatments, and reform unresponsive TME to turn 'cold' tumors 'hot,' increasing their susceptibility to checkpoint blockade immunotherapies. For this reason, OVs serve as ideal complements to ICIs, and multiple preclinical studies and clinical trials are demonstrating their combined therapeutic efficacy. This review will discuss the merits and limitations of OVs and ICIs as monotherapy then progress onto the preclinical rationale and the results of clinical trials of key combination therapies.
Collapse
Affiliation(s)
- June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea; (J.K.H.); (J.H.)
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
- Institute of Nano Science and Technology, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea
| |
Collapse
|
19
|
Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin Biol Ther 2020; 20:1187-1201. [PMID: 32602788 DOI: 10.1080/14712598.2020.1787981] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Vesicular stomatitis virus (VSV) has long been a useful research tool in virology and recently become an essential part of medicinal products. Vesiculovirus research is growing quickly following its adaptation to clinical gene and cell therapy and oncolytic virotherapy. AREAS COVERED This article reviews the versatility of VSV as a research tool and biological reagent, its use as a viral and vaccine vector delivering therapeutic and immunogenic transgenes and an oncolytic virus aiding cancer treatment. Challenges such as the immune response against such advanced therapeutic medicinal products and manufacturing constraints are also discussed. EXPERT OPINION The field of in vivo gene and cell therapy is advancing rapidly with VSV used in many ways. Comparison of VSV's use as a versatile therapeutic reagent unveils further prospects and problems for each application. Overcoming immunological challenges to aid repeated administration of viral vectors and minimizing harmful host-vector interactions remains one of the major challenges. In the future, exploitation of reverse genetic tools may assist the creation of recombinant viral variants that have improved onco-selectivity and more efficient vaccine vector activity. This will add to the preferential features of VSV as an excellent advanced therapy medicinal product (ATMP) platform.
Collapse
Affiliation(s)
- Altar M Munis
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford , Oxford, UK.,Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control , South Mimms, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control , South Mimms, UK.,Division of Infection and Immunity, University College London , London, UK
| |
Collapse
|
20
|
Maroun JW, Penza V, Weiskittel TM, Schulze AJ, Russell SJ. Collateral Lethal Effects of Complementary Oncolytic Viruses. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:236-246. [PMID: 32728612 PMCID: PMC7369514 DOI: 10.1016/j.omto.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
Virus-infected cells release type 1 interferons, which induce an antiviral state in neighboring cells. Naturally occurring viruses are therefore equipped with stealth replication strategies to limit virus sensing and/or with combat strategies to prevent or reverse the antiviral state. Here we show that oncolytic viruses with simple RNA genomes whose spread was suppressed in tumor cells pretreated with interferon were able to replicate efficiently when the cells were coinfected with a poxvirus known to encode a diversity of innate immune combat proteins. In vivo the poxvirus was shown to reverse the intratumoral antiviral state, rescuing RNA virus replication in an otherwise restrictive syngeneic mouse tumor model leading to antitumor efficacy. Pairing of complementary oncolytic viruses is a promising strategy to enhance the antitumor activity of this novel class of anticancer drugs.
Collapse
Affiliation(s)
- Justin W Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Velia Penza
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Taylor M Weiskittel
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Autumn J Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
21
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
22
|
Bayne RS, Puckett S, Rodrigues LU, Cramer SD, Lee J, Furdui CM, Chou JW, Miller LD, Ornelles DA, Lyles DS. MAP3K7 and CHD1 Are Novel Mediators of Resistance to Oncolytic Vesicular Stomatitis Virus in Prostate Cancer Cells. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:496-507. [PMID: 32529027 PMCID: PMC7276393 DOI: 10.1016/j.omto.2020.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022]
Abstract
A key principle of oncolytic viral therapy is that many cancers develop defects in their antiviral responses, making them more susceptible to virus infection. However, some cancers display resistance to viral infection. Many of these resistant cancers constitutively express interferon-stimulated genes (ISGs). The goal of these experiments was to determine the role of two tumor suppressor genes, MAP3K7 and CHD1, in viral resistance and ISG expression in PC3 prostate cancer cells resistant to oncolytic vesicular stomatitis virus (VSV). MAP3K7 and CHD1 are often co-deleted in aggressive prostate cancers. Silencing expression of MAP3K7 and CHD1 in PC3 cells increased susceptibility to the matrix (M) gene mutant M51R-VSV, as shown by increased expression of viral genes, increased yield of progeny virus, and reduction of tumor growth in nude mice. Silencing MAP3K7 alone had a greater effect on virus susceptibility than did silencing CHD1. Silencing MAP3K7 and CHD1 decreased constitutive expression of ISG mRNAs and proteins, whereas silencing MAP3K7 alone decreased expression of ISG proteins, but actually increased expression of ISG mRNAs. These results suggest a role for the protein product of MAP3K7, transforming growth factor β-activated kinase 1 (TAK1), in regulating translation of ISG mRNAs and a role of CHD1 in maintaining the transcription of ISGs.
Collapse
Affiliation(s)
- Robert S Bayne
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Shelby Puckett
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Scott D Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeff W Chou
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David A Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Douglas S Lyles
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
23
|
Poon AC, Matsuyama A, Mutsaers AJ. Recent and current clinical trials in canine appendicular osteosarcoma. THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2020; 61:301-308. [PMID: 32165755 PMCID: PMC7020630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osteosarcoma (OSA) is an aggressive primary bone tumor in the domestic dog that most often occurs within the appendicular skeleton. Despite the use of adjuvant chemotherapy, most dogs succumb to metastatic disease within 1 year of diagnosis. To improve this outcome, substantial research is currently focused on investigating novel therapies. Herein, we review emerging treatments and clinical trials that, if proven efficacious, could revolutionize the standard of care for canine appendicular OSA. This article includes a critical perspective on the safety, efficacy, and limitations of select immunotherapy, virotherapy, radiotherapy, targeted therapy, and personalized medicine trials, all of which reflect similar investigations taking place in human oncology. These clinical trials represent a major evolution in the overall approach to therapy for dogs with appendicular OSA that could have significant implications for improving survival.
