1
|
Nian Q, Li J, Han Z, Liang Q, Liu M, Yang C, Rodrigues-Lima F, Jiang T, Zhao L, Zeng J, Liu C, Shi J. SPARC in hematologic malignancies and novel technique for hematological disease with its abnormal expression. Biomed Pharmacother 2022; 153:113519. [DOI: 10.1016/j.biopha.2022.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
|
2
|
Aly NAR, Rizk S, Aboul Enein A, El Desoukey N, Zawam H, Ahmed M, El Shikh ME, Pitzalis C. The role of lymphoid tissue SPARC in the pathogenesis and response to treatment of multiple myeloma. Front Oncol 2022; 12:1009993. [PMID: 36605435 PMCID: PMC9807864 DOI: 10.3389/fonc.2022.1009993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Background Despite the significant progress in the treatment of multiple myeloma (MM), the disease remains untreatable and its cure is still an unmet clinical need. Neoplastic transformation in MM is initiated in the germinal centers (GCs) of secondary lymphoid tissue (SLT) where B cells experience extensive somatic hypermutation induced by follicular dendritic cells (FDCs) and T-cell signals. Objective We reason that secreted protein acidic and rich in cysteine (SPARC), a common stromal motif expressed by FDCs at the origin (SLTs) and the destination (BM) of MM, plays a role in the pathogenesis of MM, and, here, we sought to investigate this role. Methods There were 107 BM biopsies from 57 MM patients (taken at different time points) together with 13 control specimens assessed for SPARC gene and protein expression and compared with tonsillar tissues. In addition, regulation of myeloma-promoting genes by SPARC-secreting FDCs was assessed in in vitro GC reactions (GCRs). Results SPARC gene expression was confirmed in both human primary (BM) and secondary (tonsils) lymphoid tissues, and the expression was significantly higher in the BM. Sparc was detectable in the BM and tonsillar lysates, co-localized with the FDC markers in both tissues, and stimulation of FDCs in vitro induced significantly higher levels of SPARC expression than unstimulated controls. In addition, SPARC inversely correlated with BM PC infiltration, ISS staging, and ECOG performance of the MM patients, and in vitro addition of FDCs to lymphocytes inhibited the expression of several oncogenes associated with malignant transformation of PCs. Conclusion FDC-SPARC inhibits several myelomagenic gene expression and inversely correlates with PC infiltration and MM progression. Therapeutic induction of SPARC expression through combinations of the current MM drugs, repositioning of non-MM drugs, or novel drug discovery could pave the way to better control MM in clinically severe and drug-resistant patients.
Collapse
Affiliation(s)
- Nesreen Amer Ramadan Aly
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Samia Rizk
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Azza Aboul Enein
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nermeen El Desoukey
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hamdy Zawam
- Clinical Oncology and Nuclear Radiation Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manzoor Ahmed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mohey Eldin El Shikh
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- *Correspondence: Mohey Eldin El Shikh,
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Wang H, He J, Xu C, Chen X, Yang H, Shi S, Liu C, Zeng Y, Wu D, Bai Z, Wang M, Wen Y, Su P, Xia M, Huang B, Ma C, Bian L, Lan Y, Cheng T, Shi L, Liu B, Zhou J. Decoding Human Megakaryocyte Development. Cell Stem Cell 2020; 28:535-549.e8. [PMID: 33340451 DOI: 10.1016/j.stem.2020.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/25/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Despite our growing understanding of embryonic immune development, rare early megakaryocytes (MKs) remain relatively understudied. Here we used single-cell RNA sequencing of human MKs from embryonic yolk sac (YS) and fetal liver (FL) to characterize the transcriptome, cellular heterogeneity, and developmental trajectories of early megakaryopoiesis. In the YS and FL, we found heterogeneous MK subpopulations with distinct developmental routes and patterns of gene expression that could reflect early functional specialization. Intriguingly, we identified a subpopulation of CD42b+CD14+ MKs in vivo that exhibit high expression of genes associated with immune responses and can also be derived from human embryonic stem cells (hESCs) in vitro. Furthermore, we identified THBS1 as an early marker for MK-biased embryonic endothelial cells. Overall, we provide important insights and invaluable resources for dissection of the molecular and cellular programs underlying early human megakaryopoiesis.
