1
|
Carew JS, Espitia CM, Sureshkumar S, Carrera Espinoza MJ, Gamble ME, Wang W, Lee BR, Nawrocki ST. REDD1 is a determinant of the sensitivity of renal cell carcinoma cells to autophagy inhibition that can be therapeutically exploited by targeting PIM activity. Cancer Lett 2025; 613:217496. [PMID: 39892703 PMCID: PMC11832319 DOI: 10.1016/j.canlet.2025.217496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Repurposing FDA approved drugs with off-target autophagy inhibition such as chloroquine/hydroxychloroquine (CQ, HCQ) has produced modest anticancer activity in clinical trials, due in part, to a failure to define predictive biomarkers that enable the selection of patients that best respond to this treatment strategy. We identified a new role for REDD1 as a determinant of sensitivity to autophagy inhibition in renal cell carcinoma (RCC). RNA sequencing, qRT-PCR, immunoblotting, gene silencing, knockout and overexpression studies revealed that REDD1 expression is a key regulator of cell death stimulated by autophagy inhibitors. Comprehensive in vitro and in vivo studies were conducted to evaluate the selectivity, tolerability, and efficacy of the PIM kinase inhibitor TP-3654 and CQ in preclinical models of RCC. Markers of autophagy inhibition and cell death were evaluated in tumor specimens. Transcriptomic analyses identified REDD1 (DDIT4) as a highly induced gene in RCC cells treated with the PIM kinase inhibitor TP-3654. Focused studies confirmed that PIM1 inhibition was sufficient to induce REDD1 and stimulate autophagy through the AMPK cascade. DDIT4 knockout and overexpression studies established its mechanistic role as a regulator of sensitivity to autophagy inhibition. Inhibition of autophagy with CQ synergistically enhanced the in vitro and in vivo anticancer activity of TP-3654. Our findings identify REDD1 as a novel determinant of the sensitivity of RCC cells to autophagy inhibition and support further investigation of PIM kinase inhibition as a precision strategy to drive sensitivity to autophagy-targeted therapies through REDD1 upregulation.
Collapse
Affiliation(s)
- Jennifer S Carew
- Department of Medicine, Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Claudia M Espitia
- Department of Medicine, Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Sruthi Sureshkumar
- Department of Medicine, Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Madison E Gamble
- Department of Medicine, Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA; Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA; Arizona Center for Drug Discovery, University of Arizona, Tucson, AZ, USA
| | - Benjamin R Lee
- Department of Urology, University of Arizona, Tucson, AZ, USA
| | - Steffan T Nawrocki
- Department of Medicine, Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ, USA; Department of Urology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Alatawi S, Alzahrani OR, Alatawi FA, Almazni IA, Almotiri A, Almsned FM. Identification of UBA7 expression downregulation in myelodysplastic neoplasm with SF3B1 mutations. Sci Rep 2025; 15:10856. [PMID: 40158006 PMCID: PMC11954878 DOI: 10.1038/s41598-025-95738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
SF3B1 gene mutations are prevalent in myelodysplastic syndrome (MDS) and define a distinct disease subtype. These mutations are associated with dysregulated genes and pathways, offering potential for novel therapeutic approaches. However, the aberrant mRNA alternative splicing landscape in SF3B1-deficient MDS cells remains underexplored. In this study, we investigated the influence of SF3B1 gene alterations on the pre-mRNA splicing landscape in MDS cells using transcriptomic data from two independent MDS cohorts. we identified over 5000 significant differential alternative splicing events associated with SF3B1 mutation. This work corroborates previous studies, showing significant enrichment of MYC activity and heme metabolism in SF3B1 mutant cells. A key novel finding of this study is the identification of a gene expression signature driven by SF3B1 mutations, centered on protein post-translational modifications. Notably, we discovered aberrant alternative splicing of the tumor suppressor gene UBA7, leading to significantly reduced gene expression. This dysregulation implicates UBA7 as a critical player in MDS pathogenesis. Importantly, the clinical relevance of this finding is underscored by the observation that low UBA7 gene expression was associated with poor overall survival in chronic lymphocytic leukemia (CLL), another hematological malignancy with frequent SF3B1 mutations. Furthermore, a similar association between low UBA7 gene expression and poor survival outcomes was observed across multiple tumor types in the TCGA database, highlighting the broader implications of UBA7 dysregulation in cancer biology. These findings provide new insights into the mechanisms by which SF3B1 mutations reshape the pre-mRNA splicing landscape and drive disease pathogenesis in MDS. Furthermore, they underscore the potential of UBA7 as a biomarker to stratify SF3B1-mutant MDS and CLL patients, offering a refined approach for risk assessment and highlighting opportunities for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Sael Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 47713, Tabuk, Saudi Arabia.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
- Innovation and Entrepreneurship Center, University of Tabuk, 47713, Tabuk, Saudi Arabia.
| | - Othman R Alzahrani
- Department of Biology, Faculty of Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Fuad A Alatawi
- Department of Biology, Faculty of Sciences, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Ibrahim A Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff, UK
| | - Fahad M Almsned
- Research Program, Academic, Training, and Research Administration, Eastern Health Cluster, Dammam, Saudi Arabia
- Research Center, King Fahad Specialist Hospital in Dammam, Dammam, Saudi Arabia
- School of Systems Biology, George Mason University, Fairfax, VA, USA
- Department of Research and Development, Geneoclinic, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy;
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (G.N.I.); (L.C.)
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (A.A.); (D.D.M.); (A.C.); (A.S.); (L.P.)
| |
Collapse
|
4
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024; 61:385-396. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
5
|
Liao R, Bresnick EH. Endogenous small molecule effectors in GATA transcription factor mechanisms governing biological and pathological processes. Exp Hematol 2024; 137:104252. [PMID: 38876253 PMCID: PMC11381147 DOI: 10.1016/j.exphem.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1 genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
6
|
Ginzburg Y, An X, Rivella S, Goldfarb A. Normal and dysregulated crosstalk between iron metabolism and erythropoiesis. eLife 2023; 12:e90189. [PMID: 37578340 PMCID: PMC10425177 DOI: 10.7554/elife.90189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023] Open
Abstract
Erythroblasts possess unique characteristics as they undergo differentiation from hematopoietic stem cells. During terminal erythropoiesis, these cells incorporate large amounts of iron in order to generate hemoglobin and ultimately undergo enucleation to become mature red blood cells, ultimately delivering oxygen in the circulation. Thus, erythropoiesis is a finely tuned, multifaceted process requiring numerous properly timed physiological events to maintain efficient production of 2 million red blood cells per second in steady state. Iron is required for normal functioning in all human cells, the erythropoietic compartment consuming the majority in light of the high iron requirements for hemoglobin synthesis. Recent evidence regarding the crosstalk between erythropoiesis and iron metabolism sheds light on the regulation of iron availability by erythroblasts and the consequences of insufficient as well as excess iron on erythroid lineage proliferation and differentiation. In addition, significant progress has been made in our understanding of dysregulated iron metabolism in various congenital and acquired malignant and non-malignant diseases. Finally, we report several actual as well as theoretical opportunities for translating the recently acquired robust mechanistic understanding of iron metabolism regulation to improve management of patients with disordered erythropoiesis, such as anemia of chronic inflammation, β-thalassemia, polycythemia vera, and myelodysplastic syndromes.
Collapse
Affiliation(s)
- Yelena Ginzburg
- Division of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Xiuli An
- LFKRI, New York Blood CenterNew YorkUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Cell and Molecular Biology affinity group (CAMB), University of PennsylvaniaPhiladelphiaUnited States
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Penn Center for Musculoskeletal Disorders at the Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute for Regenerative Medicine at University of PennsylvaniaPhiladelphiaUnited States
- RNA Institute at University of PennsylvaniaPhiladelphiaUnited States
| | - Adam Goldfarb
- Department of Pathology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
7
|
Pasquadibisceglie A, Bonaccorsi di Patti MC, Musci G, Polticelli F. Membrane Transporters Involved in Iron Trafficking: Physiological and Pathological Aspects. Biomolecules 2023; 13:1172. [PMID: 37627237 PMCID: PMC10452680 DOI: 10.3390/biom13081172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.
