1
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
2
|
Huang HY, Wang Y, Herold T, Gale RP, Wang JZ, Li L, Lin HX, Liang Y. A survival prediction model and nomogram based on immune-related gene expression in chronic lymphocytic leukemia cells. Front Med (Lausanne) 2022; 9:1026812. [PMID: 36600891 PMCID: PMC9806429 DOI: 10.3389/fmed.2022.1026812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction There are many different chronic lymphoblastic leukemia (CLL) survival prediction models and scores. But none provide information on expression of immune-related genes in the CLL cells. Methods We interrogated data from the Gene Expression Omnibus database (GEO, GSE22762; Number = 151; training) and International Cancer Genome Consortium database (ICGC, CLLE-ES; Number = 491; validation) to develop an immune risk score (IRS) using Least absolute shrinkage and selection operator (LASSO) Cox regression analyses based on expression of immune-related genes in CLL cells. The accuracy of the predicted nomogram we developed using the IRS, Binet stage, and del(17p) cytogenetic data was subsequently assessed using calibration curves. Results A survival model based on expression of 5 immune-related genes was constructed. Areas under the curve (AUC) for 1-year survivals were 0.90 (95% confidence interval, 0.78, 0.99) and 0.75 (0.54, 0.87) in the training and validation datasets, respectively. 5-year survivals of low- and high-risk subjects were 89% (83, 95%) vs. 6% (0, 17%; p < 0.001) and 98% (95, 100%) vs. 92% (88, 96%; p < 0.001) in two datasets. The IRS was an independent survival predictor of both datasets. A calibration curve showed good performance of the nomogram. In vitro, the high expression of CDKN2A and SREBF2 in the bone marrow of patients with CLL was verified by immunohistochemistry analysis (IHC), which were associated with poor prognosis and may play an important role in the complex bone marrow immune environment. Conclusion The IRS is an accurate independent survival predictor with a high C-statistic. A combined nomogram had good survival prediction accuracy in calibration curves. These data demonstrate the potential impact of immune related genes on survival in CLL.
Collapse
Affiliation(s)
- Han-ying Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Robert Peter Gale
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Jing-zi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huan-xin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,Huan-xin Lin,
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China,*Correspondence: Yang Liang,
| |
Collapse
|
3
|
In Vitro and In Vivo Models of CLL–T Cell Interactions: Implications for Drug Testing. Cancers (Basel) 2022; 14:cancers14133087. [PMID: 35804862 PMCID: PMC9264798 DOI: 10.3390/cancers14133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) cells in the peripheral blood and lymphoid microenvironment display substantially different gene expression profiles and proliferative capaci-ty. It has been suggested that CLL–T-cell interactions are key pro-proliferative stimuli in immune niches. We review in vitro and in vivo model systems that mimic CLL-T-cell interactions to trigger CLL proliferation and study therapy resistance. We focus on studies describing the co-culture of leukemic cells with T cells, or supportive cell lines expressing T-cell factors, and simplified models of CLL cells’ stimulation with recombinant factors. In the second part, we summarize mouse models revealing the role of T cells in CLL biology and implications for generating patient-derived xenografts by co-transplanting leukemic cells with T cells. Abstract T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL–T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL–T-cell interactions and CLL proliferation.
Collapse
|
4
|
Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON ( MST1R) and HGFL ( MST1) Co-Overexpression Supports Breast Tumorigenesis through Autocrine and Paracrine Cellular Crosstalk. Cancers (Basel) 2022; 14:2493. [PMID: 35626096 PMCID: PMC9140067 DOI: 10.3390/cancers14102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Aberrant RON signaling is present in numerous cancers including breast cancer. Evidence suggests that the ligand, hepatocyte growth factor-like (HGFL), is also overexpressed in breast cancer. RON (MST1R) and HGFL (MST1) genes are located on human chromosome 3 and mouse chromosome 9 respectively and are found near each other in both species. Based on co-expression patterns, we posited that RON and HGFL are co-regulated and that coordinate upregulation drives aggressive tumorigenesis. METHODS Mouse models were used to establish the functional significance of RON and HGFL co-overexpression on the activation of tumor cells and tumor-associated macrophages in breast cancer. TCGA and METABRIC gene expression and alteration data were used to query the relationships between MST1R and MST1 in breast cancer. RESULTS In tumor models, physiologic sources of HGFL modestly improve Arginase-1+ (M2) macrophage recruitment to the tumor proper. Tumor-cell produced HGFL functions in autocrine to sustain tumor cell RON activation and MAPK-dependent secretion of chemotactic factors and in paracrine to activate RON on macrophages and to promote breast cancer stem cell self-renewal. In silico analyses support that RON and HGFL are co-expressed across virtually all cancer types including breast cancer and that common genomic alterations do not appear to be drivers of RON/HGFL co-overexpression. CONCLUSIONS Co-overexpression of RON and HGFL in breast cancer cells (augmented by physiologic sources of HGFL) promotes tumorigenesis through autocrine-mediated RON activation/RON-dependent secretome changes and paracrine activation of macrophage RON to promote breast cancer stem cell self-renewal.