Collapse
Affiliation(s)
- Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Changlu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Hua Yang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Shujuan Shi
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300052, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yang Zeng
- Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Baiming Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Chunyu Ma
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Lihong Bian
- Department of Gynecology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin 300020, China.
| |
Collapse
|
4
|
Hovey O, Pasha R, Lehmann Z, Pineault N. Insights Into the Hematopoietic Regulatory Activities of Osteoblast by Secretomics. Proteomics 2020; 20:e2000036. [PMID: 32666692 DOI: 10.1002/pmic.202000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Osteoblasts are a key component of the endosteal hematopoietic stem cell niche and are recognized with strong hematopoietic supporting activity. Similarly, mesenchymal stromal cells (MSC)-derived osteoblast (M-OST) conditioned media (OCM) enhance the growth of hematopoietic progenitors in culture and modulate their engraftment activity. This article aims to characterize the hematopoietic supporting activity of OCM by comparing the secretome of M-OST to that of their precursor. Over 300 proteins are quantified by mass spectroscopy in media conditioned with MSC or M-OST, with 47 being differentially expressed. Growth factors, extracellular matrix proteins, and proteins from the complement pathways are included. The functional contribution of selected proteins on the growth and differentiation of cord blood (CB) progenitors is tested. Secreted protein acidic and rich in cysteine and Galectin 3 (Gal3) have little impact on the growth of CB cells in serum-free medium (SFM). In contrast, inhibition of the complement 3A receptor (C3a-R) present on CB progenitors significantly reduces the growth of CD34+ cells in OCM cultures but not in SFM. These results provide new insights into changes in factors released by MSC undergoing osteoblast differentiation, and on paracrine factors that are partially responsible for the hematopoietic supporting activity of osteoblasts.
Collapse
Affiliation(s)
- Owen Hovey
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Zoe Lehmann
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, 1800 Alta Vista Dr, Ottawa, ON, K1G 4J5, Canada
- Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, Canada
| |
Collapse
|
5
|
Yu R, Zhang J, Zang Y, Zeng L, Zuo W, Bai Y, Liu Y, Sun K, Liu Y. iTRAQ-based quantitative protein expression profiling of biomarkers in childhood B-cell and T-cell acute lymphoblastic leukemia. Cancer Manag Res 2019; 11:7047-7063. [PMID: 31440093 PMCID: PMC6664257 DOI: 10.2147/cmar.s210093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose This study screened serum proteins to identify potential biomarkers for childhood B-cell and T-cell acute lymphoblastic leukemia (ALL). Patients and methods Serum collected from 20 newly diagnosed B-cell ALL, 20 T-cell ALL and 20 healthy children. The peptides from these samples were subjected to iTRAQ. Differentially expressed proteins (DEPs) were further validated by ELISA in 24 B-ALL, 24 T-ALL, and 24 healthy children. Results Bioinformatics analysis revealed several pathways, including atherosclerosis signaling, interleukin signaling and production in macrophages and clathrin-mediated endocytosis signaling, that were closely related to childhood T-cell ALL. Furthermore, four selected proteins, namely LRG1, S100A8, SPARC and sL-selectin, were verified by ELISA. These results were consistent with the results of the proteomics analysis. Conclusion Serum S100A8 may serve as new diagnostic biomarkers in childhood B-cell ALL and T-cell ALL.