Collapse
Affiliation(s)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy;
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, 00146 Rome, Italy;
- National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
8
|
Cherniawsky H, Razavi HM. A case of MDS/MPN overlap syndrome with ring sideroblasts and thrombocytosis: Tackling the quandary of thrombosis versus hemorrhage. Clin Case Rep 2023; 11:e7409. [PMID: 37260615 PMCID: PMC10227201 DOI: 10.1002/ccr3.7409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/25/2022] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Key Clinical Message No formal treatment guidelines for MDS/MPN-RS-T exist. With salient features such as anemia and thrombocytosis, management is individualized and aims to address anemia, thrombosis, and in some cases acquired von Willebrand's disease. Abstract Myelodysplastic/myeloproliferative overlap syndrome with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) is a rare myeloid neoplasm showing myelodysplastic and myeloproliferative features. With extremely raised platelets, possibility of acquired von Willebrand and risk of hemorrhage is increased. With this quandary in mind, a descriptive case and a brief discussion of available treatments ensues.
Collapse
Affiliation(s)
- Hannah Cherniawsky
- Division of Haematology, Department of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Habib Moshref Razavi
- Division of Hematopathology and Transfusion Medicine, Fraser Health AuthorityUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
9
|
Durmaz A, Gurnari C, Hershberger CE, Pagliuca S, Daniels N, Awada H, Awada H, Adema V, Mori M, Ponvilawan B, Kubota Y, Kewan T, Bahaj WS, Barnard J, Scott J, Padgett RA, Haferlach T, Maciejewski JP, Visconte V. A multimodal analysis of genomic and RNA splicing features in myeloid malignancies. iScience 2023; 26:106238. [PMID: 36926651 PMCID: PMC10011742 DOI: 10.1016/j.isci.2023.106238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
RNA splicing dysfunctions are more widespread than what is believed by only estimating the effects resulting by splicing factor mutations (SFMT) in myeloid neoplasia (MN). The genetic complexity of MN is amenable to machine learning (ML) strategies. We applied an integrative ML approach to identify co-varying features by combining genomic lesions (mutations, deletions, and copy number), exon-inclusion ratio as measure of RNA splicing (percent spliced in, PSI), and gene expression (GE) of 1,258 MN and 63 normal controls. We identified 15 clusters based on mutations, GE, and PSI. Different PSI levels were present at various extents regardless of SFMT suggesting that changes in RNA splicing were not strictly related to SFMT. Combination of PSI and GE further distinguished the features and identified PSI similarities and differences, common pathways, and expression signatures across clusters. Thus, multimodal features can resolve the complex architecture of MN and help identifying convergent molecular and transcriptomic pathways amenable to therapies.
Collapse
Affiliation(s)
- Arda Durmaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | | | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Clinical Hematology, CHRU de Nancy, Nancy, France
| | - Noah Daniels
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Hassan Awada
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hussein Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vera Adema
- MD Anderson Cancer Center, Houston, TX, USA
| | - Minako Mori
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ben Ponvilawan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yasuo Kubota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tariq Kewan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Waled S. Bahaj
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jacob Scott
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Department, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Richard A. Padgett
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
- Corresponding author
| |
Collapse
|
10
|
C/EBPβ Regulates TFAM Expression, Mitochondrial Function and Autophagy in Cellular Models of Parkinson's Disease. Int J Mol Sci 2023; 24:ijms24021459. [PMID: 36674978 PMCID: PMC9865173 DOI: 10.3390/ijms24021459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Since there are only symptomatic treatments available, new cellular and molecular targets involved in the onset and progression of this disease are needed to develop effective treatments. CCAAT/Enhancer Binding Protein β (C/EBPβ) transcription factor levels are altered in patients with a variety of neurodegenerative diseases, suggesting that it may be a good therapeutic target for the treatment of PD. A list of genes involved in PD that can be regulated by C/EBPβ was generated by the combination of genetic and in silico data, the mitochondrial transcription factor A (TFAM) being among them. In this paper, we observed that C/EBPβ overexpression increased TFAM promoter activity. However, downregulation of C/EBPβ in different PD/neuroinflammation cellular models produced an increase in TFAM levels, together with other mitochondrial markers. This led us to propose an accumulation of non-functional mitochondria possibly due to the alteration of their autophagic degradation in the absence of C/EBPβ. Then, we concluded that C/EBPβ is not only involved in harmful processes occurring in PD, such as inflammation, but is also implicated in mitochondrial function and autophagy in PD-like conditions.
Collapse
|
11
|
Adema V, Ma F, Kanagal-Shamanna R, Thongon N, Montalban-Bravo G, Yang H, Peslak SA, Wang F, Acha P, Sole F, Lockyer P, Cassari M, Maciejewski JP, Visconte V, Gañán-Gómez I, Song Y, Bueso-Ramos C, Pellegrini M, Tan TM, Bejar R, Carew JS, Halene S, Santini V, Al-Atrash G, Clise-Dwyer K, Garcia-Manero G, Blobel GA, Colla S. Targeting the EIF2AK1 Signaling Pathway Rescues Red Blood Cell Production in SF3B1-Mutant Myelodysplastic Syndromes With Ringed Sideroblasts. Blood Cancer Discov 2022; 3:554-567. [PMID: 35926182 PMCID: PMC9894566 DOI: 10.1158/2643-3230.bcd-21-0220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/26/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
SF3B1 mutations, which occur in 20% of patients with myelodysplastic syndromes (MDS), are the hallmarks of a specific MDS subtype, MDS with ringed sideroblasts (MDS-RS), which is characterized by the accumulation of erythroid precursors in the bone marrow and primarily affects the elderly population. Here, using single-cell technologies and functional validation studies of primary SF3B1-mutant MDS-RS samples, we show that SF3B1 mutations lead to the activation of the EIF2AK1 pathway in response to heme deficiency and that targeting this pathway rescues aberrant erythroid differentiation and enables the red blood cell maturation of MDS-RS erythroblasts. These data support the development of EIF2AK1 inhibitors to overcome transfusion dependency in patients with SF3B1-mutant MDS-RS with impaired red blood cell production. SIGNIFICANCE MDS-RS are characterized by significant anemia. Patients with MDS-RS die from a shortage of red blood cells and the side effects of iron overload due to their constant need for transfusions. Our study has implications for the development of therapies to achieve long-lasting hematologic responses. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Vera Adema
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, Michigan
Medicine, University of Michigan, Ann Arbor, Michigan
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Natthakan Thongon
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | | | - Hui Yang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Scott A. Peslak
- Division of Hematology/Oncology, Department of Medicine, Hospital of the
University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Feng Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Pamela Acha
- MDS Research Group, Josep Carreras Leukaemia Research Institute, Universitat
Autonoma de Barcelona, Badalona, Spain
| | - Francesc Sole
- MDS Research Group, Josep Carreras Leukaemia Research Institute, Universitat
Autonoma de Barcelona, Badalona, Spain
| | - Pamela Lockyer
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Margherita Cassari
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence,
Florence, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer
Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer
Institute, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Irene Gañán-Gómez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| | - Yuanbin Song
- Department of Hematologic Oncology, State Key Laboratory of Oncology in
South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University
Cancer Center, Guangzhou, P.R. China
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer
Center, Houston, Texas
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of
California, Los Angeles, California
| | - Tuyet M. Tan
- Moores Cancer Center, Univerity of California San Diego, San Diego,
California
| | - Rafael Bejar
- Moores Cancer Center, Univerity of California San Diego, San Diego,
California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale
Comprehensive Cancer Center, Yale University School of Medicine, New Haven,
Connecticut
| | - Valeria Santini
- MDS Unit, Azienda Ospedaliero Universitaria Careggi, University of Florence,
Florence, Italy
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Hematopoietic Biology and
Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Hematopoietic Biology and
Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gerd A. Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center,
Houston, Texas
| |
Collapse
|
12
|
Kontandreopoulou CN, Kalopisis K, Viniou NA, Diamantopoulos P. The genetics of myelodysplastic syndromes and the opportunities for tailored treatments. Front Oncol 2022; 12:989483. [PMID: 36338673 PMCID: PMC9630842 DOI: 10.3389/fonc.2022.989483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.
Collapse
|
13
|
Gurnari C, Pagliuca S, Visconte V. Alternative Splicing in Myeloid Malignancies. Biomedicines 2021; 9:biomedicines9121844. [PMID: 34944660 PMCID: PMC8698609 DOI: 10.3390/biomedicines9121844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/28/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023] Open
Abstract
Alternative RNA splicing (AS) is an essential physiologic function that diversifies the human proteome. AS also has a crucial role during cellular development. In fact, perturbations in RNA-splicing have been implicated in the development of several cancers, including myeloid malignancies. Splicing dysfunction can be independent of genetic lesions or appear as a direct consequence of mutations in components of the RNA-splicing machinery, such as in the case of mutations occurring in splicing factor genes (i.e., SF3B1, SRSF2, U2AF1) and their regulators. In addition, cancer cells exhibit marked gene expression alterations, including different usage of AS isoforms, possibly causing tissue-specific effects and perturbations of downstream pathways. This review summarizes several modalities leading to splicing diversity in myeloid malignancies.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Pagliuca
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (S.P.)