Collapse
Affiliation(s)
- Andrew C Poon
- Department of Biomedical Sciences (Poon, Matsuyama, Mutsaers), Department of Clinical Studies (Mutsaers), Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Arata Matsuyama
- Department of Biomedical Sciences (Poon, Matsuyama, Mutsaers), Department of Clinical Studies (Mutsaers), Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| | - Anthony J Mutsaers
- Department of Biomedical Sciences (Poon, Matsuyama, Mutsaers), Department of Clinical Studies (Mutsaers), Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1
| |
Collapse
|
24
|
Harnessing cancer immunotherapy during the unexploited immediate perioperative period. Nat Rev Clin Oncol 2020; 17:313-326. [PMID: 32066936 DOI: 10.1038/s41571-019-0319-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The immediate perioperative period (days before and after surgery) is hypothesized to be crucial in determining long-term cancer outcomes: during this short period, numerous factors, including excess stress and inflammatory responses, tumour-cell shedding and pro-angiogenic and/or growth factors, might facilitate the progression of pre-existing micrometastases and the initiation of new metastases, while simultaneously jeopardizing immune control over residual malignant cells. Thus, application of anticancer immunotherapy during this critical time frame could potentially improve patient outcomes. Nevertheless, this strategy has rarely been implemented to date. In this Perspective, we discuss apparent contraindications for the perioperative use of cancer immunotherapy, suggest safe immunotherapeutic and other anti-metastatic approaches during this important time frame and specify desired characteristics of such interventions. These characteristics include a rapid onset of immune activation, avoidance of tumour-promoting effects, no or minimal increase in surgical risk, resilience to stress-related factors and minimal induction of stress responses. Pharmacological control of excess perioperative stress-inflammatory responses has been shown to be clinically feasible and could potentially be combined with immune stimulation to overcome the direct pro-metastatic effects of surgery, prevent immune suppression and enhance immunostimulatory responses. Accordingly, we believe that certain types of immunotherapy, together with interventions to abrogate stress-inflammatory responses, should be evaluated in conjunction with surgery and, for maximal effectiveness, could be initiated before administration of adjuvant therapies. Such strategies might improve the overall success of cancer treatment.
Collapse
|
25
|
Zhang L, Suksanpaisan L, Jiang H, DeGrado TR, Russell SJ, Zhao M, Peng KW. Dual-Isotope SPECT Imaging with NIS Reporter Gene and Duramycin to Visualize Tumor Susceptibility to Oncolytic Virus Infection. Mol Ther Oncolytics 2019; 15:178-185. [PMID: 31890867 PMCID: PMC6931109 DOI: 10.1016/j.omto.2019.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/05/2019] [Indexed: 11/21/2022] Open
Abstract
Noninvasive dual-imaging methods that provide an early readout on tumor permissiveness to virus infection and tumor cell death could be valuable in optimizing development of oncolytic virotherapies. Here, we have used the sodium iodide symporter (NIS) and 125I radiotracer to detect infection and replicative spread of an oncolytic vesicular stomatitis virus (VSV) in VSV-susceptible (MPC-11 tumor) versus VSV-resistant (CT26 tumor) tumors in BALB/c mice. In conjunction, tumor cell death was imaged simultaneously using technetium (99mTc)-duramycin that binds phosphatidylethanolamine in apoptotic and necrotic cells. Dual-isotope single-photon emission computed tomography/computed tomography (SPECT/CT) imaging showed areas of virus infection (NIS and 125I), which overlapped well with areas of tumor cell death (99mTc-duramycin imaging) in susceptible tumors. Multiple infectious foci arose early in MPC-11 tumors, which rapidly expanded throughout the tumor parenchyma over time. There was a dose-dependent increase in numbers of infectious centers and 99mTc-duramycin-positive areas with viral dose. In contrast, NIS or duramycin signals were minimal in VSV-resistant CT26 tumors. Combinatorial use of NIS and 99mTc-duramycin SPECT imaging for simultaneous monitoring of oncolytic virotherapy (OV) spread and the presence or absence of treatment-associated cell death could be useful to guide development of combination treatment strategies to enhance therapeutic outcome.
Collapse
Affiliation(s)
- Lianwen Zhang
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Huailei Jiang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ming Zhao
- Northwestern University, Chicago, IL, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Eckert EC, Nace RA, Tonne JM, Evgin L, Vile RG, Russell SJ. Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. MOLECULAR THERAPY-ONCOLYTICS 2019; 16:63-74. [PMID: 31930167 PMCID: PMC6951834 DOI: 10.1016/j.omto.2019.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/07/2019] [Indexed: 02/08/2023]
Abstract
Genetically modified vesicular stomatitis virus (VSV) is an attractive agent for cancer treatment due to rapid intratumoral replication and observed clinical responses. Although VSV selectively kills malignant cells and can boost antitumor immunity, limited induction of intratumoral immune infiltration remains a barrier to efficacy in some cancer models. Here we engineered the oncolytic VSV platform to encode the T cell chemokine CXCL9, which is known to mediate the recruitment of activated CD8+ cytotoxic T cells and CD4+ T helper cells, and demonstrates conserved protein function between mice and humans. Chemotactic activity of the virally encoded chemokine was confirmed in vitro. Intratumoral concentration of CXCL9 was shown to increase after VSV therapy in three different cancer models, but to a much greater degree after VSV-CXCL9 therapy as compared with VSV control viruses. Despite a steep chemokine gradient from the tumor to the bloodstream, tumor trafficking of adoptively transferred and endogenous T cells was not measurably increased following VSV-CXCL9 therapy. Our results indicate that oncolytic VSV infection promotes release of CXCL9 in the tumor microenvironment, but further boosting of the functional chemokine gradient through virus engineering has little incremental impact on intratumoral immune cell infiltration in mouse and human tumor models.
