1
|
Wang P, Zhang Y, Xiang R, Yang J, Xu Y, Deng T, Zhou W, Wang C, Xiao X, Wang S. Foretinib Is Effective in Acute Myeloid Leukemia by Inhibiting FLT3 and Overcoming Secondary Mutations That Drive Resistance to Quizartinib and Gilteritinib. Cancer Res 2024; 84:905-918. [PMID: 38231480 PMCID: PMC10940854 DOI: 10.1158/0008-5472.can-23-1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
FLT3 internal tandem duplication (FLT3-ITD) mutations are one of the most prevalent somatic alterations associated with poor prognosis in patients with acute myeloid leukemia (AML). The clinically approved FLT3 kinase inhibitors gilteritinib and quizartinib improve the survival of patients with AML with FLT3-ITD mutations, but their long-term efficacy is limited by acquisition of secondary drug-resistant mutations. In this study, we conducted virtual screening of a library of 60,411 small molecules and identified foretinib as a potent FLT3 inhibitor. An integrated analysis of the BeatAML database showed that foretinib had a lower IC50 value than other existing FLT3 inhibitors in patients with FLT3-ITD AML. Foretinib directly bound to FLT3 and effectively inhibited FLT3 signaling. Foretinib potently inhibited proliferation and promoted apoptosis in human AML cell lines and primary AML cells with FLT3-ITD mutations. Foretinib also significantly extended the survival of mice bearing cell-derived and patient-derived FLT3-ITD xenografts, exhibiting stronger efficacy than clinically approved FLT3 inhibitors in treating FLT3-ITD AML. Moreover, foretinib showed potent activity against secondary mutations of FLT3-ITD that confer resistance to quizartinib and gilteritinib. These findings support the potential of foretinib for treating patients with AML with FLT3-ITD mutations, especially for those carrying secondary mutations after treatment failure with other FLT3 inhibitors. SIGNIFICANCE Foretinib exhibits superior efficacy to approved drugs in AML with FLT3-ITD mutations and retains activity in AML with secondary FLT3 mutations that mediate resistance to clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Peihong Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yvyin Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jie Yang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yanli Xu
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|
2
|
Murray HC, Miller K, Brzozowski JS, Kahl RGS, Smith ND, Humphrey SJ, Dun MD, Verrills NM. Synergistic Targeting of DNA-PK and KIT Signaling Pathways in KIT Mutant Acute Myeloid Leukemia. Mol Cell Proteomics 2023; 22:100503. [PMID: 36682716 PMCID: PMC9986649 DOI: 10.1016/j.mcpro.2023.100503] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 12/19/2022] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common and aggressive form of acute leukemia, with a 5-year survival rate of just 24%. Over a third of all AML patients harbor activating mutations in kinases, such as the receptor tyrosine kinases FLT3 (receptor-type tyrosine-protein kinase FLT3) and KIT (mast/stem cell growth factor receptor kit). FLT3 and KIT mutations are associated with poor clinical outcomes and lower remission rates in response to standard-of-care chemotherapy. We have recently identified that the core kinase of the non-homologous end joining DNA repair pathway, DNA-PK (DNA-dependent protein kinase), is activated downstream of FLT3; and targeting DNA-PK sensitized FLT3-mutant AML cells to standard-of-care therapies. Herein, we investigated DNA-PK as a possible therapeutic vulnerability in KIT mutant AML, using isogenic FDC-P1 mouse myeloid progenitor cell lines transduced with oncogenic mutant KIT (V560G and D816V) or vector control. Targeted quantitative phosphoproteomic profiling identified phosphorylation of DNA-PK in the T2599/T2605/S2608/S2610 cluster in KIT mutant cells, indicative of DNA-PK activation. Accordingly, proliferation assays revealed that KIT mutant FDC-P1 cells were more sensitive to the DNA-PK inhibitors M3814 or NU7441, compared with empty vector controls. DNA-PK inhibition combined with inhibition of KIT signaling using the kinase inhibitors dasatinib or ibrutinib, or the protein phosphatase 2A activators FTY720 or AAL(S), led to synergistic cell death. Global phosphoproteomic analysis of KIT-D816V cells revealed that dasatinib and M3814 single-agent treatments inhibited extracellular signal-regulated kinase and AKT (RAC-alpha serine/threonine-protein kinase)/MTOR (serine/threonine-protein kinase mTOR) activity, with greater inhibition of both pathways when used in combination. Combined dasatinib and M3814 treatment also synergistically inhibited phosphorylation of the transcriptional regulators MYC and MYB. This study provides insight into the oncogenic pathways regulated by DNA-PK beyond its canonical role in DNA repair and demonstrates that DNA-PK is a promising therapeutic target for KIT mutant cancers.