- Correspondence:
| |
Collapse
|
14
|
Parisi S, Finelli C. Prognostic Factors and Clinical Considerations for Iron Chelation Therapy in Myelodysplastic Syndrome Patients. J Blood Med 2021; 12:1019-1030. [PMID: 34887690 PMCID: PMC8651046 DOI: 10.2147/jbm.s287876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/15/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) is an important tool in the treatment of transfusion-dependent lower-risk myelodysplastic syndrome (MDS) patients. ICT is effective in decreasing iron overload and consequently in limiting its detrimental effects on several organs, such as the heart, liver, and endocrine glands. Besides this effect, ICT also proved to be effective in improving peripheral cytopenia in a significant number of MDS patients, thus further increasing the clinical interest of this therapeutic tool. In the first part of the review, we will analyze the toxic effect of iron overload and its mechanism. Subsequently, we will revise the clinical role of ICT in various subsets of MDS patients (low, intermediate, and high risk MDS, patients who are candidates for allogeneic stem cell transplantation).
Collapse
Affiliation(s)
- Sarah Parisi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
15
|
Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y, Liang Z. RNA m 6A Demethylase ALKBH5 Protects Against Pancreatic Ductal Adenocarcinoma via Targeting Regulators of Iron Metabolism. Front Cell Dev Biol 2021; 9:724282. [PMID: 34733841 PMCID: PMC8558440 DOI: 10.3389/fcell.2021.724282] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although RNA m6A regulators have been implicated in the tumorigenesis of several different types of tumors, including pancreatic cancer, their clinical relevance and intrinsic regulatory mechanism remain elusive. This study analyzed eight m6A regulators (METTL3, METTL14, WTAP, FTO, ALKBH5, and YTHDF1-3) in pancreatic ductal adenocarcinoma (PDAC) and found that only RNA m6A demethylase ALKBH5 serves as an independent favorable prognostic marker for this tumor. To better understand the molecular mechanism underlying the protective effect conferred by ALKBH5 against pancreatic tumorigenesis, we performed a transcriptome-wide analysis of m6A methylation, gene expression, and alternative splicing (AS) using the MIA PaCa-2 stable cell line with ALKBH5 overexpression. We demonstrated that ALKBH5 overexpression induced a reduction in RNA m6A levels globally. Furthermore, mRNAs encoding ubiquitin ligase FBXL5, and mitochondrial iron importers SLC25A28 and SLC25A37, were identified as substrates of ALKBH5. Mechanistically, the RNA stabilities of FBXL5 and SLC25A28, and the AS of SLC25A37 were affected, which led to their upregulation in pancreatic cancer cell line. Particularly, we observed that downregulation of FBXL5 in tumor samples correlated with shorter survival time of patients. Owing to FBXL5-mediated degradation, ALKBH5 overexpression incurred a significant reduction in iron-regulatory protein IRP2 and the modulator of epithelial-mesenchymal transition (EMT) SNAI1. Notably, ALKBH5 overexpression led to a significant reduction in intracellular iron levels as well as cell migratory and invasive abilities, which could be rescued by knocking down FBXL5. Overall, our results reveal a previously uncharacterized mechanism of ALKBH5 in protecting against PDAC through modulating regulators of iron metabolism and underscore the multifaceted role of m6A in pancreatic cancer.
Collapse
Affiliation(s)
- Rui Huang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Yang
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiwen Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Fei
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yamei Niu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Lee P, Yim R, Yung Y, Chu HT, Yip PK, Gill H. Molecular Targeted Therapy and Immunotherapy for Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:10232. [PMID: 34638574 PMCID: PMC8508686 DOI: 10.3390/ijms221910232] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous, clonal hematological disorder characterized by ineffective hematopoiesis, cytopenia, morphologic dysplasia, and predisposition to acute myeloid leukemia (AML). Stem cell genomic instability, microenvironmental aberrations, and somatic mutations contribute to leukemic transformation. The hypomethylating agents (HMAs), azacitidine and decitabine are the standard of care for patients with higher-risk MDS. Although these agents induce responses in up to 40-60% of patients, primary or secondary drug resistance is relatively common. To improve the treatment outcome, combinational therapies comprising HMA with targeted therapy or immunotherapy are being evaluated and are under continuous development. This review provides a comprehensive update of the molecular pathogenesis and immune-dysregulations involved in MDS, mechanisms of resistance to HMA, and strategies to overcome HMA resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Harinder Gill
- Division of Haematology, Medical Oncology and Haemopoietic Stem Cell Transplantation, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (P.L.); (R.Y.); (Y.Y.); (H.-T.C.); (P.-K.Y.)
| |
Collapse
|
18
|
Yang JY, Huo YM, Yang MW, Shen Y, Liu DJ, Fu XL, Tao LY, He RZ, Zhang JF, Hua R, Jiang SH, Sun YW, Liu W. SF3B1 mutation in pancreatic cancer contributes to aerobic glycolysis and tumor growth through a PP2A-c-Myc axis. Mol Oncol 2021; 15:3076-3090. [PMID: 33932092 PMCID: PMC8564647 DOI: 10.1002/1878-0261.12970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
Hot spot gene mutations in splicing factor 3b subunit 1 (SF3B1) are observed in many types of cancer and create abundant aberrant mRNA splicing, which is profoundly implicated in tumorigenesis. Here, we identified that the SF3B1 K700E (SF3B1K700E) mutation is strongly associated with tumor growth in pancreatic ductal adenocarcinoma (PDAC). Knockdown of SF3B1 significantly retarded cell proliferation and tumor growth in a cell line (Panc05.04) with the SF3B1K700E mutation. However, SF3B1 knockdown had no notable effect on cell proliferation in two cell lines (BxPC3 and AsPC1) carrying wild‐type SF3B1. Ectopic expression of SF3B1K700E but not SF3B1WT in SF3B1‐knockout Panc05.04 cells largely restored the inhibitory role induced by SF3B1 knockdown. Introduction of the SF3B1K700E mutation in BxPC3 and AsPC1 cells also boosted cell proliferation. Gene set enrichment analysis demonstrated a close correlation between SF3B1 mutation and aerobic glycolysis. Functional analyses showed that the SF3B1K700E mutation promoted tumor glycolysis, as evidenced by glucose consumption, lactate release, and extracellular acidification rate. Mechanistically, the SF3B1 mutation promoted the aberrant splicing of PPP2R5A and led to the activation of the glycolytic regulator c‐Myc via post‐translational regulation. Pharmacological activation of PP2A with FTY‐720 markedly compromised the growth advantage induced by the SF3B1K700E mutation in vitro and in vivo. Taken together, our data suggest a novel function for SF3B1 mutation in the Warburg effect, and this finding may offer a potential therapeutic strategy against PDAC with the SF3B1K700E mutation.
Collapse
Affiliation(s)
- Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Shen
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Ye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Zhe He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Kim Guisbert KS, Mossiah I, Guisbert E. Titration of SF3B1 Activity Reveals Distinct Effects on the Transcriptome and Cell Physiology. Int J Mol Sci 2020; 21:ijms21249641. [PMID: 33348896 PMCID: PMC7766730 DOI: 10.3390/ijms21249641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
SF3B1 is a core component of the U2 spliceosome that is frequently mutated in cancer. We have previously shown that titrating the activity of SF3B1, using the inhibitor pladienolide B (PB), affects distinct steps of the heat shock response (HSR). Here, we identify other genes that are sensitive to different levels of SF3B1 (5 vs. 100 nM PB) using RNA sequencing. Significant changes to mRNA splicing were identified at both low PB and high PB concentrations. Changes in expression were also identified in the absence of alternative splicing, suggesting that SF3B1 influences other gene expression pathways. Surprisingly, gene expression changes identified in low PB are not predictive of changes in high PB. Specific pathways were identified with differential sensitivity to PB concentration, including nonsense-mediated decay and protein-folding homeostasis, both of which were validated using independent reporter constructs. Strikingly, cells exposed to low PB displayed enhanced protein-folding capacity relative to untreated cells. These data reveal that the transcriptome is exquisitely sensitive to SF3B1 and suggests that the activity of SF3B1 is finely regulated to coordinate mRNA splicing, gene expression and cellular physiology.