Collapse
Affiliation(s)
- Elizabeth C Eckert
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.,Clinical and Translational Science Track, Mayo Graduate School of Biomedical Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Rebecca A Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jason M Tonne
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Ogino M, Fedorov Y, Adams DJ, Okada K, Ito N, Sugiyama M, Ogino T. Vesiculopolins, a New Class of Anti-Vesiculoviral Compounds, Inhibit Transcription Initiation of Vesiculoviruses. Viruses 2019; 11:v11090856. [PMID: 31540123 PMCID: PMC6783830 DOI: 10.3390/v11090856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Vesicular stomatitis virus (VSV) represents a promising platform for developing oncolytic viruses, as well as vaccines against significant human pathogens. To safely control VSV infection in humans, small-molecule drugs that selectively inhibit VSV infection may be needed. Here, using a cell-based high-throughput screening assay followed by an in vitro transcription assay, compounds with a 7-hydroxy-6-methyl-3,4-dihydroquinolin-2(1H)-one structure and an aromatic group at position 4 (named vesiculopolins, VPIs) were identified as VSV RNA polymerase inhibitors. The most effective compound, VPI A, inhibited VSV-induced cytopathic effects and in vitro mRNA synthesis with micromolar to submicromolar 50% inhibitory concentrations. VPI A was found to inhibit terminal de novo initiation rather than elongation for leader RNA synthesis, but not mRNA capping, with the VSV L protein, suggesting that VPI A is targeted to the polymerase domain in the L protein. VPI A inhibited transcription of Chandipura virus, but not of human parainfluenza virus 3, suggesting that it specifically acts on vesiculoviral L proteins. These results suggest that VPIs may serve not only as molecular probes to elucidate the mechanisms of transcription of vesiculoviruses, but also as lead compounds to develop antiviral drugs against vesiculoviruses and other related rhabdoviruses.
Collapse
Affiliation(s)
- Minako Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Yuriy Fedorov
- Small Molecule Drug Development Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Kazuma Okada
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
- Gifu Center for Highly Advanced Integration of Nanosciences and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| | - Tomoaki Ogino
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
28
|
Kemler I, Neuhauser C, Dingli D. Oncolytic virotherapy - in vivo veritas. Oncotarget 2018; 9:36254-36255. [PMID: 30555627 PMCID: PMC6284744 DOI: 10.18632/oncotarget.26364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/25/2022] Open
Affiliation(s)
- Iris Kemler
- David Dingli: Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Claudia Neuhauser
- David Dingli: Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Dingli
- David Dingli: Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA; Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
30
|
Russell L, Peng KW. The emerging role of oncolytic virus therapy against cancer. Chin Clin Oncol 2018; 7:16. [PMID: 29764161 DOI: 10.21037/cco.2018.04.04] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 12/28/2022]
Abstract
This review discusses current clinical advancements in oncolytic viral therapy, with a focus on the viral platforms approved for clinical use and highlights the benefits each platform provides. Three oncolytic viruses (OVs), an echovirus, an adenovirus, and a herpes simplex-1 virus, have passed governmental regulatory approval in Latvia, China, and the USA and EU. Numerous other recombinant viruses from diverse families are in clinical testing in cancer patients and we highlight the design features of selected examples, including adenovirus, herpes simplex virus, measles virus, retrovirus, reovirus, vaccinia virus, vesicular stomatitis virus. Lastly, we provide thoughts on the path forward for this rapidly expanding field especially in combination with immune modulating drugs.
Collapse
|
31
|
For the Success of Oncolytic Viruses: Single Cycle Cures or Repeat Treatments? (One Cycle Should Be Enough). Mol Ther 2018; 26:1876-1880. [PMID: 30029891 DOI: 10.1016/j.ymthe.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
32
|
Combination of IAP Antagonists and TNF-α-Armed Oncolytic Viruses Induce Tumor Vascular Shutdown and Tumor Regression. MOLECULAR THERAPY-ONCOLYTICS 2018; 10:28-39. [PMID: 30101187 PMCID: PMC6076221 DOI: 10.1016/j.omto.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/16/2018] [Indexed: 01/06/2023]
Abstract
Smac mimetic compounds (SMCs) are anti-cancer drugs that antagonize Inhibitor of Apoptosis proteins, which consequently sensitize cancer cells to death in the presence of proinflammatory ligands such as tumor necrosis factor alpha (TNF-α). SMCs synergize with the attenuated oncolytic vesicular stomatitis virus (VSVΔ51) by eliciting an innate immune response, which is dependent on the endogenous production of TNF-α and type I interferon. To improve on this SMC-mediated synergistic response, we generated TNF-α-armed VSVΔ51 to produce elevated levels of this death ligand. Due to ectopic expression of TNF-α from infected cells, a lower viral dose of TNF-α-armed VSVΔ51 combined with treatment of the SMC LCL161 was sufficient to improve the survival rate compared to LCL161 and unarmed VSVΔ51 co-therapy. This improved response is attributed to a bystander effect whereby the spread of TNF-α from infected cells leads to the death of uninfected cells in the presence of LCL161. In addition, the treatments induced vascular collapse in solid tumors with a concomitant increase of tumor cell death, revealing another mechanism by which cytokine-armed VSVΔ51 in combination with LCL161 can kill tumor cells. Our studies demonstrate the potential for cytokine-engineered oncolytic virus and SMCs as a new combination immunotherapy for cancer treatment.