Collapse
Affiliation(s)
- Heather C Murray
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Kasey Miller
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Joshua S Brzozowski
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Richard G S Kahl
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nathan D Smith
- Analytical and Biomolecular Research Facility, Advanced Mass Spectrometry Unit, University of Newcastle, Callaghan, New South Wales, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, and The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, and Hunter Cancer Research Alliance and Precision Medicine Program, Hunter Medical Research Institute, Callaghan, New South Wales, Australia.
| |
Collapse
|
3
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
4
|
Rao H, Song X, Lei J, Lu P, Zhao G, Kang X, Zhang D, Zhang T, Ren Y, Peng C, Li Y, Pei J, Cao Z. Ibrutinib Prevents Acute Lung Injury via Multi-Targeting BTK, FLT3 and EGFR in Mice. Int J Mol Sci 2022; 23:13478. [PMID: 36362264 PMCID: PMC9657648 DOI: 10.3390/ijms232113478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 09/12/2023] Open
Abstract
Ibrutinib has potential therapeutic or protective effects against viral- and bacterial-induced acute lung injury (ALI), likely by modulating the Bruton tyrosine kinase (BTK) signaling pathway. However, ibrutinib has multi-target effects. Moreover, immunity and inflammation targets in ALI treatment are poorly defined. We investigated whether the BTK-, FLT3-, and EGFR-related signaling pathways mediated the protective effects of ibrutinib on ALI. The intratracheal administration of poly I:C or LPS after ibrutinib administration in mice was performed by gavage. The pathological conditions of the lungs were assessed by micro-CT and HE staining. The levels of neutrophils, lymphocytes, and related inflammatory factors in the lungs were evaluated by ELISA, flow cytometry, immunohistochemistry, and immunofluorescence. Finally, the expression of proteins associated with the BTK-, FLT3-, and EGFR-related signaling pathways were evaluated by Western blotting. Ibrutinib (10 mg/kg) protected against poly I:C-induced (5 mg/kg) and LPS-induced (5 mg/kg) lung inflammation. The wet/dry weight ratio (W/D) and total proteins in the bronchoalveolar lavage fluid (BALF) were markedly reduced after ibrutinib (10 mg/kg) treatment, relative to the poly I:C- and LPS-treated groups. The levels of ALI indicators (NFκB, IL-1β, IL-6, TNF-α, IFN-γ, neutrophils, and lymphocytes) were significantly reduced after treatment. Accordingly, ibrutinib inhibited the poly I:C- and LPS-induced BTK-, FLT3-, and EGFR-related pathway activations. Ibrutinib inhibited poly I:C- and LPS-induced acute lung injury, and this may be due to its ability to suppress the BTK-, FLT3-, and EGFR-related signaling pathways. Therefore, ibrutinib is a potential protective agent for regulating immunity and inflammation in poly I:C- and LPS-induced ALI.
Collapse
Affiliation(s)
- Huanan Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaominting Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jieting Lei
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guiying Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Duanna Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yali Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuzhi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhixing Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
5
|
Li W, Zhang J, Wang M, Dong R, Zhou X, Zheng X, Sun L. Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery. Curr Top Med Chem 2022; 22:284-304. [PMID: 35021973 DOI: 10.2174/1568026622666220111143949] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zhou
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zheng
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
6
|
Hu C, Zou F, Wang A, Miao W, Liang Q, Weisberg EL, Wang Y, Liu J, Wang W, Liu Q. Targeting chaperon protein HSP70 as a novel therapeutic strategy for FLT3-ITD-positive acute myeloid leukemia. Signal Transduct Target Ther 2021; 6:334. [PMID: 34521806 PMCID: PMC8440619 DOI: 10.1038/s41392-021-00672-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
| | - Aoli Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China
| | - Weili Miao
- Department of Chemistry, University of California-Riverside, Riverside, CA, USA
| | - Qianmao Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Ellen L Weisberg
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California-Riverside, Riverside, CA, USA
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China.
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui, People's Republic of China. .,University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
7
|
Pattarabanjird T, Li C, McNamara C. B Cells in Atherosclerosis: Mechanisms and Potential Clinical Applications. ACTA ACUST UNITED AC 2021; 6:546-563. [PMID: 34222726 PMCID: PMC8246059 DOI: 10.1016/j.jacbts.2021.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
B cells regulate atherosclerotic plaque formation through production of antibodies and cytokines, and effects are subset specific (B1 and B2). Putative human atheroprotective B1 cells function similarly to murine B1 in their spontaneous IgM antibody production. However, marker strategies in identifying human and murine B1 are different. IgM antibody to oxidation specific epitopes produced by B1 cells associate with human coronary artery disease. Neoantigen immunization may be a promising strategy for atherosclerosis vaccine development, but further study to determine relevant antigens still need to be done. B-cell–targeted therapies, used in treating autoimmune diseases as well as lymphoid cancers, might have potential applications in treating cardiovascular diseases. Short- and long-term cardiovascular effects of these agents need to be assessed.
