1
|
Wu YH, Chen HY, Hong WC, Wei CY, Pang JHS. Carboplatin-Induced Thrombocytopenia through JAK2 Downregulation, S-Phase Cell Cycle Arrest and Apoptosis in Megakaryocytes. Int J Mol Sci 2022; 23:ijms23116290. [PMID: 35682967 PMCID: PMC9181531 DOI: 10.3390/ijms23116290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chemotherapy-induced thrombocytopenia (CIT) is a common complication when treating malignancies with cytotoxic agents wherein carboplatin is one of the most typical agents causing CIT. Janus kinase 2 (JAK2) is one of the critical enzymes to megakaryocyte proliferation and differentiation. However, the role of the JAK2 in CIT remains unclear. In this study, we used both carboplatin-induced CIT mice and MEG-01 cell line to examine the expression of JAK2 and signal transducer and activator of transcription 3 (STAT3) pathway. Under CIT, the expression of JAK2 was significantly reduced in vivo and in vitro. More surprisingly, the JAK2/STAT3 pathway remained inactivated even when thrombopoietin (TPO) was administered. On the other hand, carboplatin could cause prominent S phase cell cycle arrest and markedly increased apoptosis in MEG-01 cells. These results showed that the thrombopoiesis might be interfered through the downregulation of JAK2/STAT3 pathway by carboplatin in CIT, and the fact that exogenous TPO supplement cannot reactivate this pathway.
Collapse
Affiliation(s)
- Yi-Hong Wu
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan; (Y.-H.W.); (H.-Y.C.); (W.-C.H.); (C.-Y.W.)
- School of Traditional Chinese Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Hsing-Yu Chen
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan; (Y.-H.W.); (H.-Y.C.); (W.-C.H.); (C.-Y.W.)
- School of Traditional Chinese Medicine, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Guishan, Taoyuan 333, Taiwan
| | - Wei-Chin Hong
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan; (Y.-H.W.); (H.-Y.C.); (W.-C.H.); (C.-Y.W.)
| | - Chen-Ying Wei
- Department of Chinese Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan; (Y.-H.W.); (H.-Y.C.); (W.-C.H.); (C.-Y.W.)
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Guishan, Taoyuan 333, Taiwan
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Guishan, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 3482); Fax: +886-3-2118800 (ext. 3484)
| |
Collapse
|
2
|
Xu Y, Fang H, Chen Y, Tang Y, Sun H, Kong Z, Yang F, Kirschner-Schwabe R, Zhu L, Toker A, Xiao N, Zhou BBS, Li H. The KRAS-G12D mutation induces metabolic vulnerability in B-cell acute lymphoblastic leukemia. iScience 2022; 25:103881. [PMID: 35243242 PMCID: PMC8861657 DOI: 10.1016/j.isci.2022.103881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/02/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
|
3
|
Gallipoli P. JAK of all trades: Ruxolitinib as a new therapeutic option for CML patients. Leuk Res 2018; 75:71-72. [PMID: 30392903 DOI: 10.1016/j.leukres.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Paolo Gallipoli
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Cambridge Institute for Medical Research, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
4
|
Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci U S A 2017; 114:E4030-E4039. [PMID: 28461505 DOI: 10.1073/pnas.1702489114] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.
Collapse
|
5
|
Bottos A, Gotthardt D, Gill JW, Gattelli A, Frei A, Tzankov A, Sexl V, Wodnar-Filipowicz A, Hynes NE. Decreased NK-cell tumour immunosurveillance consequent to JAK inhibition enhances metastasis in breast cancer models. Nat Commun 2016; 7:12258. [PMID: 27406745 PMCID: PMC4947169 DOI: 10.1038/ncomms12258] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
The JAK/STAT pathway is an attractive target for breast cancer therapy due to its frequent activation, and clinical trials evaluating JAK inhibitors (JAKi) in advanced breast cancer are ongoing. Using patient biopsies and preclinical models of breast cancer, we demonstrate that the JAK/STAT pathway is active in metastasis. Unexpectedly, blocking the pathway with JAKi enhances the metastatic burden in experimental and orthotopic models of breast cancer metastasis. We demonstrate that this prometastatic effect is due to the immunosuppressive activity of JAKi with ensuing impairment of NK-cell-mediated anti-tumour immunity. Furthermore, we show that immunostimulation with IL-15 overcomes the enhancing effect of JAKi on metastasis formation. Our findings highlight the importance of evaluating the effect of targeted therapy on the tumour environment. The impact of JAKi on NK cells and the potential value of immunostimulators to overcome the weakened tumour immunosurveillance, are worthwhile considering in the clinical setting of breast cancer. JAK inhibitors are currently undergoing evaluation in clinical trials for advanced breast cancer. Here, the authors show that JAK pathway inhibition increases metastasis in mouse models of breast cancer by impairing NK anti-tumour activity and that these side effects can be overcome by addition of IL-15.