Collapse
|
33
|
Calton CM, Kelly KR, Anwer F, Carew JS, Nawrocki ST. Oncolytic Viruses for Multiple Myeloma Therapy. Cancers (Basel) 2018; 10:E198. [PMID: 29903988 PMCID: PMC6025383 DOI: 10.3390/cancers10060198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 12/17/2022] Open
Abstract
Although recent treatment advances have improved outcomes for patients with multiple myeloma (MM), the disease frequently becomes refractory to current therapies. MM thus remains incurable for most patients and new therapies are urgently needed. Oncolytic viruses are a promising new class of therapeutics that provide tumor-targeted therapy by specifically infecting and replicating within cancerous cells. Oncolytic therapy yields results from both direct killing of malignant cells and induction of an anti-tumor immune response. In this review, we will describe oncolytic viruses that are being tested for MM therapy with a focus on those agents that have advanced into clinical trials.
Collapse
Affiliation(s)
- Christine M Calton
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Kevin R Kelly
- Jane Anne Nohl Division of Hematology and Center for the Study of Blood Diseases, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA.
| | - Faiz Anwer
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Jennifer S Carew
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| | - Steffan T Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine and The University of Arizona Cancer Center, Tucson, AZ 85724, USA.
| |
Collapse
|
34
|
Recombinant viruses with other anti-cancer therapeutics: a step towards advancement of oncolytic virotherapy. Cancer Gene Ther 2018; 25:216-226. [PMID: 29735993 DOI: 10.1038/s41417-018-0018-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 01/15/2023]
Abstract
Cancer as a disease is a multifaceted foe which sometimes succumbs to the prescribed treatment and sometimes develops resistance against various therapies. Conventional cancer therapies suffer from many limitations, the least of which is their specificity and systemic side effects. In a majority of cases, acquired mutations render the cancer cells resistant to therapy and lower the prognostic outcome. In the constant effort to devise a therapeutic moiety which can comprehensively eliminate cancer cells, oncolytic viruses provide an attractive avenue as they selectively infect and lyse cancer cells sparing normal cells from their effects. Viruses can be engineered for their host specificity and toxicity as a promising anti-cancer tool. As it is essential to devise a strategy to address all targets involved in cancer development and progression, the idea of using oncolytic viruses with enhanced anti-cancer activity through arming with foreign genes gained merit and is showing promising advent in clinical studies. The use of oncolytic viruses as an agent of combination therapy for cancer treatment also gained much attention in the recent past. This review focuses on the emerging role of oncolytic viruses as vital components of anti-cancer regimen presenting a new dimension in an ever-changing cancer therapy scenario.
Collapse
|
35
|
Russell SJ, Barber GN. Oncolytic Viruses as Antigen-Agnostic Cancer Vaccines. Cancer Cell 2018; 33:599-605. [PMID: 29634947 PMCID: PMC5918693 DOI: 10.1016/j.ccell.2018.03.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
Selective destruction of neoplastic tissues by oncolytic viruses (OVs) leads to antigen-agnostic boosting of neoantigen-specific cytotoxic T lymphocyte (CTL) responses, making OVs ideal companions for checkpoint blockade therapy. Here we discuss the mechanisms whereby OVs modulate both adjuvanticity and antigenicity of tumor cells. Suppression of antitumor immunity after OV therapy has not been observed, possibly because viral antigen expression diminishes as the antiviral response matures, thereby progressively honing the CTL response to tumor neoantigens. By combining direct in situ tumor destruction with the ability to boost antitumor immunity, OVs also have the potential to be powerful standalone cancer therapies.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
Abstract
Multiple myeloma (MM) is a clonal malignancy of plasma cells that is newly diagnosed in ~30,000 patients in the US each year. While recently developed therapies have improved the prognosis for MM patients, relapse rates remain unacceptably high. To overcome this challenge, researchers have begun to investigate the therapeutic potential of oncolytic viruses as a novel treatment option for MM. Preclinical work with these viruses has demonstrated that their infection can be highly specific for MM cells and results in impressive therapeutic efficacy in a variety of preclinical models. This has led to the recent initiation of several human trials. This review summarizes the current state of oncolytic therapy as a therapeutic option for MM and highlights a variety of areas that need to be addressed as the field moves forward.