Because atherosclerotic cardiovascular disease is a leading cause of death worldwide, understanding inflammatory processes underpinning its pathology is critical. B cells have been implicated as a key immune cell type in regulating atherosclerosis. B-cell effects, mediated by antibodies and cytokines, are subset specific. In this review, we focus on elaborating mechanisms underlying subtype-specific roles of B cells in atherosclerosis and discuss available human data implicating B cells in atherosclerosis. We further discuss potential B cell–linked therapeutic approaches, including immunization and B cell–targeted biologics. Given recent evidence strongly supporting a role for B cells in human atherosclerosis and the expansion of immunomodulatory agents that affect B-cell biology in clinical use and clinical trials for other disorders, it is important that the cardiovascular field be cognizant of potential beneficial or untoward effects of modulating B-cell activity on atherosclerosis.
Collapse
Key Words
- APRIL, A proliferation−inducing ligand
- ApoE, apolipoprotein E
- B-cell
- BAFF, B-cell–activating factor
- BAFFR, B-cell–activating factor receptor
- BCMA, B-cell maturation antigen
- BCR, B-cell receptor
- Breg, regulatory B cell
- CAD, coronary artery disease
- CTLA4, cytotoxic T-lymphocyte–associated protein 4
- CVD, cardiovascular disease
- CXCR4, C-X-C motif chemokine receptor 4
- GC, germinal center
- GITR, glucocorticoid-induced tumor necrosis factor receptor–related protein
- GITRL, glucocorticoid-induced tumor necrosis factor receptor–related protein ligand
- GM-CSF, granulocyte-macrophage colony–stimulating factor
- ICI, immune checkpoint inhibitor
- IFN, interferon
- IL, interleukin
- IVUS, intravascular ultrasound
- LDL, low-density lipoprotein
- LDLR, low-density lipoprotein receptor
- MDA-LDL, malondialdehyde-modified low-density lipoprotein
- MI, myocardial infarction
- OSE, oxidation-specific epitope
- OxLDL, oxidized low-density lipoprotein
- PC, phosphorylcholine
- PD-1, programmed cell death protein 1
- PD-L2, programmed death ligand 2
- PDL1, programmed death ligand 1
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- TACI, transmembrane activator and CAML interactor
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- atherosclerosis
- immunoglobulins
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Cynthia Li
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Coleen McNamara
- Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Huang J, Huang S, Ma Z, Lin X, Li X, Huang X, Wang J, Ye W, Li Y, He D, Yang M, Pan J, Ling Q, Li F, Mao S, Wang H, Wang Y, Jin J. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Thromb Haemost 2021; 121:192-205. [PMID: 32961571 DOI: 10.1055/s-0040-1716530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbβ3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Kennedy VE, Smith CC. FLT3 Mutations in Acute Myeloid Leukemia: Key Concepts and Emerging Controversies. Front Oncol 2021; 10:612880. [PMID: 33425766 PMCID: PMC7787101 DOI: 10.3389/fonc.2020.612880] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022] Open
Abstract
The FLT3 receptor is overexpressed on the majority of acute myeloid leukemia (AML) blasts. Mutations in FLT3 are the most common genetic alteration in AML, identified in approximately one third of newly diagnosed patients. FLT3 internal tandem duplication mutations (FLT3-ITD) are associated with increased relapse and inferior overall survival. Multiple small molecule inhibitors of FLT3 signaling have been identified, two of which (midostaurin and gilteritinib) are currently approved in the United States, and many more of which are in clinical trials. Despite significant advances, resistance to FLT3 inhibitors through secondary FLT3 mutations, upregulation of parallel pathways, and extracellular signaling remains an ongoing challenge. Novel therapeutic strategies to overcome resistance, including combining FLT3 inhibitors with other antileukemic agents, development of new FLT3 inhibitors, and FLT3-directed immunotherapy are in active clinical development. Multiple questions regarding FLT3-mutated AML remain. In this review, we highlight several of the current most intriguing controversies in the field including the role of FLT3 inhibitors in maintenance therapy, the role of hematopoietic cell transplantation in FLT3-mutated AML, use of FLT3 inhibitors in FLT3 wild-type disease, significance of non-canonical FLT3 mutations, and finally, emerging concerns regarding clonal evolution.