Collapse
|
20
|
Sciarrillo R, Wojtuszkiewicz A, Assaraf YG, Jansen G, Kaspers GJL, Giovannetti E, Cloos J. The role of alternative splicing in cancer: From oncogenesis to drug resistance. Drug Resist Updat 2020; 53:100728. [PMID: 33070093 DOI: 10.1016/j.drup.2020.100728] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Alternative splicing is a tightly regulated process whereby non-coding sequences of pre-mRNA are removed and protein-coding segments are assembled in diverse combinations, ultimately giving rise to proteins with distinct or even opposing functions. In the past decade, whole genome/transcriptome sequencing studies revealed the high complexity of splicing regulation, which occurs co-transcriptionally and is influenced by chromatin status and mRNA modifications. Consequently, splicing profiles of both healthy and malignant cells display high diversity and alternative splicing was shown to be widely deregulated in multiple cancer types. In particular, mutations in pre-mRNA regulatory sequences, splicing regulators and chromatin modifiers, as well as differential expression of splicing factors are important contributors to cancer pathogenesis. It has become clear that these aberrations contribute to many facets of cancer, including oncogenic transformation, cancer progression, response to anticancer drug treatment as well as resistance to therapy. In this respect, alternative splicing was shown to perturb the expression a broad spectrum of relevant genes involved in drug uptake/metabolism (i.e. SLC29A1, dCK, FPGS, and TP), activation of nuclear receptor pathways (i.e. GR, AR), regulation of apoptosis (i.e. MCL1, BCL-X, and FAS) and modulation of response to immunotherapy (CD19). Furthermore, aberrant splicing constitutes an important source of novel cancer biomarkers and the spliceosome machinery represents an attractive target for a novel and rapidly expanding class of therapeutic agents. Small molecule inhibitors targeting SF3B1 or splice factor kinases were highly cytotoxic against a wide range of cancer models, including drug-resistant cells. Importantly, these effects are enhanced in specific cancer subsets, such as splicing factor-mutated and c-MYC-driven tumors. Furthermore, pre-clinical studies report synergistic effects of spliceosome modulators in combination with conventional antitumor agents. These strategies based on the use of low dose splicing modulators could shift the therapeutic window towards decreased toxicity in healthy tissues. Here we provide an extensive overview of the latest findings in the field of regulation of splicing in cancer, including molecular mechanisms by which cancer cells harness alternative splicing to drive oncogenesis and evade anticancer drug treatment as well as splicing-based vulnerabilities that can provide novel treatment opportunities. Furthermore, we discuss current challenges arising from genome-wide detection and prediction methods of aberrant splicing, as well as unravelling functional relevance of the plethora of cancer-related splicing alterations.
Collapse
Affiliation(s)
- Rocco Sciarrillo
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gerrit Jansen
- Amsterdam Immunology and Rheumatology Center, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma's Children's Hospital, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands; Fondazione Pisana per la Scienza, Pisa, Italy
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
21
|
Awada H, Thapa B, Visconte V. The Genomics of Myelodysplastic Syndromes: Origins of Disease Evolution, Biological Pathways, and Prognostic Implications. Cells 2020; 9:E2512. [PMID: 33233642 PMCID: PMC7699752 DOI: 10.3390/cells9112512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The molecular pathogenesis of myelodysplastic syndrome (MDS) is complex due to the high rate of genomic heterogeneity. Significant advances have been made in the last decade which elucidated the landscape of molecular alterations (cytogenetic abnormalities, gene mutations) in MDS. Seminal experimental studies have clarified the role of diverse gene mutations in the context of disease phenotypes, but the lack of faithful murine models and/or cell lines spontaneously carrying certain gene mutations have hampered the knowledge on how and why specific pathways are associated with MDS pathogenesis. Here, we summarize the genomics of MDS and provide an overview on the deregulation of pathways and the latest molecular targeted therapeutics.
Collapse
Affiliation(s)
- Hassan Awada
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| |
Collapse
|
22
|
Spliceosomal factor mutations and mis-splicing in MDS. Best Pract Res Clin Haematol 2020; 33:101199. [PMID: 33038983 DOI: 10.1016/j.beha.2020.101199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Somatic, heterozygous missense and nonsense mutations in at least seven proteins that function in the spliceosome are found at high frequency in MDS patients. These proteins act at various steps in the process of splicing by the spliceosome and lead to characteristic alterations in the alternative splicing of a subset of genes. Several studies have investigated the effects of these mutations and have attempted to identify a commonly affected gene or pathway. Here, we summarize what is known about the normal function of these proteins and how the mutations alter the splicing landscape of the genome. We also summarize the commonly mis-spliced gene targets and discuss the state of mechanistic unification that has been achieved. Finally, we discuss alternative mechanisms by which these mutations may lead to disease.
Collapse
|
23
|
Cilloni D, Ravera S, Calabrese C, Gaidano V, Niscola P, Balleari E, Gallo D, Petiti J, Signorino E, Rosso V, Panuzzo C, Sabatini F, Andreani G, Dragani M, Finelli C, Poloni A, Crugnola M, Voso MT, Fenu S, Pelizzari A, Santini V, Saglio G, Podestà M, Frassoni F. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study. Sci Rep 2020; 10:9156. [PMID: 32514107 PMCID: PMC7280296 DOI: 10.1038/s41598-020-66162-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 05/11/2020] [Indexed: 11/30/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are hematological malignancies characterized by ineffective hematopoiesis and increased apoptosis in the bone marrow, which cause peripheral cytopenia. Mitochondria are key regulators of apoptosis and a site of iron accumulation that favors reactive oxygen species (ROS) production with detrimental effects on cell survival. Although the energy metabolism could represent an attractive therapeutic target, it was poorly investigated in MDS. The purpose of the study was to analyze how the presence of myelodysplastic hematopoiesis, iron overload and chelation impact on mitochondrial metabolism. We compared energy balance, OxPhos activity and efficiency, lactic dehydrogenase activity and lipid peroxidation in mononuclear cells (MNCs), isolated from 38 MDS patients and 79 healthy controls. Our data show that ATP/AMP ratio is reduced during aging and even more in MDS due to a decreased OxPhos activity associated with an increment of lipid peroxidation. Moreover, the lactate fermentation enhancement was observed in MDS and elderly subjects, probably as an attempt to restore the energy balance. The biochemical alterations of MNCs from MDS patients have been partially restored by the in vitro iron chelation, while only slight effects were observed in the age-matched control samples. By contrast, the addition of iron chelators on MNCs from young healthy subjects determined a decrement in the OxPhos efficiency and an increment of lactate fermentation and lipid peroxidation. In summary, MDS-MNCs display an altered energy metabolism associated with increased oxidative stress, due to iron accumulation. This condition could be partially restored by iron chelation.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Silvia Ravera
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy.,Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Gaidano
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Enrico Balleari
- Department of Haematology and Oncology, IRCCS AOU San Martino - IST, Genova, Italy
| | - Daniela Gallo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Valentina Rosso
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federica Sabatini
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Matteo Dragani
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carlo Finelli
- Department of Haematology, S. Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Monica Crugnola
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Universita' Tor Vergata, Rome, Italy
| | - Susanna Fenu
- Haematology Department, San Giovanni-Addolorata Hospital, Rome, Italy
| | | | - Valeria Santini
- Department of Experimental and Clinical Medicine, Università degli Studi di Firenze, Florence, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Marina Podestà
- Stem Cell and Cellular Therapy Laboratory, Institute G. Gaslini, Genova, Italy
| | - Francesco Frassoni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
24
|
Rahman MA, Nasrin F, Bhattacharjee S, Nandi S. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. Cancers (Basel) 2020; 12:cancers12061381. [PMID: 32481522 PMCID: PMC7352608 DOI: 10.3390/cancers12061381] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing promotes proteome diversity by using limited number of genes, a key control point of gene expression. Splicing is carried out by large macromolecular machineries, called spliceosome, composed of small RNAs and proteins. Alternative splicing is regulated by splicing regulatory cis-elements in RNA and trans-acting splicing factors that are often tightly regulated in a tissue-specific and developmental stage-specific manner. The biogenesis of ribonucleoprotein (RNP) complexes is strictly regulated to ensure that correct complements of RNA and proteins are coordinated in the right cell at the right time to support physiological functions. Any perturbations that impair formation of functional spliceosomes by disrupting the cis-elements, or by compromising RNA-binding or function of trans-factors can be deleterious to cells and result in pathological consequences. The recent discovery of oncogenic mutations in splicing factors, and growing evidence of the perturbed splicing in multiple types of cancer, underscores RNA processing defects as a critical driver of oncogenesis. These findings have resulted in a growing interest in targeting RNA splicing as a therapeutic approach for cancer treatment. This review summarizes our current understanding of splicing alterations in cancer, recent therapeutic efforts targeting splicing defects in cancer, and future potentials to develop novel cancer therapies.