Collapse
Affiliation(s)
- Brian G. Hunt
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Angelle Jones
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Carissa Lester
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - James C. Davis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Nancy M. Benight
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
| | - Susan E. Waltz
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (B.G.H.); (A.J.); (C.L.); (J.C.D.); (N.M.B.)
- Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
| |
Collapse
|
5
|
Mantle cell lymphoma polarizes tumor-associated macrophages into M2-like macrophages, which in turn promote tumorigenesis. Blood Adv 2021; 5:2863-2878. [PMID: 34297045 DOI: 10.1182/bloodadvances.2020003871] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are recognized as a hallmark of certain solid cancers and predictors of poor prognosis; however, the functional role of TAMs in lymphoid malignancies, including B-cell lymphoma, has not been well defined. We identified infiltration of F4/80+ TAMs in a syngeneic mouse model using the recently generated murine mantle cell lymphoma (MCL) cell line FC-muMCL1. Multicolor flow cytometric analysis of syngeneic lymphoma tumors showed distinct polarization of F4/80+ TAMs into CD206+ M2 and CD80+ M1 phenotypes. Using human MCL cell lines (Mino, Granta, and JVM2), we further showed that MCL cells polarized monocyte-derived macrophages toward an M2-like phenotype, as assessed by CD163+ expression and increased interleukin-10 (IL-10) level; however, levels of the M1 markers CD80 and IL-12 remained unaffected. To show that macrophages contribute to MCL tumorigenesis, we xenografted the human MCL cell line Mino along with CD14+ monocytes and compared tumor growth between these 2 groups. Results showed that xenografted Mino along with CD14+ monocytes significantly increased the tumor growth in vivo compared with MCL cells alone (P < .001), whereas treatment with liposomal clodronate (to deplete the macrophages) reversed the effect of CD14+ monocytes on growth of MCL xenografts (P < .001). Mechanistically, IL-10 secreted by MCL-polarized M2-like macrophages was found to be responsible for increasing MCL growth by activating STAT1 signaling, whereas IL-10 neutralizing antibody or STAT1 inhibition by fludarabine or STAT1 short hairpin RNA significantly abolished MCL growth (P < .01). Collectively, our data show the existence of a tumor microenvironmental network of macrophages and MCL tumor and suggest the importance of macrophages in interventional therapeutic strategies against MCL and other lymphoid malignancies.
Collapse
|
6
|
CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism. Blood Adv 2021; 5:2817-2828. [PMID: 34269799 DOI: 10.1182/bloodadvances.2020003795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eμ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40-/-), or CD8+ T cells (TCL1+/+TAP-/-), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP-/- mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L-/- mice, and TCL1+/+CD40-/- mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.