Collapse
Affiliation(s)
- Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Catherine C Smith
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Soncini D, Orecchioni S, Ruberti S, Minetto P, Martinuzzi C, Agnelli L, Todoerti K, Cagnetta A, Miglino M, Clavio M, Contini P, Varaldo R, Bergamaschi M, Guolo F, Passalacqua M, Nencioni A, Monacelli F, Gobbi M, Neri A, Abbadessa G, Eathiraj S, Schwartz B, Bertolini F, Lemoli RM, Cea M. The new small tyrosine kinase inhibitor ARQ531 targets acute myeloid leukemia cells by disrupting multiple tumor-addicted programs. Haematologica 2020; 105:2420-2431. [PMID: 33054082 PMCID: PMC7556675 DOI: 10.3324/haematol.2019.224956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022] Open
Abstract
Tyrosine kinases have been implicated in promoting tumorigenesis of several human cancers. Exploiting these vulnerabilities has been shown to be an effective anti-tumor strategy as demonstrated for example by the Bruton's tyrosine kinase (BTK) inhibitor, ibrutinib, for treatment of various blood cancers. Here, we characterize a new multiple kinase inhibitor, ARQ531, and evaluate its mechanism of action in preclinical models of acute myeloid leukemia. Treatment with ARQ531, by producing global signaling pathway deregulation, resulted in impaired cell cycle progression and survival in a large panel of leukemia cell lines and patient-derived tumor cells, regardless of the specific genetic background and/or the presence of bone marrow stromal cells. RNA-seq analysis revealed that ARQ531 constrained tumor cell proliferation and survival through Bruton's tyrosine kinase and transcriptional program dysregulation, with proteasome-mediated MYB degradation and depletion of short-lived proteins that are crucial for tumor growth and survival, including ERK, MYC and MCL1. Finally, ARQ531 treatment was effective in a patient-derived leukemia mouse model with significant impairment of tumor progression and survival, at tolerated doses. These data justify the clinical development of ARQ531 as a promising targeted agent for the treatment of patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Debora Soncini
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Samantha Ruberti
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Paola Minetto
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Luca Agnelli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Katia Todoerti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Antonia Cagnetta
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maurizio Miglino
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marino Clavio
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Riccardo Varaldo
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Micaela Bergamaschi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
| | - Marco Gobbi
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | | | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto M. Lemoli
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Chair of Hematology, Department of Internal Medicine and Specialities (DiMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
11
|
Zhong Y, Qiu RZ, Sun SL, Zhao C, Fan TY, Chen M, Li NG, Shi ZH. Small-Molecule Fms-like Tyrosine Kinase 3 Inhibitors: An Attractive and Efficient Method for the Treatment of Acute Myeloid Leukemia. J Med Chem 2020; 63:12403-12428. [PMID: 32659083 DOI: 10.1021/acs.jmedchem.0c00696] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is an important member of the class III receptor tyrosine kinase (RTK) family, which is involved in the proliferation of hematopoietic cells and lymphocytes. In recent years, increasing evidence have demonstrated that the activation and mutation of FLT3 is closely implicated in the occurrence and development of acute myeloid leukemia (AML). The exploration of small-molecule inhibitors targeting FLT3 has aroused wide interest of pharmaceutical chemists and is expected to bring new hope for AML therapy. In this review, we specifically highlighted FLT3 mediated JAK/STAT, RAS/MAPK, and PI3K/AKT/mTOR signaling. The structural properties and biological activities of representative FLT3 inhibitors reported from 2014 to the present were also summarized. In addition, the major challenges in the current advance of novel FLT3 inhibitors were further analyzed, with the aim to guide future drug discovery.
Collapse
Affiliation(s)
- Yue Zhong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Run-Ze Qiu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chao Zhao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tian-Yuan Fan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Huang S, Li C, Zhang X, Pan J, Li F, Lv Y, Huang J, Ling Q, Ye W, Mao S, Huang X, Jin J. Abivertinib synergistically strengthens the anti-leukemia activity of venetoclax in acute myeloid leukemia in a BTK-dependent manner. Mol Oncol 2020; 14:2560-2573. [PMID: 32519423 PMCID: PMC7530784 DOI: 10.1002/1878-0261.12742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/23/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
B‐cell lymphoma 2 (BCL‐2), a crucial member of the anti‐apoptotic BCL‐2 family, is frequently dysregulated in cancer and plays an important role in acute myeloid leukemia (AML). Venetoclax is a highly selective BCL‐2 inhibitor that has been approved by the FDA for treating elderly AML patients. However, the emergence of resistance after long‐term treatment emphasizes the need for a deeper understanding of the potential mechanisms of resistance and effective rescue methods. By using RNA‐seq analysis in two human AML cohorts made up of three patients with complete remission and three patients without remission after venetoclax treatment, we identified that upregulation of BTK enabled AML blast resistance to venetoclax. Interestingly, we found that abivertinib, an oral BTK inhibitor, could synergize with venetoclax to inhibit the proliferation of primary AML cells and cell lines. It is worth noting that the combination of the two effectively enhanced the sensitivity of two AML patients (AML#3 and AML#12) to venetoclax. In this study, we demonstrated that combined use of the two drugs can synergistically inhibit the colony‐forming capacity of AML cells, arrest the AML cell cycle in the G0/G1 phase, and inhibit the BCL‐2 anti‐apoptotic family protein, activating the caspase family to induce apoptosis. Mechanistically, knockdown of BTK in AML cell lines impaired the synergistic effect of the two drugs. In vivo study showed similar results as those seen in vitro. Abivertinib in combination with venetoclax could significantly prolong the survival time and reduce the tumor burden of MV4‐11‐NSG mice compared with those of control and single‐agent groups. Our in vitro and in vivo studies have shown that the combination of abivertinib and venetoclax may benefit AML patients, especially in patients resistant to venetoclax or those that relapse. New clinical trials will be planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiajia Pan