Collapse
Affiliation(s)
- Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
37
|
Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98:2895-2911. [PMID: 29143726 DOI: 10.1099/jgv.0.000980] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oncolytic virus (OV) therapy is an anti-cancer approach that uses viruses that preferentially infect, replicate in and kill cancer cells. Vesicular stomatitis virus (VSV, a rhabdovirus) is an OV that is currently being tested in the USA in several phase I clinical trials against different malignancies. Several factors make VSV a promising OV: lack of pre-existing human immunity against VSV, a small and easy to manipulate genome, cytoplasmic replication without risk of host cell transformation, independence of cell cycle and rapid growth to high titres in a broad range of cell lines facilitating large-scale virus production. While significant advances have been made in VSV-based OV therapy, room for improvement remains. Here we review recent studies (published in the last 5 years) that address 'old' and 'new' challenges of VSV-based OV therapy. These studies focused on improving VSV safety, oncoselectivity and oncotoxicity; breaking resistance of some cancers to VSV; preventing premature clearance of VSV; and stimulating tumour-specific immunity. Many of these approaches were based on combining VSV with other therapeutics. This review also discusses another rhabdovirus closely related to VSV, Maraba virus, which is currently being tested in Canada in phase I/II clinical trials.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
38
|
Naik S, Galyon GD, Jenks NJ, Steele MB, Miller AC, Allstadt SD, Suksanpaisan L, Peng KW, Federspiel MJ, Russell SJ, LeBlanc AK. Comparative Oncology Evaluation of Intravenous Recombinant Oncolytic Vesicular Stomatitis Virus Therapy in Spontaneous Canine Cancer. Mol Cancer Ther 2017; 17:316-326. [PMID: 29158470 DOI: 10.1158/1535-7163.mct-17-0432] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/13/2017] [Accepted: 11/03/2017] [Indexed: 12/22/2022]
Abstract
Clinical translation of intravenous therapies to treat disseminated or metastatic cancer is imperative. Comparative oncology, the evaluation of novel cancer therapies in animals with spontaneous cancer, can be utilized to inform and accelerate clinical translation. Preclinical murine studies demonstrate that single-shot systemic therapy with a vesicular stomatitis virus (VSV)-IFNβ-NIS, a novel recombinant oncolytic VSV, can induce curative remission in tumor-bearing mice. Clinical translation of VSV-IFNβ-NIS therapy is dependent on comprehensive assessment of clinical toxicities, virus shedding, pharmacokinetics, and efficacy in clinically relevant models. Dogs spontaneously develop cancer with comparable etiology, clinical progression, and response to therapy as human malignancies. A comparative oncology study was carried out to investigate feasibility and tolerability of intravenous oncolytic VSV-IFNβ-NIS therapy in pet dogs with spontaneous cancer. Nine dogs with various malignancies were treated with a single intravenous dose of VSV-IFNβ-NIS. Two dogs with high-grade peripheral T-cell lymphoma had rapid but transient remission of disseminated disease and transient hepatotoxicity that resolved spontaneously. There was no shedding of infectious virus. Correlative pharmacokinetic studies revealed elevated levels of VSV RNA in blood in dogs with measurable disease remission. This is the first evaluation of intravenous oncolytic virus therapy for spontaneous canine cancer, demonstrating that VSV-IFNβ-NIS is well-tolerated and safe in dogs with advanced or metastatic disease. This approach has informed clinical translation, including dose and target indication selection, leading to a clinical investigation of intravenous VSV-IFNβ-NIS therapy, and provided preliminary evidence of clinical efficacy and potential biomarkers that correlate with therapeutic response. Mol Cancer Ther; 17(1); 316-26. ©2017 AACR.
Collapse
Affiliation(s)
- Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.,Vyriad, Inc., Rochester, Minnesota
| | - Gina D Galyon
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Nathan J Jenks
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael B Steele
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Amber C Miller
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sara D Allstadt
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | | | - Kah Whye Peng
- Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Mark J Federspiel
- Viral Vector Production Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota.,Vyriad, Inc., Rochester, Minnesota
| | - Amy K LeBlanc
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
39
|
Velazquez-Salinas L, Naik S, Pauszek SJ, Peng KW, Russell SJ, Rodriguez LL. Oncolytic Recombinant Vesicular Stomatitis Virus (VSV) Is Nonpathogenic and Nontransmissible in Pigs, a Natural Host of VSV. HUM GENE THER CL DEV 2017; 28:108-115. [PMID: 28514874 DOI: 10.1089/humc.2017.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a negative-stranded RNA virus that naturally causes disease in livestock including horses, cattle and pigs. The two main identified VSV serotypes are New Jersey (VSNJV) and Indiana (VSIV). VSV is a rapidly replicating, potently immunogenic virus that has been engineered to develop novel oncolytic therapies for cancer treatment. Swine are a natural host for VSV and provide a relevant and well-established model, amenable to biological sampling to monitor virus shedding and neutralizing antibodies. Previous reports have documented the pathogenicity and transmissibility of wild-type isolates and recombinant strains of VSIV and VSNJV using the swine model. Oncolytic VSV engineered to express interferon-beta (IFNβ) and the sodium iodide symporter (NIS), VSV-IFNβ-NIS, has been shown to be a potent new therapeutic agent inducing rapid and durable tumor remission following systemic therapy in preclinical mouse models. VSV-IFNβ-NIS is currently undergoing clinical evaluation for the treatment of advanced cancer in human and canine patients. To support clinical studies and comprehensively assess the risk of transmission to susceptible species, we tested the pathogenicity and transmissibility of oncolytic VSV-IFNβ-NIS using the swine model. Following previously established protocols to evaluate VSV pathogenicity, intradermal inoculation with 107 TCID50 VSV-IFNβ-NIS caused no observable symptoms in pigs. There was no detectable shedding of infectious virus in VSV-IFNβ-NIS in biological excreta of inoculated pigs or exposed naive pigs kept in direct contact throughout the experiment. VSV-IFNβ-NIS inoculated pigs became seropositive for VSV antibodies, while contact pigs displayed no symptoms of VSV infection, and importantly did not seroconvert. These data indicate that oncolytic VSV is both nonpathogenic and not transmissible in pigs, a natural host. These findings support further clinical development of oncolytic VSV-IFNβ-NIS as a safe therapeutic for human and canine cancer.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- 1 United States Department of Agriculture, Agricultural Research Services , Foreign Animal Disease Research Unit, Plum Island, New York