Collapse
|
25
|
Samy A, Suzek BE, Ozdemir MK, Sensoy O. In Silico Analysis of a Highly Mutated Gene in Cancer Provides Insight into Abnormal mRNA Splicing: Splicing Factor 3B Subunit 1 K700E Mutant. Biomolecules 2020; 10:E680. [PMID: 32354150 PMCID: PMC7277358 DOI: 10.3390/biom10050680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. The etiology of the disease has remained elusive, but mutations causing aberrant RNA splicing have been considered one of the significant factors in various cancer types. The association of aberrant RNA splicing with drug/therapy resistance further increases the importance of these mutations. In this work, the impact of the splicing factor 3B subunit 1 (SF3B1) K700E mutation, a highly prevalent mutation in various cancer types, is investigated through molecular dynamics simulations. Based on our results, K700E mutation increases flexibility of the mutant SF3B1. Consequently, this mutation leads to i) disruption of interaction of pre-mRNA with SF3B1 and p14, thus preventing proper alignment of mRNA and causing usage of abnormal 3' splice site, and ii) disruption of communication in critical regions participating in interactions with other proteins in pre-mRNA splicing machinery. We anticipate that this study enhances our understanding of the mechanism of functional abnormalities associated with splicing machinery, thereby, increasing possibility for designing effective therapies to combat cancer at an earlier stage.
Collapse
Affiliation(s)
- Asmaa Samy
- The Graduate School of Engineering and Natural Science, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Baris Ethem Suzek
- Department of Computer Engineering, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Mehmet Kemal Ozdemir
- The School of Engineering and Natural Science, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ozge Sensoy
- The School of Engineering and Natural Science, Istanbul Medipol University, 34810 Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
26
|
Tanaka I, Chakraborty A, Saulnier O, Benoit-Pilven C, Vacher S, Labiod D, Lam EWF, Bièche I, Delattre O, Pouzoulet F, Auboeuf D, Vagner S, Dutertre M. ZRANB2 and SYF2-mediated splicing programs converging on ECT2 are involved in breast cancer cell resistance to doxorubicin. Nucleic Acids Res 2020; 48:2676-2693. [PMID: 31943118 PMCID: PMC7049692 DOI: 10.1093/nar/gkz1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022] Open
Abstract
Besides analyses of specific alternative splicing (AS) variants, little is known about AS regulatory pathways and programs involved in anticancer drug resistance. Doxorubicin is widely used in breast cancer chemotherapy. Here, we identified 1723 AS events and 41 splicing factors regulated in a breast cancer cell model of acquired resistance to doxorubicin. An RNAi screen on splicing factors identified the little studied ZRANB2 and SYF2, whose depletion partially reversed doxorubicin resistance. By RNAi and RNA-seq in resistant cells, we found that the AS programs controlled by ZRANB2 and SYF2 were enriched in resistance-associated AS events, and converged on the ECT2 splice variant including exon 5 (ECT2-Ex5+). Both ZRANB2 and SYF2 were found associated with ECT2 pre-messenger RNA, and ECT2-Ex5+ isoform depletion reduced doxorubicin resistance. Following doxorubicin treatment, resistant cells accumulated in S phase, which partially depended on ZRANB2, SYF2 and the ECT2-Ex5+ isoform. Finally, doxorubicin combination with an oligonucleotide inhibiting ECT2-Ex5 inclusion reduced doxorubicin-resistant tumor growth in mouse xenografts, and high ECT2-Ex5 inclusion levels were associated with bad prognosis in breast cancer treated with chemotherapy. Altogether, our data identify AS programs controlled by ZRANB2 and SYF2 and converging on ECT2, that participate to breast cancer cell resistance to doxorubicin.
Collapse
Affiliation(s)
- Iris Tanaka
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Alina Chakraborty
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Olivier Saulnier
- Institut Curie Research Center, SIREDO Oncology Center, Paris-Sciences-Lettres Research University, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, France
| | | | - Sophie Vacher
- Unité de Pharmacogénomique, Service de génétique, Institut Curie, Paris, France; Université Paris Descartes, Paris, France
| | - Dalila Labiod
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | | | - Ivan Bièche
- Unité de Pharmacogénomique, Service de génétique, Institut Curie, Paris, France; Université Paris Descartes, Paris, France
| | - Olivier Delattre
- Institut Curie Research Center, SIREDO Oncology Center, Paris-Sciences-Lettres Research University, INSERM U830, Laboratory of Biology and Genetics of Cancers, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, France
| | - Frédéric Pouzoulet
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Didier Auboeuf
- CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Stéphan Vagner
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | - Martin Dutertre
- Institut Curie, PSL Research University, CNRS UMR 3348, F-91405 Orsay, France
- Paris Sud University, Paris-Saclay University, CNRS UMR 3348, F-91405 Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| |
Collapse
|
27
|
Horiuchi K, Perez-Cerezales S, Papasaikas P, Ramos-Ibeas P, López-Cardona AP, Laguna-Barraza R, Fonseca Balvís N, Pericuesta E, Fernández-González R, Planells B, Viera A, Suja JA, Ross PJ, Alén F, Orio L, Rodriguez de Fonseca F, Pintado B, Valcárcel J, Gutiérrez-Adán A. Impaired Spermatogenesis, Muscle, and Erythrocyte Function in U12 Intron Splicing-Defective Zrsr1 Mutant Mice. Cell Rep 2019; 23:143-155. [PMID: 29617656 DOI: 10.1016/j.celrep.2018.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/28/2017] [Accepted: 03/08/2018] [Indexed: 11/18/2022] Open
Abstract
The U2AF35-like ZRSR1 has been implicated in the recognition of 3' splice site during spliceosome assembly, but ZRSR1 knockout mice do not show abnormal phenotypes. To analyze ZRSR1 function and its precise role in RNA splicing, we generated ZRSR1 mutant mice containing truncating mutations within its RNA-recognition motif. Homozygous mutant mice exhibited severe defects in erythrocytes, muscle stretch, and spermatogenesis, along with germ cell sloughing and apoptosis, ultimately leading to azoospermia and male sterility. Testis RNA sequencing (RNA-seq) analyses revealed increased intron retention of both U2- and U12-type introns, including U12-type intron events in genes with key functions in spermatogenesis and spermatid development. Affected U2 introns were commonly found flanking U12 introns, suggesting functional cross-talk between the two spliceosomes. The splicing and tissue defects observed in mutant mice attributed to ZRSR1 loss of function suggest a physiological role for this factor in U12 intron splicing.
Collapse
Affiliation(s)
- Keiko Horiuchi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Serafín Perez-Cerezales
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Panagiotis Papasaikas
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Priscila Ramos-Ibeas
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | | | - Ricardo Laguna-Barraza
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Noelia Fonseca Balvís
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Eva Pericuesta
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Raul Fernández-González
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Benjamín Planells
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Angel Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Francisco Alén
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Laura Orio
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain
| | - Fernando Rodriguez de Fonseca
- Dpto. Psicobiología, Facultad de Psicología, UCM, Campus de Somosaguas, Madrid, Spain; UGC Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga, Avda. Carlos Haya 82, Pabellón de Gobierno, 29010 Málaga, Spain
| | - Belén Pintado
- Servicio de Transgénicos, CNB-CSIC, UAM, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Alfonso Gutiérrez-Adán
- Dpto. de Reproducción Animal, INIA, Avda Puerta de Hierro nº 12. Local 10, 28040 Madrid, Spain.
| |
Collapse
|
28
|
Pati H, Kundil Veetil K. Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes: Molecular Pathogenetic Mechanisms and Their Implications. Indian J Hematol Blood Transfus 2019; 35:3-11. [DOI: 10.1007/s12288-019-01084-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
|
29
|
Yien YY, Shi J, Chen C, Cheung JTM, Grillo AS, Shrestha R, Li L, Zhang X, Kafina MD, Kingsley PD, King MJ, Ablain J, Li H, Zon LI, Palis J, Burke MD, Bauer DE, Orkin SH, Koehler CM, Phillips JD, Kaplan J, Ward DM, Lodish HF, Paw BH. FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 2018; 293:19797-19811. [PMID: 30366982 DOI: 10.1074/jbc.ra118.002742] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.