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jingwen Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shihui Mao
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Patel AB, Pomicter AD, Yan D, Eiring AM, Antelope O, Schumacher JA, Kelley TW, Tantravahi SK, Kovacsovics TJ, Shami PJ, O'Hare T, Deininger MW. Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia 2020; 34:2981-2991. [PMID: 32409689 PMCID: PMC7606260 DOI: 10.1038/s41375-020-0858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 04/30/2020] [Indexed: 11/18/2022]
Abstract
FLT3-ITD mutations occur in 20–30% of AML patients and are associated with aggressive disease. Patients with relapsed FLT3-mutated disease respond well to 2nd generation FLT3 TKIs but inevitably relapse within a short timeframe. In this setting, until overt relapse occurs, the bone marrow microenvironment facilitates leukemia cell survival despite continued on-target inhibition. We demonstrate that human bone marrow derived conditioned medium (CM) protects FLT3-ITD+ AML cells from the 2nd generation FLT3 TKI quizartinib and activates STAT3 and STAT5 in leukemia cells. Extrinsic activation of STAT5 by CM is the primary mediator of leukemia cell resistance to FLT3 inhibition. Combination treatment with quizartinib and dasatinib abolishes STAT5 activation and significantly reduces the IC50 of quizartinib in FLT3-ITD+ AML cells cultured in CM. We demonstrate that CM protects FLT3-ITD+ AML cells from the inhibitory effects of quizartinib on glycolysis and that this is partially reversed by treating cells with the combination of quizartinib and dasatinib. Using a doxycycline-inducible STAT5 knockdown in the FLT3-ITD+ MOLM-13 cell line, we show that dasatinib-mediated suppression of leukemia cell glycolytic activity is STAT5-independent and provide a preclinical rationale for combination treatment with quizartinib and dasatinib in FLT3-ITD+ AML.
Collapse
Affiliation(s)
- Ami B Patel
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Dongqing Yan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna M Eiring
- Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Orlando Antelope
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Todd W Kelley
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srinivas K Tantravahi
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Tibor J Kovacsovics
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Paul J Shami
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Abstract
Fms-like tyrosine kinase-3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) cases, suggesting FLT3 as an attractive target for AML treatment. Early FLT3 inhibitors enhance antileukemia efficacy by inhibiting multiple targets, and thus had stronger off-target activity, increasing their toxicity. Recently, a number of potent and selective FLT3 inhibitors have been developed, many of which are effective against multiple mutations. This review outlines the evolution of AML-targeting FLT3 inhibitors by focusing on their chemotypes, selectivity and activity over FLT3 wild-type and FLT3 mutations as well as new techniques related to FLT3. Compounds that currently enter the late clinical stage or have entered the market are also briefly reported.
Collapse
|
15
|
Huang S, Pan J, Jin J, Li C, Li X, Huang J, Huang X, Yan X, Li F, Yu M, Hu C, Jin J, Xu Y, Ling Q, Ye W, Wang Y, Jin J. Abivertinib, a novel BTK inhibitor: Anti-Leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Cancer Lett 2019; 461:132-143. [PMID: 31310800 DOI: 10.1016/j.canlet.2019.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 01/23/2023]
Abstract
Ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), has shown promising pharmacologic effects in acute myeloid leukemia (AML). In this study, we report that abivertinib or AC0010, a novel BTK inhibitor, inhibits cell proliferation, reduces colony-forming capacity, and induces apoptosis and cell cycle arrest in AML cells, especially those harboring FLT3-ITD mutations. Abivertinib was also found to be more sensitive than ibrutinib in treating AML. We demonstrate that in addition to targeting the phosphorylation of BTK, abivertinib also targeted the crucial PI3K survival pathway. Furthermore, abivertinib suppressed the expression of p-FLT3 and the downstream target p-STAT5 in AML cells harboring FLT3-ITD mutations. Moreover, in vitro and in vivo data revealed synergistic activity between abivertinib and homoharringtonine (HHT), a natural plant alkaloid commonly used in China, in treating AML cells with or without FLT3-ITD mutations. Collectively, these preclinical data suggest that abivertinib may be a promising novel agent for AML, with potential for combination treatment with HHT. Clinical studies on abivertinib-involved therapy are planned.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jing Jin
- Department of Hematology, Shaoxing People's Hospital, Zhejiang, Shaoxing, China
| | - Chengying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First People's Hospital, Zhejiang, Hangzhou, China
| | - Chao Hu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jingrui Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yu Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China; Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China.
| |
Collapse
|
16
|
Targeting Tyrosine Kinases in Acute Myeloid Leukemia: Why, Who and How? Int J Mol Sci 2019; 20:ijms20143429. [PMID: 31336846 PMCID: PMC6679203 DOI: 10.3390/ijms20143429] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy carrying a heterogeneous molecular panel of mutations participating in the blockade of differentiation and the increased proliferation of myeloid hematopoietic stem and progenitor cells. The historical "3 + 7" treatment (cytarabine and daunorubicin) is currently challenged by new therapeutic strategies, including drugs depending on the molecular landscape of AML. This panel of mutations makes it possible to combine some of these new treatments with conventional chemotherapy. For example, the FLT3 receptor is overexpressed or mutated in 80% or 30% of AML, respectively. Such anomalies have led to the development of targeted therapies using tyrosine kinase inhibitors (TKIs). In this review, we document the history of TKI targeting, FLT3 and several other tyrosine kinases involved in dysregulated signaling pathways.