Collapse
Affiliation(s)
- Alessia Bottos
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Dagmar Gotthardt
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Jason W Gill
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Albana Gattelli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Anna Frei
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, CH-4002 Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department for Biomedical Sciences, University of Veterinary Medicine, 1210 Vienna, Austria
| | | | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, CH-4002 Basel, Switzerland
| |
Collapse
|
6
|
The Philadelphia chromosome in leukemogenesis. CHINESE JOURNAL OF CANCER 2016; 35:48. [PMID: 27233483 PMCID: PMC4896164 DOI: 10.1186/s40880-016-0108-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
The truncated chromosome 22 that results from the reciprocal translocation t(9;22)(q34;q11) is known as the Philadelphia chromosome (Ph) and is a hallmark of chronic myeloid leukemia (CML). In leukemia cells, Ph not only impairs the physiological signaling pathways but also disrupts genomic stability. This aberrant fusion gene encodes the breakpoint cluster region-proto-oncogene tyrosine-protein kinase (BCR-ABL1) oncogenic protein with persistently enhanced tyrosine kinase activity. The kinase activity is responsible for maintaining proliferation, inhibiting differentiation, and conferring resistance to cell death. During the progression of CML from the chronic phase to the accelerated phase and then to the blast phase, the expression patterns of different BCR-ABL1 transcripts vary. Each BCR-ABL1 transcript is present in a distinct leukemia phenotype, which predicts both response to therapy and clinical outcome. Besides CML, the Ph is found in acute lymphoblastic leukemia, acute myeloid leukemia, and mixed-phenotype acute leukemia. Here, we provide an overview of the clinical presentation and cellular biology of different phenotypes of Ph-positive leukemia and highlight key findings regarding leukemogenesis.
Collapse
|
7
|
Tortorella SM, Hung A, Karagiannis TC. The implication of cancer progenitor cells and the role of epigenetics in the development of novel therapeutic strategies for chronic myeloid leukemia. Antioxid Redox Signal 2015; 22:1425-62. [PMID: 25366930 DOI: 10.1089/ars.2014.6096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Chronic myeloid leukemia (CML) involves the malignant transformation of hematopoietic stem cells, defined largely by the Philadelphia chromosome and expression of the breakpoint cluster region-Abelson (BCR-ABL) oncoprotein. Pharmacological tyrosine kinase inhibitors (TKIs), including imatinib mesylate, have overcome limitations in conventional treatment for the improved clinical management of CML. RECENT ADVANCES Accumulated evidence has led to the identification of a subpopulation of quiescent leukemia progenitor cells with stem-like self renewal properties that may initiate leukemogenesis, which are also shown to be present in residual disease due to their insensitivity to tyrosine kinase inhibition. CRITICAL ISSUES The characterization of quiescent leukemia progenitor cells as a unique cell population in CML pathogenesis has become critical with the complete elucidation of mechanisms involved in their survival independent of BCR-ABL that is important in the development of novel anticancer strategies. Understanding of these functional pathways in CML progenitor cells will allow for their selective therapeutic targeting. In addition, disease pathogenesis and drug responsiveness is also thought to be modulated by epigenetic regulatory mechanisms such as DNA methylation, histone acetylation, and microRNA expression, with a capacity to control CML-associated gene transcription. FUTURE DIRECTIONS A number of compounds in combination with TKIs are under preclinical and clinical investigation to assess their synergistic potential in targeting leukemic progenitor cells and/or the epigenome in CML. Despite the collective promise, further research is required in order to refine understanding, and, ultimately, advance antileukemic therapeutic strategies.