| | - Shruthi Naik
- 2 Vyriad, Inc., Rochester Minnesota.,3 Department of Molecular Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Steven J Pauszek
- 1 United States Department of Agriculture, Agricultural Research Services , Foreign Animal Disease Research Unit, Plum Island, New York
| | - Kah-Whye Peng
- 3 Department of Molecular Medicine, Mayo Clinic College of Medicine , Rochester, Minnesota.,4 Toxicology and Pharmacology Laboratory, Mayo Clinic College of Medicine , Rochester, Minnesota
| | | | - Luis L Rodriguez
- 1 United States Department of Agriculture, Agricultural Research Services , Foreign Animal Disease Research Unit, Plum Island, New York
| |
Collapse
|
40
|
Zhang L, Steele MB, Jenks N, Grell J, Suksanpaisan L, Naik S, Federspiel MJ, Lacy MQ, Russell SJ, Peng KW. Safety Studies in Tumor and Non-Tumor-Bearing Mice in Support of Clinical Trials Using Oncolytic VSV-IFNβ-NIS. HUM GENE THER CL DEV 2017; 27:111-22. [PMID: 27532609 DOI: 10.1089/humc.2016.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncolytic VSV-IFNβ-NIS is selectively destructive to tumors. Here, we present the IND enabling preclinical rodent studies in support of clinical testing of vesicular stomatitis virus (VSV) as a systemic therapy. Efficacy studies showed dose-dependent tumor regression in C57BL/KaLwRij mice bearing syngeneic 5TGM1 plasmacytomas after systemic VSV administration. In contrast, the virus was effective at all doses tested against human KAS6/1 xenografts in SCID mice. Intravenous administration of VSV-mIFNβ-NIS is well tolerated in C57BL/6 mice up to 5 × 10(10) TCID50 (50% tissue culture infective dose)/kg with no neurovirulence, no cytokine storm, and no abnormalities in tissues. Dose-limiting toxicities included elevated transaminases, thrombocytopenia, and lymphopenia. Inactivated viral particles did not cause hepatic toxicity. Intravenously administered VSV was preferentially sequestered by macrophages in the spleen and liver. Quantitative RT-PCR analysis for total viral RNA on days 2, 7, 21, and 58 showed highest VSV RNA in day 2 samples; highest in spleen, liver, lung, lymph node, kidney, gonad, and bone marrow. No infectious virus was recovered from tissues at any time point. The no observable adverse event level and maximum tolerated dose of VSV-mIFNβ-NIS in C57BL/6 mice are 10(10) TCID50/kg and 5 × 10(10) TCID50/kg, respectively. Clinical translation of VSV-IFNβ-NIS is underway in companion dogs with cancer and in human patients with relapsed hematological malignancies and endometrial cancer.
Collapse
Affiliation(s)
- Lianwen Zhang
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Michael B Steele
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,2 Toxicology and Pharmacology Laboratory, Mayo Clinic , Rochester, Minnesota
| | - Nathan Jenks
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,2 Toxicology and Pharmacology Laboratory, Mayo Clinic , Rochester, Minnesota
| | - Jacquelyn Grell
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,2 Toxicology and Pharmacology Laboratory, Mayo Clinic , Rochester, Minnesota
| | | | - Shruthi Naik
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota
| | - Mark J Federspiel
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,4 Viral Vector Production Laboratory, Mayo Clinic , Rochester, Minnesota
| | - Martha Q Lacy
- 5 Division of Hematology, Mayo Clinic , Rochester, Minnesota
| | - Stephen J Russell
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,5 Division of Hematology, Mayo Clinic , Rochester, Minnesota
| | - Kah-Whye Peng
- 1 Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota.,2 Toxicology and Pharmacology Laboratory, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
41
|
Russell SJ, Peng KW. Oncolytic Virotherapy: A Contest between Apples and Oranges. Mol Ther 2017; 25:1107-1116. [PMID: 28392162 DOI: 10.1016/j.ymthe.2017.03.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
Viruses can be engineered or adapted for selective propagation in neoplastic tissues and further modified for therapeutic transgene expression to enhance their antitumor potency and druggability. Oncolytic viruses (OVs) can be administered locally or intravenously and spread to a variable degree at sites of tumor growth. OV-infected tumor cells die in situ, releasing viral and tumor antigens that are phagocytosed by macrophages, transported to regional lymph nodes, and presented to antigen-reactive T cells, which proliferate before dispersing to kill uninfected tumor cells at distant sites. Several OVs are showing clinical promise, and one of them, talimogene laherparepvec (T-VEC), was recently granted marketing approval for intratumoral therapy of nonresectable metastatic melanoma. T-VEC also appears to substantially enhance clinical responsiveness to checkpoint inhibitor antibody therapy. Here, we examine the T-VEC paradigm and review some of the approaches currently being pursued to develop the next generation of OVs for both local and systemic administration, as well as for use in combination with other immunomodulatory agents.
Collapse
Affiliation(s)
- Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Designing and building oncolytic viruses. Future Virol 2017; 12:193-213. [PMID: 29387140 PMCID: PMC5779534 DOI: 10.2217/fvl-2016-0129] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Oncolytic viruses (OVs) are engineered and/or evolved to propagate selectively in cancerous tissues. They have a dual mechanism of action; direct killing of infected cancer cells cross-primes anticancer immunity to boost the killing of uninfected cancer cells. The goal of the field is to develop OVs that are easily manufactured, efficiently delivered to disseminated sites of cancer growth, undergo rapid intratumoral spread, selectively kill tumor cells, cause no collateral damage and pose no risk of transmission in the population. Here we discuss the many virus engineering strategies that are being pursued to optimize delivery, intratumoral spread and safety of OVs derived from different virus families. With continued progress, OVs have the potential to transform the paradigm of cancer care.