Collapse
|
17
|
Ling Y, Zhang Z, Zhang H, Huang Z. Protein Kinase Inhibitors as Therapeutic Drugs in AML: Advances and Challenges. Curr Pharm Des 2018; 23:4303-4310. [PMID: 28671056 PMCID: PMC6302345 DOI: 10.2174/1381612823666170703164114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/13/2017] [Accepted: 05/18/2017] [Indexed: 12/28/2022]
Abstract
Acute myeloid leukemia (AML) is a malignant blood disorder and the cure rate has been remarkably improved over the past decade. However, recurrent or refractory leu-kemia remains the major problem of the AML and no clearly effective therapy has been es-tablished so far. Traditional treatments such as chemotherapy and hematopoietic stem cell transplantation are both far dissatisfying the patients partly for their individual variety. Be-sides, conventional treatments usually have many side effects to result in poor prognosis. Therefore, an urgent need is necessary to update therapies of AML. To date, protein kinase inhibitors as new drugs offer hope for AML treatment and many of them are on clinical tri-als. Here, this review will provide a brief summary of protein kinase inhibitors investigated in AML thus far, mainly including tyrosine protein kinase inhibitors and serine/threonine kinase inhibitors. We also presented the sketch of signal pathways involving protein kinase inhibitors, as well as discussed the clinical applications and the challenges of inhibitors in AML treatment
Collapse
Affiliation(s)
- Yuan Ling
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zikang Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| | - Zunnan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P.R. China.,China-America Cancer Research Institute, Dongguan Key Laboratory of Epigenetics, Institute of Clinical Laboratory Medicine, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, P.R. China
| |
Collapse
|
18
|
Larrosa-Garcia M, Baer MR. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status and Future Directions. Mol Cancer Ther 2018; 16:991-1001. [PMID: 28576946 DOI: 10.1158/1535-7163.mct-16-0876] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/13/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase fms-like tyrosine kinase 3 (FLT3), involved in regulating survival, proliferation, and differentiation of hematopoietic stem/progenitor cells, is expressed on acute myeloid leukemia (AML) cells in most patients. Mutations of FLT3 resulting in constitutive signaling are common in AML, including internal tandem duplication (ITD) in the juxtamembrane domain in 25% of patients and point mutations in the tyrosine kinase domain in 5%. Patients with AML with FLT3-ITD have a high relapse rate and short relapse-free and overall survival after chemotherapy and after transplant. A number of inhibitors of FLT3 signaling have been identified and are in clinical trials, both alone and with chemotherapy, with the goal of improving clinical outcomes in patients with AML with FLT3 mutations. While inhibitor monotherapy produces clinical responses, they are usually incomplete and transient, and resistance develops rapidly. Diverse combination therapies have been suggested to potentiate the efficacy of FLT3 inhibitors and to prevent development of resistance or overcome resistance. Combinations with epigenetic therapies, proteasome inhibitors, downstream kinase inhibitors, phosphatase activators, and other drugs that alter signaling are being explored. This review summarizes the current status of translational and clinical research on FLT3 inhibitors in AML, and discusses novel combination approaches. Mol Cancer Ther; 16(6); 991-1001. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Clinical Trials as Topic
- Drug Evaluation, Preclinical
- Drug Resistance, Neoplasm/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Mutation
- Protein Binding
- Protein Interaction Domains and Motifs
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Multimerization
- Tandem Repeat Sequences
- Treatment Outcome
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/chemistry
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
Collapse
Affiliation(s)
- Maria Larrosa-Garcia
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
- Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
19
|
Nimmagadda SC, Frey S, Edelmann B, Hellmich C, Zaitseva L, König GM, Kostenis E, Bowles KM, Fischer T. Bruton's tyrosine kinase and RAC1 promote cell survival in MLL-rearranged acute myeloid leukemia. Leukemia 2017; 32:846-849. [PMID: 29109446 PMCID: PMC5843904 DOI: 10.1038/leu.2017.324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- S C Nimmagadda
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - S Frey
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - B Edelmann
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| | - C Hellmich
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK
| | - L Zaitseva
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK
| | - G M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - E Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - K M Bowles
- Department of Molecular Haematology, Norwich Medical School, The University of East Anglia, Norwich Research Park, Norwich, UK.,Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Colney Lane, Norwich, UK
| | - T Fischer
- Department of Hematology and Oncology, Medical Center, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
20
|