Collapse
Affiliation(s)
- Yvette Y Yien
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, .,the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jiahai Shi
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Caiyong Chen
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jesmine T M Cheung
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Anthony S Grillo
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Rishna Shrestha
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Liangtao Li
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Xuedi Zhang
- From the Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Martin D Kafina
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul D Kingsley
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Matthew J King
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Julien Ablain
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hojun Li
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Leonard I Zon
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - James Palis
- the Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York 14642
| | - Martin D Burke
- the Department of Chemistry and Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Daniel E Bauer
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Stuart H Orkin
- the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Carla M Koehler
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - John D Phillips
- the Division of Hematology and Hematologic Malignancy, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jerry Kaplan
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Diane M Ward
- the Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Harvey F Lodish
- the Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Barry H Paw
- the Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Division of Hematology-Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115.,the Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, and
| |
Collapse
|
30
|
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. Blood 2018; 132:1225-1240. [PMID: 29930011 DOI: 10.1182/blood-2018-04-843771] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
SF3B1, SRSF2, and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the effect of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 patients with MDS. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis, and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whereas several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms that independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations, respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the effect of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology.
Collapse
|
31
|
Armstrong RN, Steeples V, Singh S, Sanchi A, Boultwood J, Pellagatti A. Splicing factor mutations in the myelodysplastic syndromes: target genes and therapeutic approaches. Adv Biol Regul 2017; 67:13-29. [PMID: 28986033 DOI: 10.1016/j.jbior.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 10/25/2022]
Abstract
Mutations in splicing factor genes (SF3B1, SRSF2, U2AF1 and ZRSR2) are frequently found in patients with myelodysplastic syndromes (MDS), suggesting that aberrant spliceosome function plays a key role in the pathogenesis of MDS. Splicing factor mutations have been shown to result in aberrant splicing of many downstream target genes. Recent functional studies have begun to characterize the splicing dysfunction in MDS, identifying some key aberrantly spliced genes that are implicated in disease pathophysiology. These findings have led to the development of therapeutic strategies using splicing-modulating agents and rapid progress is being made in this field. Splicing inhibitors are promising agents that exploit the preferential sensitivity of splicing factor-mutant cells to these compounds. Here, we review the known target genes associated with splicing factor mutations in MDS, and discuss the potential of splicing-modulating therapies for these disorders.
Collapse
Affiliation(s)
- Richard N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Violetta Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Shalini Singh
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Andrea Sanchi
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| | - Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and Oxford BRC Haematology Theme, Oxford, UK.
| |
Collapse
|
32
|
Lee SCW, Abdel-Wahab O. Therapeutic targeting of splicing in cancer. Nat Med 2017; 22:976-86. [PMID: 27603132 DOI: 10.1038/nm.4165] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
Abstract
Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein-RNA interactions in cancer.
Collapse
Affiliation(s)
- Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York, USA.,Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
33
|
Lytovchenko O, Kunji ERS. Expression and putative role of mitochondrial transport proteins in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:641-654. [PMID: 28342810 DOI: 10.1016/j.bbabio.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/20/2017] [Accepted: 03/21/2017] [Indexed: 02/07/2023]
Abstract
Cancer cells undergo major changes in energy and biosynthetic metabolism. One of them is the Warburg effect, in which pyruvate is used for fermentation rather for oxidative phosphorylation. Another major one is their increased reliance on glutamine, which helps to replenish the pool of Krebs cycle metabolites used for other purposes, such as amino acid or lipid biosynthesis. Mitochondria are central to these alterations, as the biochemical pathways linking these processes run through these organelles. Two membranes, an outer and inner membrane, surround mitochondria, the latter being impermeable to most organic compounds. Therefore, a large number of transport proteins are needed to link the biochemical pathways of the cytosol and mitochondrial matrix. Since the transport steps are relatively slow, it is expected that many of these transport steps are altered when cells become cancerous. In this review, changes in expression and regulation of these transport proteins are discussed as well as the role of the transported substrates. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
34
|
Nangalia J, Grinfeld J, Green AR. Pathogenesis of Myeloproliferative Disorders. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 11:101-26. [PMID: 27193452 DOI: 10.1146/annurev-pathol-012615-044454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a set of chronic hematopoietic neoplasms with overlapping clinical and molecular features. Recent years have witnessed considerable advances in our understanding of their pathogenetic basis. Due to their protracted clinical course, the evolution to advanced hematological malignancies, and the accessibility of neoplastic tissue, the study of MPNs has provided a window into the earliest stages of tumorigenesis. With the discovery of mutations in CALR, the majority of MPN patients now bear an identifiable marker of clonal disease; however, the mechanism by which mutated CALR perturbs megakaryopoiesis is currently unresolved. We are beginning to understand better the role of JAK2(V617F) homozygosity, the function of comutations in epigenetic regulators and spliceosome components, and how these mutations cooperate with JAK2(V617F) to modulate MPN phenotype.
Collapse
Affiliation(s)
- Jyoti Nangalia
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Jacob Grinfeld
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| | - Anthony R Green
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, United Kingdom; .,Department of Haematology, Addenbrooke's Hospital, Cambridge CB2 2QR, United Kingdom
| |
Collapse
|
35
|
Abstract
Myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) are aggressive myeloid malignancies recognized as a distinct category owing to their unique combination of dysplastic and proliferative features. Although current classification schemes still emphasize morphology and exclusionary criteria, disease-defining somatic mutations and/or germline predisposition alleles are increasingly incorporated into diagnostic algorithms. The developing picture suggests that phenotypes are driven mostly by epigenetic mechanisms that reflect a complex interplay between genotype, physiological processes such as ageing and interactions between malignant haematopoietic cells and the stromal microenvironment of the bone marrow. Despite the rapid accumulation of genetic knowledge, therapies have remained nonspecific and largely inefficient. In this Review, we discuss the pathogenesis of MDS/MPN, focusing on the relationship between genotype and phenotype and the molecular underpinnings of epigenetic dysregulation. Starting with the limitations of current therapies, we also explore how the available mechanistic data may be harnessed to inform strategies to develop rational and more effective treatments, and which gaps in our knowledge need to be filled to translate biological understanding into clinical progress.
Collapse
Affiliation(s)
- Michael W N Deininger
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health and Science University
- Department of Cell, Developmental and Cancer Biology, Oregon Health &Science University, Portland, Oregon 97239, USA
| | - Eric Solary
- INSERM U1170, Gustave Roussy, Faculté de médecine Paris-Sud, Université Paris-Saclay, F-94805 Villejuif, France
- Department of Hematology, Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
36
|
Yoshimi A, Abdel-Wahab O. Splicing factor mutations in MDS RARS and MDS/MPN-RS-T. Int J Hematol 2017; 105:720-731. [PMID: 28466384 DOI: 10.1007/s12185-017-2242-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 01/19/2023]
Abstract
Spliceosomal mutations, especially mutations in SF3B1, are frequently (>80%) identified in patients with refractory anemia with ringed sideroblasts (RARS) and myelodysplastic/myeloproliferative neoplasms with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T; previously known as RARS-T), and SF3B1 mutations have a high positive predictive value for disease phenotype with ringed sideroblasts. These observations suggest that SF3B1 mutations play important roles in the pathogenesis of these disorders and formation of ringed sideroblasts. Here we will review recent insights into the molecular mechanisms of mis-splicing caused by mutant SF3B1 and the pathogenesis of RSs in the context of congenital sideroblastic anemia as well as RARS with SF3B1 mutations. We will also discuss therapy of SF3B1 mutant MDS, including novel approaches.
Collapse
Affiliation(s)
- Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Zuckerman 601, 408 East 69th Street, New York, NY, 10065, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Zuckerman 601, 408 East 69th Street, New York, NY, 10065, USA.