Collapse
Affiliation(s)
- Stephanie M Tortorella
- 1 Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct , Melbourne, Australia
| | | | | |
Collapse
|
8
|
Hantschel O. Unexpected off-targets and paradoxical pathway activation by kinase inhibitors. ACS Chem Biol 2015; 10:234-45. [PMID: 25531586 DOI: 10.1021/cb500886n] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein kinase inhibitors are an increasingly important class of targeted anticancer therapeutics. More than two dozen new drugs of this class have entered routine clinical use over the past decade. This review article focuses on how the development of methods to study the kinome- and proteome-wide selectivity of kinase inhibitors, in conjunction with advances in the structural understanding of kinase inhibitor binding modes, has resulted in a better appreciation of the mechanism of action of clinical kinase inhibitors. I provide examples of how this has led to the discovery of unexpected off-target effects, intriguing cases in which kinase inhibitors may cause pathway activation, and new mechanisms responsible for resistance to kinase inhibitors. Finally, I illustrate that although certain kinase targets may be pharmacologically easily tractable, a better understanding of the regulation and biology of the targets is required to generate drugs that are efficacious in cancer patients.
Collapse
Affiliation(s)
- Oliver Hantschel
- Swiss Institute
for Experimental
Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Berger A, Sexl V, Valent P, Moriggl R. Inhibition of STAT5: a therapeutic option in BCR-ABL1-driven leukemia. Oncotarget 2014; 5:9564-76. [PMID: 25333255 PMCID: PMC4259420 DOI: 10.18632/oncotarget.2465] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/06/2014] [Indexed: 01/10/2023] Open
Abstract
The two transcription factors STAT5A and STAT5B are central signaling molecules in leukemias driven by Abelson fusion tyrosine kinases and they fulfill all criteria of drug targets. STAT5A and STAT5B display unique nuclear shuttling mechanisms and they have a key role in resistance of leukemic cells against treatment with tyrosine kinase inhibitors (TKI). Moreover, STAT5A and STAT5B promote survival of leukemic stem cells. We here discuss the possibility of targeting up-stream kinases with TKI, direct STAT5 inhibition via SH2 domain obstruction and blocking nuclear translocation of STAT5. All discussed options will result in a stop of STAT5 transport to the nucleus to block STAT5-mediated transcriptional activity. In summary, recently described shuttling functions of STAT5 are discussed as potentially druggable pathways in leukemias.
Collapse
Affiliation(s)
- Angelika Berger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Peter Valent
- Department of Medicine I, Division of Hematology and Ludwig-Boltzmann Cluster Oncology, Medical University of Vienna, Austria
| | - Richard Moriggl
- Ludwig-Boltzmann Institute for Cancer Research, University of Veterinary Medicine, Medical University Vienna, Austria
| |
Collapse
|
10
|
JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 2014; 124:1492-501. [PMID: 24957147 DOI: 10.1182/blood-2013-12-545640] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic myeloid leukemia (CML) stem cell survival is not dependent on BCR-ABL protein kinase and treatment with ABL tyrosine kinase inhibitors cures only a minority of CML patients, thus highlighting the need for novel therapeutic targets. The Janus kinase (JAK)2/signal transducer and activator of transcription (STAT)5 pathway has recently been explored for providing putative survival signals to CML stem/progenitor cells (SPCs) with contradictory results. We investigated the role of this pathway using the JAK2 inhibitor, ruxolitinib (RUX). We demonstrated that the combination of RUX, at clinically achievable concentrations, with the specific and potent tyrosine kinase inhibitor nilotinib, reduced the activity of the JAK2/STAT5 pathway in vitro relative to either single agent alone. These effects correlated with increased apoptosis of CML SPCs in vitro and a reduction in primitive quiescent CML stem cells, including NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice repopulating cells, induced by combination treatment. A degree of toxicity toward normal SPCs was observed with the combination treatment, although this related to mature B-cell engraftment in NOD.Cg-Prkdc(scid) IL2rg(tm1Wjl) /SzJ mice with minimal effects on primitive CD34(+) cells. These results support the JAK2/STAT5 pathway as a relevant therapeutic target in CML SPCs and endorse the current use of nilotinib in combination with RUX in clinical trials to eradicate persistent disease in CML patients.
Collapse
|