Collapse
Affiliation(s)
- Justin Maroun
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Miguel Muñoz-Alía
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Autumn Schulze
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Stephen Russell
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Robust Oncolytic Virotherapy Induces Tumor Lysis Syndrome and Associated Toxicities in the MPC-11 Plasmacytoma Model. Mol Ther 2016; 24:2109-2117. [PMID: 27669655 DOI: 10.1038/mt.2016.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022] Open
Abstract
Tumor-selective oncolytic vesicular stomatitis viruses (VSVs) are being evaluated in clinical trials. Here, we report that the MPC-11 murine plasmacytoma model is so extraordinarily susceptible to oncolytic VSVs that a low dose of virus leads to extensive intratumoral viral replication, sustained viremia, intravascular coagulation, and a rapidly fatal tumor lysis syndrome (TLS). Rapid softening, shrinkage and hemorrhagic necrosis of flank tumors was noted within 1-2 days after virus administration, leading to hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, increase in plasma cell free DNA, lymphopenia, consumptive coagulopathy, increase in fibrinogen degradation products, decreased liver function tests, dehydration, weight loss, and euthanasia or death after 5-8 days. Secondary viremia was observed but viral replication in normal host tissues was not detected. Toxicity could be mitigated by using VSVs with slowed replication kinetics, and was less marked in animals with smaller flank tumors. The MPC-11 tumor represents an interesting model to further study the complex interplay of robust intratumoral viral replication, tumor lysis, and associated toxicities in cases where tumors are highly responsive to oncolytic virotherapy.
Collapse
|
44
|
Breitbach CJ, Lichty BD, Bell JC. Oncolytic Viruses: Therapeutics With an Identity Crisis. EBioMedicine 2016; 9:31-36. [PMID: 27407036 PMCID: PMC4972563 DOI: 10.1016/j.ebiom.2016.06.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 12/28/2022] Open
Abstract
Oncolytic viruses (OV) are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a "one-size fits all" approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.
Collapse
Affiliation(s)
| | - Brian D Lichty
- Turnstone Biologics, 787 Bank Street, Ottawa, Ontario K1S 3V5, Canada; McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University,1280 Main St. Hamilton, ON L8S 4K1, Canada; MG DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
| | - John C Bell
- Turnstone Biologics, 787 Bank Street, Ottawa, Ontario K1S 3V5, Canada; Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Rd, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
45
|
Miller A, Nace R, Ayala-Breton C C, Steele M, Bailey K, Peng KW, Russell SJ. Perfusion Pressure Is a Critical Determinant of the Intratumoral Extravasation of Oncolytic Viruses. Mol Ther 2016; 24:306-317. [PMID: 26647825 PMCID: PMC4817823 DOI: 10.1038/mt.2015.219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
Antitumor efficacy of oncolytic virotherapy is determined by the density and distribution of infectious centers within the tumor, which may be heavily influenced by the permeability and blood flow in tumor microvessels. Here, we investigated whether systemic perfusion pressure, a key driver of tumor blood flow, could influence the intratumoral extravasation of systemically administered oncolytic vesicular stomatitis virus (VSV) in myeloma tumor-bearing mice. Exercise was used to increase mean arterial pressure, and general anesthesia to decrease it. A recombinant VSV expressing the sodium iodide symporter (NIS), which concentrates radiotracers at sites of infection, was administered intravenously to exercising or anesthetized mice, and nuclear NIS reporter gene imaging was used to noninvasively track the density and spatial distribution of intratumoral infectious centers. Anesthesia resulted in decreased intratumoral infection density, while exercise increased the density and uniformity of infectious centers. Perfusion state also had a significant impact on the antitumor efficacy of the VSV therapy. In conclusion, quantitative dynamic radiohistologic imaging was used to noninvasively interrogate delivery of oncolytic virotherapy, highlighting the critical importance of perfusion pressure as a driver of intratumoral delivery and efficacy of oncolytic viruses.
Collapse
Affiliation(s)
- Amber Miller
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Mayo Graduate School, Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Michael Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Kent Bailey
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
46
|
Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 2015; 127:1449-58. [PMID: 26712908 DOI: 10.1182/blood-2015-06-652503] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/01/2015] [Indexed: 01/05/2023] Open
Abstract
Patients with relapsed acute myeloid leukemia (AML) have limited therapeutic options. Vesicular stomatitis virus (VSV)-interferon β (IFNβ)-sodium iodide symporter (NIS) is an oncolytic VSV encoding IFNβ and the NIS reporter. Syngeneic AML C1498 tumors responded to IV therapy with VSV-murine IFNβ (mIFNβ)-NIS in a dose-dependent manner. Imaging for NIS expression showed robust virus infection within the tumors. Virus infection did not increase programmed death ligand 1 (PD-L1) on tumor cells. Combining VSV-mIFNβ-NIS with anti-PD-L1 antibody (Ab) therapy enhanced antitumor activity compared with treatment with virus alone or Ab alone; this enhancement was not significant at higher VSV-mIFNβ-NIS doses. Systemic VSV therapy reduced systemic C1498-green fluorescent protein (GFP) tumor burden in the blood, bone marrow, spleen, and liver of mice with AML. Combination VSV-mIFNβ-NIS and anti-PD-L1 Ab therapy significantly enhanced the survival of these mice with no evidence of toxicity, compared with isotype control, anti-PD-L1, or virus alone. There was an increase in tumor-infiltrating CD4 and CD8 cells. Single-agent VSV-mIFNβ-NIS virotherapy induced both VSV-specific and GFP-specific CD8 T cells as determined by IFN-γ enzyme-linked immunospot, pentamer, and intracellular IFN-γ staining assays. Both of these responses were further enhanced by addition of anti-PD-L1 Ab. Depletion of CD8 or natural killer cells, but not CD4 cells, resulted in loss of antitumor activity in the VSV/anti-PD-L1 group. Clinical samples from chronic myelomonocytic leukemia and acute myelomonocytic leukemia appear to be especially susceptible to VSV. Overall, our studies show that oncolytic virotherapy combined with immune checkpoint blockade is a promising approach to AML therapy.