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
37
|
Long ZB, Du YL, Han B. [Research progress on clonal acquired sideroblastic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:83-86. [PMID: 28219236 PMCID: PMC7348407 DOI: 10.3760/cma.j.issn.0253-2727.2017.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 11/05/2022]
|
38
|
Dolatshad H, Pellagatti A, Liberante FG, Llorian M, Repapi E, Steeples V, Roy S, Scifo L, Armstrong RN, Shaw J, Yip BH, Killick S, Kušec R, Taylor S, Mills KI, Savage KI, Smith CWJ, Boultwood J. Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes. Leukemia 2016; 30:2322-2331. [PMID: 27211273 PMCID: PMC5029572 DOI: 10.1038/leu.2016.149] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS.
Collapse
Affiliation(s)
- H Dolatshad
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - A Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - F G Liberante
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - M Llorian
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - E Repapi
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - V Steeples
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - S Roy
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - L Scifo
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - R N Armstrong
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - J Shaw
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - B H Yip
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| | - S Killick
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK
| | - R Kušec
- Dubrava University hospital and Zagreb School of Medicine, University of Zagreb, Zagreb, Croatia
| | - S Taylor
- The Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - K I Mills
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - J Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
39
|
Huo YX, Huang L, Zhang DF, Yao YG, Fang YR, Zhang C, Luo XJ. Identification of SLC25A37 as a major depressive disorder risk gene. J Psychiatr Res 2016; 83:168-175. [PMID: 27643475 DOI: 10.1016/j.jpsychires.2016.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent and disabling mental disorders, but the genetic etiology remains largely unknown. We performed a meta-analysis (14,543 MDD cases and 14,856 controls) through combining the GWAS data from the Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium and the CONVERGE consortium and identified seven SNPs (four of them located in the downstream of SCL25A37) that showed suggestive associations (P < 5.0 × 10-7) with MDD. Systematic integration (Sherlock integrative analysis) of brain eQTL and GWAS meta-analysis identified SCL25A37 as a novel MDD risk gene (P = 2.22 × 10-6). A cis SNP (rs6983724, ∼28 kb downstream of SCL25A37) showed significant association with SCL25A37 expression (P = 1.19 × 10-9) and suggestive association with MDD (P = 1.65 × 10-7). We validated the significant association between rs6983724 and SCL25A37 expression in independent expression datasets. Finally, we found that SCL25A37 is significantly down-regulated in hippocampus and blood of MDD patients (P = 3.49 × 10-3 and P = 2.66 × 10-13, respectively). Our findings implicate that the SCL25A37 is a MDD susceptibility gene whose expression may influence MDD risk. The consistent down-regulation of SCL25A37 in MDD patients in three independent samples suggest that SCL25A37 may be used as a potential biomarker for MDD diagnosis. Further functional characterization of SCL25A37 may provide a potential target for future therapeutics and diagnostics.
Collapse
Affiliation(s)
- Yong-Xia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Liang Huang
- First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yi-Ru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
40
|
Pellagatti A, Boultwood J. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications. Adv Biol Regul 2016; 63:59-70. [PMID: 27639445 DOI: 10.1016/j.jbior.2016.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 01/05/2023]
Abstract
Splicing factor gene mutations are the most frequent mutations found in patients with the myeloid malignancy myelodysplastic syndrome (MDS), suggesting that spliceosomal dysfunction plays a major role in disease pathogenesis. The aberrantly spliced target genes and deregulated cellular pathways associated with the commonly mutated splicing factor genes in MDS (SF3B1, SRSF2 and U2AF1) are being identified, illuminating the molecular mechanisms underlying MDS. Emerging data from mouse modeling studies indicate that the presence of splicing factor gene mutations can lead to bone marrow hematopoietic stem/myeloid progenitor cell expansion, impaired hematopoiesis and dysplastic differentiation that are hallmarks of MDS. Importantly, recent evidence suggests that spliceosome inhibitors and splicing modulators may have therapeutic value in the treatment of splicing factor mutant myeloid malignancies.
Collapse
Affiliation(s)
- Andrea Pellagatti
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| | - Jacqueline Boultwood
- Bloodwise Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; NIHR Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
41
|
Inoue D, Bradley RK, Abdel-Wahab O. Spliceosomal gene mutations in myelodysplasia: molecular links to clonal abnormalities of hematopoiesis. Genes Dev 2016; 30:989-1001. [PMID: 27151974 PMCID: PMC4863743 DOI: 10.1101/gad.278424.116] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genomic analyses of the myeloid malignancies and clonal disorders of hematopoiesis that may give rise to these disorders have identified that mutations in genes encoding core spliceosomal proteins and accessory regulatory splicing factors are among the most common targets of somatic mutations. These spliceosomal mutations often occur in a mutually exclusive manner with one another and, in aggregate, account for the most frequent class of mutations in patients with myelodysplastic syndromes (MDSs) in particular. Although substantial progress has been made in understanding the effects of several of these mutations on splicing and splice site recognition, functional connections linking the mechanistic changes in splicing induced by these mutations to the phenotypic consequences of clonal and aberrant hematopoiesis are not yet well defined. This review describes our current understanding of the mechanistic and biological effects of spliceosomal gene mutations in MDSs as well as the regulation of splicing throughout normal hematopoiesis.
Collapse
Affiliation(s)
- Daichi Inoue
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
42
|
Small Molecule Modulators of Pre-mRNA Splicing in Cancer Therapy. Trends Mol Med 2015; 22:28-37. [PMID: 26700537 DOI: 10.1016/j.molmed.2015.11.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/09/2015] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression and alternative RNA splicing plays a considerable role in generating protein diversity. RNA splicing events are also key to the pathology of numerous diseases, particularly cancers. Some tumors are molecularly addicted to specific RNA splicing isoforms making interference with pre-mRNA processing a viable therapeutic strategy. Several RNA splicing modulators have recently been characterized, some showing promise in preclinical studies. While the targets of most splicing modulators are constitutive RNA processing components, possibly leading to undesirable side effects, selectivity for individual splicing events has been observed. Given the high prevalence of splicing defects in cancer, small molecule modulators of RNA processing represent a potentially promising novel therapeutic strategy in cancer treatment. Here, we review their reported effects, mechanisms, and limitations.
Collapse
|
43
|
Pimentel H, Parra M, Gee SL, Mohandas N, Pachter L, Conboy JG. A dynamic intron retention program enriched in RNA processing genes regulates gene expression during terminal erythropoiesis. Nucleic Acids Res 2015; 44:838-51. [PMID: 26531823 PMCID: PMC4737145 DOI: 10.1093/nar/gkv1168] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 10/21/2015] [Indexed: 01/22/2023] Open
Abstract
Differentiating erythroblasts execute a dynamic alternative splicing program shown here to include extensive and diverse intron retention (IR) events. Cluster analysis revealed hundreds of developmentally-dynamic introns that exhibit increased IR in mature erythroblasts, and are enriched in functions related to RNA processing such as SF3B1 spliceosomal factor. Distinct, developmentally-stable IR clusters are enriched in metal-ion binding functions and include mitoferrin genes SLC25A37 and SLC25A28 that are critical for iron homeostasis. Some IR transcripts are abundant, e.g. comprising ∼50% of highly-expressed SLC25A37 and SF3B1 transcripts in late erythroblasts, and thereby limiting functional mRNA levels. IR transcripts tested were predominantly nuclear-localized. Splice site strength correlated with IR among stable but not dynamic intron clusters, indicating distinct regulation of dynamically-increased IR in late erythroblasts. Retained introns were preferentially associated with alternative exons with premature termination codons (PTCs). High IR was observed in disease-causing genes including SF3B1 and the RNA binding protein FUS. Comparative studies demonstrated that the intron retention program in erythroblasts shares features with other tissues but ultimately is unique to erythropoiesis. We conclude that IR is a multi-dimensional set of processes that post-transcriptionally regulate diverse gene groups during normal erythropoiesis, misregulation of which could be responsible for human disease.