Wang A, Li X, Chen C, Wu H, Qi Z, Hu C, Yu K, Wu J, Liu J, Liu X, Hu Z, Wang W, Wang W, Wang W, Wang L, Wang B, Liu Q, Li L, Ge J, Ren T, Zhang S, Xia R, Liu J, Liu Q. Discovery of 1-(4-(4-Amino-3-(4-(2-morpholinoethoxy)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)phenyl)-3-(5-(tert-butyl)isoxazol-3-yl)urea (CHMFL-FLT3-213) as a Highly Potent Type II FLT3 Kinase Inhibitor Capable of Overcoming a Variety of FLT3 Kinase Mutants in FLT3-ITD Positive AML. J Med Chem 2017; 60:8407-8424. [DOI: 10.1021/acs.jmedchem.7b00840] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Xixiang Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Hong Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Ziping Qi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Kailin Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Jiaxin Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Juan Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology
Innovation, Hefei Institutes of Physical Science, Chinese Academy
of Sciences, Hefei, Anhui 230088, P. R. China
| | - Xiaochuan Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Zhenquan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Wenliang Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
| | - Qingwang Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology
Innovation, Hefei Institutes of Physical Science, Chinese Academy
of Sciences, Hefei, Anhui 230088, P. R. China
| | - Lili Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Tao Ren
- Precision Targeted Therapy Discovery Center, Institute of Technology
Innovation, Hefei Institutes of Physical Science, Chinese Academy
of Sciences, Hefei, Anhui 230088, P. R. China
| | - Shanchun Zhang
- Hefei Cosource Medicine Technology Co. Ltd., 358 Ganquan Road, Hefei, Anhui 230031, P. R. China
| | - Ruixiang Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- CHMFL-HCMTC Target Therapy Joint Laboratory, 350 Shushanhu Road, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230036, P. R. China
- Precision Targeted Therapy Discovery Center, Institute of Technology
Innovation, Hefei Institutes of Physical Science, Chinese Academy
of Sciences, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
21
|
Rizzotto L, Lai TH, Bottoni A, Woyach JA, Lapalombella R, Bloomfield CD, Byrd JC, Sampath D. Role and regulation of microRNAs targeting BTK in acute myelogenous leukemia. Leuk Lymphoma 2017; 59:1461-1465. [PMID: 28918688 DOI: 10.1080/10428194.2017.1376742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lara Rizzotto
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Tzung-Huei Lai
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Arianna Bottoni
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Jennifer A Woyach
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Rosa Lapalombella
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Clara D Bloomfield
- b The Ohio State University Comprehensive Cancer Center , Columbus , OH , USA
| | - John C Byrd
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| | - Deepa Sampath
- a Department of Internal Medicine, Division of Hematology , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
22
|
Li X, Yin X, Wang H, Huang J, Yu M, Ma Z, Li C, Zhou Y, Yan X, Huang S, Jin J. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia. Oncotarget 2017; 8:12764-12774. [PMID: 28061447 PMCID: PMC5355052 DOI: 10.18632/oncotarget.14463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/25/2016] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous disease and internal tandem duplication mutation in FMS-like tyrosine-kinase-3 (FLT3-ITD) has a negative impact on outcome. Finding effective treatment regimens is desperately needed. In this study, we explored the inhibitory effect and mechanism of homoharringtonine (HHT) in combination with ibrutinib on FLT3-ITD mutant AML cells. Consequently, we observed a synergistic inhibitory effect when ibrutinib was combined with HHT to inhibit cell proliferation, induce apoptosis and arrest cell cycle at G0/G1 phase in MV4-11 and MOLM-13 leukemia cells. Our results indicate that the mechanisms of the combination effect are mainly via regulating the STAT5/Pim-2/C-Myc pathway, AKT pathway and Bcl-2 family, activating p21WAF1/CIP1 and inhibiting CCND/CDK complex protein. Interestingly, synergistic cytotoxicity of ibrutinib and HHT was dependent on both FLT3 and BTK. Here we provide a novel effective therapeutic approach for the treatment of AML patients with FLT3-ITD mutation.
Collapse
Affiliation(s)
- Xia Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiufeng Yin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zhixin Ma
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yile Zhou
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiao Yan
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - ShuJuan Huang
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Key Lab of Hematopoietic Malignancy, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors. Eur J Med Chem 2017. [PMID: 28628824 DOI: 10.1016/j.ejmech.2017.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Through a structure-based drug design approach, a tricyclic benzonaphthyridinone pharmacophore was used as a starting point for carrying out detailed medicinal structure-activity relationhip (SAR) studies geared toward characterization of a panel of proposed BTK inhibitors, including 6 (QL-X-138), 7 (BMX-IN-1) and 8 (QL47). These studies led to the discovery of the novel potent irreversible BTK inhibitor, compound 18 (CHMFL-BTK-11). Kinetic analysis of compound 18 revealed an irreversible binding efficacy (kinact/Ki) of 0.01 μM-1s-1. Compound 18 potently inhibited BTK kinase Y223 auto-phosphorylation (EC50 < 100 nM), arrested cell cycle in G0/G1 phase, and induced apoptosis in Ramos, MOLM13 and Pfeiffer cells. We believe these features would make 18 a good pharmacological tool for studying BTK-related pathologies.