Collapse
|
47
|
Abstract
Introduction: Oncolytic viruses are experimental cancer therapies being translated to the clinic. They are unique in their ability to amplify within the body, therefore requiring careful monitoring of viral replication and biodistribution. Traditional monitoring strategies fail to recapitulate the dynamic nature of oncolytic virotherapy. Consequently, clinically relevant, noninvasive, high resolution strategies are needed to effectively track virotherapy in real time. Areas covered: The expression of the sodium iodide symporter (NIS) reporter gene is tightly coupled to viral genome replication and mediates radioisotope concentration, allowing noninvasive molecular nuclear imaging of active viral infection with high resolution. This provides insight into replication kinetics, biodistribution, the impact of vector design, administration, and dosing on therapeutic outcomes, and highlights the heterogeneity of spatial distribution and temporal evolution of infection. NIS-mediated imaging in clinical trials confirms the feasibility of this technology to noninvasively and longitudinally observe oncolytic virus infection, replication, and distribution. Expert opinion: NIS-mediated imaging provides detailed functional and molecular information on the evolution of oncolytic virus infection in living animals. The use of NIS reporter gene imaging has rapidly advanced to provide unparalleled insight into the spatial and temporal context of oncolytic infection which will be integral to optimization of oncolytic treatment strategies.
Collapse
Affiliation(s)
- Amber Miller
- a Mayo Clinic, Department of Molecular Medicine , Rochester , MN 55905 , USA.,b Mayo Graduate School, Center for Clinical and Translational Science , Rochester , MN 55905 , USA
| | - Stephen J Russell
- a Mayo Clinic, Department of Molecular Medicine , Rochester , MN 55905 , USA.,c Mayo Clinic, Division of Hematology , Rochester , MN 55905 , USA
| |
Collapse
|
48
|
Dunlap KM, Bartee MY, Bartee E. Myxoma virus attenuates expression of activating transcription factor 4 (ATF4) which has implications for the treatment of proteasome inhibitor-resistant multiple myeloma. Oncolytic Virother 2015; 4:1-11. [PMID: 27512665 PMCID: PMC4918372 DOI: 10.2147/ov.s72372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The recent development of chemotherapeutic proteasome inhibitors, such as bortezomib, has improved the outcomes of patients suffering from the plasma cell malignancy multiple myeloma. Unfortunately, many patients treated with these drugs still suffer relapsing disease due to treatment-induced upregulation of the antiapoptotic protein Mcl1. We have recently demonstrated that an oncolytic poxvirus, known as myxoma, can rapidly eliminate primary myeloma cells by inducing cellular apoptosis. The efficacy of myxoma treatment on proteasome inhibitor–relapsed or –refractory myeloma, however, remains unknown. We now demonstrate that myxoma-based elimination of myeloma is not affected by cellular resistance to proteasome inhibitors. Additionally, myxoma virus infection specifically prevents expression of Mcl1 following induction of the unfolded protein response, by blocking translation of the unfolded protein response activating transcription factor (ATF)4. These results suggest that myxoma-based oncolytic therapy represents an attractive option for myeloma patients whose disease is refractory to chemotherapeutic proteasome inhibitors due to upregulation of Mcl1.
Collapse
Affiliation(s)
- Katherine M Dunlap
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mee Y Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
49
|
Miller A, Suksanpaisan L, Naik S, Nace R, Federspiel M, Peng KW, Russell SJ. Reporter gene imaging identifies intratumoral infection voids as a critical barrier to systemic oncolytic virus efficacy. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14005. [PMID: 27119095 PMCID: PMC4782940 DOI: 10.1038/mto.2014.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023]
Abstract
Systemically administered oncolytic viruses have the ability to cause tumor destruction through the expansion and coalescence of intratumoral infectious centers. Efficacy is therefore dependent upon both the density and intratumoral distribution of virus-infected cells achieved after initial virus infusion, and delivery methods are being developed to enhance these critical parameters. However, the three-dimensional (3D) mapping of intratumoral infectious centers is difficult using conventional immunohistochemical methodology, requiring painstaking 3D reconstruction of numerous sequential stained tumor sections, with no ability to study the temporal evolution of spreading infection in a single animal. We therefore developed a system using very high-resolution noninvasive in vivo micro single-photon emitted computed tomography/computed tomography (microSPECT/CT) imaging to determine the intratumoral distribution of thyroid radiotracers in tumors infected with an oncolytic virus encoding the thyroidal sodium–iodide symporter (NIS). This imaging system was used for longitudinal analysis of the density, distribution, and evolution of intratumoral infectious centers after systemic administration of oncolytic vesicular stomatitis virus in tumor-bearing mice and revealed heterogeneous delivery of virus particles both within and between tumors in animals receiving identical therapy. This study provides compelling validation of high resolution in vivo reporter gene mapping as a convenient method for serial monitoring of intratumoral virus spread that will be necessary to address critical barriers to systemic oncolytic virus efficacy such as intratumoral delivery.
Collapse
Affiliation(s)
- Amber Miller
- Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, USA; Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lukkana Suksanpaisan
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Imanis Life Sciences, Rochester, Minnesota, USA
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Rebecca Nace
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Mark Federspiel
- Department of Molecular Medicine, Mayo Clinic , Rochester, Minnesota, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen J Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
50
|
8th International Conference on Oncolytic Virus Therapeutics 2014 • April 10–13, 2014Lincoln College & Examination Schools • Oxford, United Kingdom. Hum Gene Ther 2014. [DOI: 10.1089/hum.2014.2538.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|