Collapse
Affiliation(s)
- Harold Pimentel
- Department of Computer Science, University of California, Berkeley, CA 94720, USA
| | - Marilyn Parra
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sherry L Gee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10065, USA
| | - Lior Pachter
- Department of Mathematics, University of California, Berkeley, CA 94720, USA Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - John G Conboy
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
44
|
Conte S, Katayama S, Vesterlund L, Karimi M, Dimitriou M, Jansson M, Mortera-Blanco T, Unneberg P, Papaemmanuil E, Sander B, Skoog T, Campbell P, Walfridsson J, Kere J, Hellström-Lindberg E. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts. Br J Haematol 2015; 171:478-90. [PMID: 26255870 PMCID: PMC4832260 DOI: 10.1111/bjh.13610] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Refractory anaemia with ring sideroblasts (RARS) is distinguished by hyperplastic inefficient erythropoiesis, aberrant mitochondrial ferritin accumulation and anaemia. Heterozygous mutations in the spliceosome gene SF3B1 are found in a majority of RARS cases. To explore the link between SF3B1 mutations and anaemia, we studied mutated RARS CD34+ marrow cells with regard to transcriptome sequencing, splice patterns and mutational allele burden during erythroid differentiation. Transcriptome profiling during early erythroid differentiation revealed a marked up‐regulation of genes involved in haemoglobin synthesis and in the oxidative phosphorylation process, and down‐regulation of mitochondrial ABC transporters compared to normal bone marrow. Moreover, mis‐splicing of genes involved in transcription regulation, particularly haemoglobin synthesis, was confirmed, indicating a compromised haemoglobinization during RARS erythropoiesis. In order to define the phase during which erythroid maturation of SF3B1 mutated cells is most affected, we assessed allele burden during erythroid differentiation in vitro and in vivo and found that SF3B1 mutated erythroblasts showed stable expansion until late erythroblast stage but that terminal maturation to reticulocytes was significantly reduced. In conclusion, SF3B1 mutated RARS progenitors display impaired splicing with potential downstream consequences for genes of key importance for haemoglobin synthesis and terminal erythroid differentiation.
Collapse
Affiliation(s)
- Simona Conte
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Shintaro Katayama
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Liselotte Vesterlund
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Mohsen Karimi
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Marios Dimitriou
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Monika Jansson
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Teresa Mortera-Blanco
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Per Unneberg
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm, Sweden
| | - Elli Papaemmanuil
- Cancer Genetics & Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Birgitta Sander
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Tiina Skoog
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Peter Campbell
- Cancer Genetics & Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Julian Walfridsson
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Juha Kere
- Karolinska Institutet, Department of Biosciences and Nutrition and Center for Innovative Medicine, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Karolinska Institutet, Department of Medicine (Huddinge), Centre for Hematology and Regenerative Medicine, Stockholm, Sweden
| |
Collapse
|
45
|
Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, Przychodzen B, Sahgal N, Kanapin AA, Lockstone H, Scifo L, Vandenberghe P, Papaemmanuil E, Smith CWJ, Campbell PJ, Ogawa S, Maciejewski JP, Cazzola M, Savage KI, Boultwood J. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia 2015; 29:1092-103. [PMID: 25428262 PMCID: PMC4430703 DOI: 10.1038/leu.2014.331] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023]
Abstract
The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndrome (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). We investigated the functional effects of SF3B1 disruption in myeloid cell lines: SF3B1 knockdown resulted in growth inhibition, cell cycle arrest and impaired erythroid differentiation and deregulation of many genes and pathways, including cell cycle regulation and RNA processing. MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34(+) cells from MDS patients with SF3B1 mutations using RNA sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared with wild-type cases include genes that are involved in MDS pathogenesis (ASXL1 and CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7 and SLC25A37) and RNA splicing/processing (PRPF8 and HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. This is the first study to determine the target genes of SF3B1 mutation in MDS CD34(+) cells. Our data indicate that SF3B1 has a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link.
Collapse
Affiliation(s)
- H Dolatshad
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - A Pellagatti
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - M Fernandez-Mercado
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B H Yip
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - L Malcovati
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - M Attwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - B Przychodzen
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - N Sahgal
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A A Kanapin
- Department of Oncology, University of Oxford, Oxford, UK
| | - H Lockstone
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - L Scifo
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| | - P Vandenberghe
- Center for Human Genetics, Katholieke Universiteit Leuven/University Hospital Leuven, Leuven, Belgium
| | - E Papaemmanuil
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - C W J Smith
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge, UK
| | - P J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - S Ogawa
- Cancer Genomics Projects, Graduate School of Medicine, Tokyo, Japan
| | - J P Maciejewski
- Department of Translational Haematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Cazzola
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Molecular Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| | - K I Savage
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Harada H, Harada Y. Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci 2015; 106:329-36. [PMID: 25611784 PMCID: PMC4409874 DOI: 10.1111/cas.12614] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/12/2015] [Accepted: 01/13/2015] [Indexed: 02/06/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are defined as stem cell disorders caused by various gene abnormalities. Recent analysis using next-generation sequencing has provided great advances in identifying relationships between gene mutations and clinical phenotypes of MDS. Gene mutations affecting RNA splicing machinery, DNA methylation, histone modifications, transcription factors, signal transduction proteins and components of the cohesion complex participate in the pathogenesis and progression of MDS. Mutations in RNA splicing and DNA methylation occur early and are considered “founding mutations”, whereas others that occur later are regarded as “subclonal mutations”. RUNX1 mutations are more likely to subclonal; however, they apparently play a pivotal role in familial MDS. These genetic findings may lead to future therapies for MDS.
Collapse
Affiliation(s)
- Hironori Harada
- Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
47
|
Pellagatti A, Boultwood J. The molecular pathogenesis of the myelodysplastic syndromes. Eur J Haematol 2015; 95:3-15. [DOI: 10.1111/ejh.12515] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Andrea Pellagatti
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| | - Jacqueline Boultwood
- Leukaemia & Lymphoma Research Molecular Haematology Unit; Nuffield Division of Clinical Laboratory Sciences; Radcliffe Department of Medicine; University of Oxford; Oxford UK
| |
Collapse
|
48
|
Visconte V, Tiu RV, Rogers HJ. Pathogenesis of myelodysplastic syndromes: an overview of molecular and non-molecular aspects of the disease. Blood Res 2014; 49:216-27. [PMID: 25548754 PMCID: PMC4278002 DOI: 10.5045/br.2014.49.4.216] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal disorders arising from hematopoietic stem cells generally characterized by inefficient hematopoiesis, dysplasia in one or more myeloid cell lineages, and variable degrees of cytopenias. Most MDS patients are diagnosed in their late 60s to early 70s. The estimated incidence of MDS in the United States and in Europe are 4.3 and 1.8 per 100,000 individuals per year, respectively with lower rates reported in some Asian countries and less well estimated in other parts of the world. Evolution to acute myeloid leukemia can occur in 10-15% of MDS patients. Three drugs are currently approved for the treatment of patients with MDS: immunomodulatory agents (lenalidomide), and hypomethylating therapy [HMT (decitabine and 5-azacytidine)]. All patients will eventually lose their response to therapy, and the survival outcome of MDS patients is poor (median survival of 4.5 months) especially for patients who fail (refractory/relapsed) HMT. The only potential curative treatment for MDS is hematopoietic cell transplantation. Genomic/chromosomal instability and various mechanisms contribute to the pathogenesis and prognosis of the disease. High throughput genetic technologies like single nucleotide polymorphism array analysis and next generation sequencing technologies have uncovered novel genetic alterations and increased our knowledge of MDS pathogenesis. We will review various genetic and non-genetic causes that are involved in the pathogenesis of MDS.
Collapse
Affiliation(s)
- Valeria Visconte
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Ramon V Tiu
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA. ; Department of Hematologic Oncology and Blood Disorders, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
49
|
Zoi K, Cross NCP. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 2014; 101:229-42. [PMID: 25212680 DOI: 10.1007/s12185-014-1670-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/21/2022]
Abstract
According to the 2008 WHO classification, the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN) includes atypical chronic myeloid leukaemia (aCML), chronic myelomonocytic leukaemia (CMML), MDS/MPN-unclassifiable (MDS/MPN-U), juvenile myelomonocytic leukaemia (JMML) and a "provisional" entity, refractory anaemia with ring sideroblasts and thrombocytosis (RARS-T). The remarkable progress in our understanding of the somatic pathogenesis of MDS/MPN has made it clear that there is considerable overlap among these diseases at the molecular level, as well as layers of unexpected complexity. Deregulation of signalling plays an important role in many cases, and is clearly linked to more highly proliferative disease. Other mutations affect a range of other essential, interrelated cellular mechanisms, including epigenetic regulation, RNA splicing, transcription, and DNA damage response. The various combinations of mutations indicate a multi-step pathogenesis, which likely contributes to the marked clinical heterogeneity of these disorders. The delineation of complex clonal architectures may serve as the cornerstone for the identification of novel therapeutic targets and lead to better patient outcomes. This review summarizes some of the current knowledge of molecular pathogenetic lesions in the MDS/MPN subtypes that are seen in adults: atypical CML, CMML and MDS/MPN-U.
Collapse
Affiliation(s)
- Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | |
Collapse
|