Collapse
Affiliation(s)
- Runhong Yu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Jingyu Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Yuzhu Zang
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Li Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| | - Wenli Zuo
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yanhui Liu
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Kai Sun
- Department of Hematology, People's Hospital of Zhengzhou University/Henan Provincial People's Hospital, Zhengzhou 450003, Henan, People's Republic of China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, People's Republic of China
| |
Collapse
|
6
|
A ceRNA approach may unveil unexpected contributors to deletion syndromes, the model of 5q- syndrome. Oncoscience 2015; 2:872-9. [PMID: 26682279 PMCID: PMC4671954 DOI: 10.18632/oncoscience.261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
In genomic deletions, gene haploinsufficiency might directly configure a specific disease phenotype. Nevertheless, in some cases no functional association can be identified between haploinsufficient genes and the deletion-associated phenotype. Transcripts can act as microRNA sponges. The reduction of transcripts from the hemizygous region may increase the availability of specific microRNAs, which in turn may exert in-trans regulation of target genes outside the deleted region, eventually contributing to the phenotype. Here we prospect a competing endogenous RNA (ceRNA) approach for the identification of candidate genes target of epigenetic regulation in deletion syndromes. As a model, we analyzed the 5q- myelodysplastic syndrome. Genes in haploinsufficiency within the common 5q deleted region in CD34+ blasts were identified in silico. Using the miRWalk 2.0 platform, we predicted microRNAs whose availability, and thus activity, could be enhanced by the deletion, and performed a genomewide analysis of the genes outside the 5q deleted region that could be targeted by the predicted miRNAs. The analysis pointed to two genes with altered expression in 5q- transcriptome, which have never been related with 5q- before. The prospected approach allows investigating the global transcriptional effect of genomic deletions, possibly prompting discovery of unsuspected contributors in the deletion-associated phenotype. Moreover, it may help in functionally characterizing previously reported unexpected interactions.
Collapse
|
7
|
Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ, Zu Zhu S, Podder S, Dumur C, Archer K, Grant S, Ginder GD. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 2015; 126:1462-72. [PMID: 26265695 PMCID: PMC4573869 DOI: 10.1182/blood-2015-03-631606] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATPase that alters the phasing of nucleosomes on DNA and has recently been implicated in DNA double-stranded break (DSB) repair. Here, we show that depletion of CHD4 in acute myeloid leukemia (AML) blasts induces a global relaxation of chromatin that renders cells more susceptible to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in clinical therapy: daunorubicin (DNR) and cytarabine (ara-C). Sensitization to DNR and ara-C is mediated in part by activation of the ataxia-telangiectasia mutated pathway, which is preliminarily activated by a Tip60-dependent mechanism in response to chromatin relaxation and further activated by genotoxic agent-induced DSBs. This sensitization preferentially affects AML cells, as CHD4 depletion in normal CD34(+) hematopoietic progenitors does not increase their susceptibility to DNR or ara-C. Unexpectedly, we found that CHD4 is necessary for maintaining the tumor-forming behavior of AML cells, as CHD4 depletion severely restricted the ability of AML cells to form xenografts in mice and colonies in soft agar. Taken together, these results provide evidence for CHD4 as a novel therapeutic target whose inhibition has the potential to enhance the effectiveness of genotoxic agents used in AML therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Autoantigens/genetics
- Cell Line, Tumor
- Cytarabine/therapeutic use
- DNA Breaks, Double-Stranded/drug effects
- Daunorubicin/therapeutic use
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics
- Mice, Inbred NOD
- Mice, SCID
- RNA Interference
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Justin Sperlazza
- Cancer and Molecular Medicine PhD Program, Massey Cancer Center, and
| | | | - Jason Beckta
- Massey Cancer Center, and Department of Biochemistry and Molecular Biology
| | | | | | | | | | | | | | - Kellie Archer
- Massey Cancer Center, and Department of Biostatistics, and
| | - Steven Grant
- Massey Cancer Center, and Department of Internal Medicine, Department of Biochemistry and Molecular Biology
| | - Gordon D Ginder
- Massey Cancer Center, and Department of Internal Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
8
|
Figueiredo LM, Costa EBO, Orellana MD, Picanço-Castro V, Covas DT. OP9 Stromal Cells Proteins Involved in Hematoendothelial Differentiation from Human Embryonic Stem Cells. Cell Reprogram 2015; 17:338-46. [PMID: 26295456 DOI: 10.1089/cell.2015.0014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic cells (HCs) and endothelial cells (ECs) can be produced in vitro from human embryonic stem cells (hESCs), but the differentiation systems used are still inefficient. To overcome this obstacle, it is necessary to understand the differentiation process. One of the methods used to obtain HCs and ECs from hESCs is their co-culture with stromal cells. The soluble factors secreted by these cells and cell-cell contact have a great impact on the differentiation process. Here, we performed comparative proteomic analyses of proteins obtained from the total extract of OP9 stromal cells and secreted by these cells before and during in vitro generation of HCs and ECs (hematoendothelial) from hESCs. We identified a total of 83 secreted and 759 intracellular proteins during differentiation. Twenty-five secreted and 181 proteins from the total extract were more abundant. Some secreted proteins are involved in cell-matrix interactions and HC and/or EC development. Moreover, 13 proteins of the total extract from OP9 cells that were exclusive/or more abundant during differentiation are involved in the Nrf2/Nfe2l2 gene pathway, that is, they are described to have a key role in oxidative stress and in hematopoietic development and maturation. Our proteomic profiles provide valuable insight about the proteins involved in in vitro hematoendothelial cell generation and in the future they might be used to optimize the differentiation process and produce both cell types in vitro.