Collapse
|
24
|
|
25
|
Rotin LE, Gronda M, MacLean N, Hurren R, Wang X, Lin FH, Wrana J, Datti A, Barber DL, Minden MD, Slassi M, Schimmer AD. Ibrutinib synergizes with poly(ADP-ribose) glycohydrolase inhibitors to induce cell death in AML cells via a BTK-independent mechanism. Oncotarget 2016; 7:2765-79. [PMID: 26624983 PMCID: PMC4823070 DOI: 10.18632/oncotarget.6409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 12/15/2022] Open
Abstract
Targeting Bruton's tyrosine kinase (BTK) with the small molecule BTK inhibitor ibrutinib has significantly improved patient outcomes in several B-cell malignancies, with minimal toxicity. Given the reported expression and constitutive activation of BTK in acute myeloid leukemia (AML) cells, there has been recent interest in investigating the anti-AML activity of ibrutinib. We noted that ibrutinib had limited single-agent toxicity in a panel of AML cell lines and primary AML samples, and therefore sought to identify ibrutinib-sensitizing drugs. Using a high-throughput combination chemical screen, we identified that the poly(ADP-ribose) glycohydrolase (PARG) inhibitor ethacridine lactate synergized with ibrutinib in TEX and OCI-AML2 leukemia cell lines. The combination of ibrutinib and ethacridine induced a synergistic increase in reactive oxygen species that was functionally important to explain the observed cell death. Interestingly, synergistic cytotoxicity of ibrutinib and ethacridine was independent of the inhibitory effect of ibrutinib against BTK, as knockdown of BTK did not sensitize TEX and OCI-AML2 cells to ethacridine treatment. Thus, our findings indicate that ibrutinib may have a BTK-independent role in AML and that PARG inhibitors may have utility as part of a combination therapy for this disease.
Collapse
Affiliation(s)
- Lianne E Rotin
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Rose Hurren
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - XiaoMing Wang
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Feng-Hsu Lin
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Jeff Wrana
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Alessandro Datti
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada.,Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Dwayne L Barber
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
MZH29 is a novel potent inhibitor that overcomes drug resistance FLT3 mutations in acute myeloid leukemia. Leukemia 2016; 31:913-921. [DOI: 10.1038/leu.2016.297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/12/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022]
|
27
|
|
28
|
Li X, Wang A, Yu K, Qi Z, Chen C, Wang W, Hu C, Wu H, Wu J, Zhao Z, Liu J, Zou F, Wang L, Wang B, Wang W, Zhang S, Liu J, Liu Q. Discovery of (R)-1-(3-(4-Amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-2-(dimethylamino)ethanone (CHMFL-FLT3-122) as a Potent and Orally Available FLT3 Kinase Inhibitor for FLT3-ITD Positive Acute Myeloid Leukemia. J Med Chem 2015; 58:9625-38. [PMID: 26630553 DOI: 10.1021/acs.jmedchem.5b01611] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
FLT3-ITD mutant has been observed in about 30% of AML patients and extensively studied as a drug discovery target. On the basis of the structure of PCI-32765 (ibrutinib), a BTK kinase inhibitor that was recently reported to bear FLT3 kinase activity through a structure-guided drug design approach, we have discovered compound 18 (CHMFL-FLT3-122), which displayed an IC50 of 40 nM against FLT3 kinase and achieved selectivity over BTK kinase (over 10-fold). It significantly inhibited the proliferation of FLT3-ITD positive AML cancer cell lines MV4-11 (GI50 = 22 nM), MOLM13/14 (GI50 = 21 nM/42 nM). More importantly, 18 demonstrated 170-fold selectivity between FLT3 kinase and c-KIT kinase (GI50 = 11 nM versus 1900 nM) in the TEL-fusion isogenic BaF3 cells indicating a potential to avoid the FLT3/c-KIT dual inhibition induced myelosuppression toxicity. In the cellular context it strongly affected FLT3-ITD mediated signaling pathways and induced apoptosis by arresting the cell cycle into the G0/G1 phase. In the in vivo studies 18 demonstrated a good bioavailability (30%) and significantly suppressed the tumor growth in MV4-11 cell inoculated xenograft model (50 mg/kg) without exhibiting obvious toxicity. Compound 18 might be a potential drug candidate for FLT3-ITD positive AML.
Collapse
Affiliation(s)
- Xixiang Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Aoli Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,University of Science and Technology of China , Hefei 230036, Anhui, P. R. China
| | - Kailin Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,University of Science and Technology of China , Hefei 230036, Anhui, P. R. China
| | - Ziping Qi
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Cheng Chen
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Wenchao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Chen Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Hong Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,University of Science and Technology of China , Hefei 230036, Anhui, P. R. China
| | - Jiaxin Wu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,University of Science and Technology of China , Hefei 230036, Anhui, P. R. China
| | - Zheng Zhao
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Juan Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Fengming Zou
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Li Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Beilei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Wei Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Shanchun Zhang
- CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,Hefei Cosource Medicine Technology Co. Ltd., 358 Ganquan Road, Hefei 230031, Anhui, P. R. China
| | - Jing Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| | - Qingsong Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Mailbox 1110, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,CHMFL-HCMTC Target Therapy Joint Laboratory , 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China.,University of Science and Technology of China , Hefei 230036, Anhui, P. R. China.,Hefei Science Center, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui, P. R. China
| |
Collapse
|