Collapse
Affiliation(s)
- Lilian M Figueiredo
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Everton B O Costa
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Maristela D Orellana
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Virginia Picanço-Castro
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| | - Dimas T Covas
- 1 Department of Clinical Medicine/Ribeirão Preto Medical School, University of São Paulo , Brazil , 14040-900.,2 Center for Cell-based Therapy and Regional Blood Center , Ribeirão Preto, Brazil , 14051-140
| |
Collapse
|
9
|
Loss of SPARC protects hematopoietic stem cells from chemotherapy toxicity by accelerating their return to quiescence. Blood 2014; 123:4054-63. [PMID: 24833352 DOI: 10.1182/blood-2013-10-533711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Around birth, hematopoietic stem cells (HSCs) expanding in the fetal liver migrate to the developing bone marrow (BM) to mature and expand. To identify the molecular processes associated with HSCs located in the 2 different microenvironments, we compared the expression profiles of HSCs present in the liver and BM of perinatal mice. This revealed the higher expression of a cluster of extracellular matrix-related genes in BM HSCs, with secreted protein acidic and rich in cysteine (SPARC) being one of the most significant ones. This extracellular matrix protein has been described to be involved in tissue development, repair, and remodeling, as well as metastasis formation. Here we demonstrate that SPARC-deficient mice display higher resistance to serial treatment with the chemotherapeutic agent 5-fluorouracil (5-FU). Using straight and reverse chimeras, we further show that this protective effect is not due to a role of SPARC in HSCs, but rather is due to its function in the BM niche. Although the kinetics of recovery of the hematopoietic system is normal, HSCs in a SPARC-deficient niche show an accelerated return to quiescence, protecting them from the lethal effects of serial 5-FU treatment. This may become clinically relevant, as SPARC inhibition and its protective effect on HSCs could be used to optimize chemotherapy schemes.
Collapse
|
10
|
Luo Z, Zhou Y, Luo P, Zhao Q, Xiao N, Yu Y, Yan Q, Lu G, Cheng L. SPARC deficiency affects bone marrow stromal function, resulting in impaired B lymphopoiesis. J Leukoc Biol 2014; 96:73-82. [DOI: 10.1189/jlb.1a0713-415rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
11
|
Alachkar H, Santhanam R, Maharry K, Metzeler KH, Huang X, Kohlschmidt J, Mendler JH, Benito JM, Hickey C, Neviani P, Dorrance AM, Anghelina M, Khalife J, Tarighat SS, Volinia S, Whitman SP, Paschka P, Hoellerbauer P, Wu YZ, Han L, Bolon BN, Blum W, Mrózek K, Carroll AJ, Perrotti D, Andreeff M, Caligiuri MA, Konopleva M, Garzon R, Bloomfield CD, Marcucci G. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 2014; 124:1512-24. [PMID: 24590286 DOI: 10.1172/jci70921] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.
Collapse
|
12
|
SPARC promotes the development of erythroid progenitors. Exp Hematol 2012; 40:828-36. [DOI: 10.1016/j.exphem.2012.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/26/2012] [Accepted: 06/05/2012] [Indexed: 12/20/2022]
|