Collapse
|
7
|
Apollonio B, Ioannou N, Papazoglou D, Ramsay AG. Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Front Oncol 2021; 11:626818. [PMID: 33842331 PMCID: PMC8027510 DOI: 10.3389/fonc.2021.626818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
Cancers, including lymphomas, develop in complex tissue environments where malignant cells actively promote the creation of a pro-tumoral niche that suppresses effective anti-tumor effector T cell responses. Research is revealing that the tumor microenvironment (TME) differs between different types of lymphoma, covering inflamed environments, as exemplified by Hodgkin lymphoma, to non-inflamed TMEs as seen in chronic lymphocytic leukemia (CLL) or diffuse-large B-cell lymphoma (DLBCL). In this review we consider how T cells and interferon-driven inflammatory signaling contribute to the regulation of anti-tumor immune responses, as well as sensitivity to anti-PD-1 immune checkpoint blockade immunotherapy. We discuss tumor intrinsic and extrinsic mechanisms critical to anti-tumor immune responses, as well as sensitivity to immunotherapies, before adding an additional layer of complexity within the TME: the immunoregulatory role of non-hematopoietic stromal cells that co-evolve with tumors. Studying the intricate interactions between the immune-stroma lymphoma TME should help to design next-generation immunotherapies and combination treatment strategies to overcome complex TME-driven immune suppression.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Despoina Papazoglou
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Faculty of Life Sciences & Medicine, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Roessner PM, Seiffert M. T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease? Leukemia 2020; 34:2012-2024. [PMID: 32457353 PMCID: PMC8318881 DOI: 10.1038/s41375-020-0873-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy, which is associated with profound alterations and defects in the immune system and a prevalent dependency on the microenvironmental niche. An abnormal T-cell compartment in the blood of CLL patients was already reported 40 years ago. Since then, our knowledge of T-cell characteristics in CLL has grown steadily, but the question of whether T-cells act as pro-tumoral bystander cells or possess anti-tumoral activity is still under debate. Increased numbers of CD4+ T-helper cell subsets are present in the blood of CLL patients, and T-helper cell cytokines have been shown to stimulate CLL cell survival and proliferation in vitro. In line with this, survival and growth of CLL cells in murine xenograft models have been shown to rely on activated CD4+ T-cells. This led to the hypothesis that T-cells are tumor-supportive in CLL. In recent years, evidence for an enrichment of antigen-experienced CD8+ T-cells in CLL has accumulated, and these cells have been shown to control leukemia in a CLL mouse model. Based on this, it was suggested that CD8+ T-cells recognize CLL-specific antigens and exert an anti-leukemia function. As described for other cancer entities, T-cells in CLL express multiple inhibitory receptors, such as PD-1, and lose their functional capacity, leading to an exhaustion phenotype which has been shown to be more severe in T-cells from secondary lymphoid organs compared with peripheral blood. This exhausted phenotype has been suggested to be causative for the poor response of CLL patients to CAR T-cell therapies. In addition, T-cells have been shown to be affected by drugs that are used to treat CLL, which likely impacts therapy response. This review provides an overview of the current knowledge about alterations of T-cells in CLL, including their distribution, function, and exhaustion state in blood and lymphoid organs, and touches also on the topic of how CLL drugs impact on the T-cell compartment and recent results of T-cell-based immunotherapy. We will discuss potential pathological roles of T-cell subsets in CLL and address the question of whether they foster progression or control of disease.
Collapse
Affiliation(s)
- Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Roessner PM, Hanna BS, Öztürk S, Schulz R, Llaó Cid L, Yazdanparast H, Scheffold A, Colomer D, Stilgenbauer S, Lichter P, Seiffert M. TBET-expressing Th1 CD4 + T cells accumulate in chronic lymphocytic leukaemia without affecting disease progression in Eµ-TCL1 mice. Br J Haematol 2019; 189:133-145. [PMID: 31724172 DOI: 10.1111/bjh.16316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/30/2019] [Indexed: 12/30/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is associated with alterations in T cell number, subset distribution and function. Among these changes, an increase in CD4+ T cells was reported. CD4+ T cells are a heterogeneous population and distinct subsets have been described to exert pro- and anti-tumour functions. In CLL, controversial reports describing the dominance of IFNγ-expressing Th1 T cells or of IL-4-producing Th2 T cells exist. Our study shows that blood of CLL patients is enriched in Th1 T cells producing high amounts of IFNγ. Moreover, we observed that their frequency remains relatively stable in CLL patients over a time course of five years. Furthermore, we provide evidence for an accumulation of Th1 T cells in the Eµ-TCL1 mouse model of CLL. As TBET (encoded by Tbx21) is a crucial transcription factor for Th1 polarization, we generated Tbx21-/- bone marrow chimaeric mice which showed a lower number of IFNγ-producing Th1 T cells, and used them for adoptive transfer of Eµ-TCL1 leukaemia. Disease development in these mice was, however, comparable to that in wild-type controls, excluding a major role for TBET-expressing Th1 cells in Eµ-TCL1 leukaemia. Collectively, our data highlight that Th1 T cells accumulate in CLL but reducing their number has no impact on disease development.
Collapse
Affiliation(s)
| | - Bola S Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Selcen Öztürk
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Ralph Schulz
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | - Laura Llaó Cid
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany.,Faculty of Biosciences, University of Heidelberg, Germany
| | | | | | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Germany
| |
Collapse
|
10
|
Dong S, Harrington BK, Hu EY, Greene JT, Lehman AM, Tran M, Wasmuth RL, Long M, Muthusamy N, Brown JR, Johnson AJ, Byrd JC. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest 2018; 129:122-136. [PMID: 30457982 DOI: 10.1172/jci99386] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy with small molecules directed at essential survival pathways in leukemia represents a major advance, including the phosphatidylinositol-3'-kinase (PI3K) p110δ inhibitor idelalisib. Here, we found that genetic inactivation of p110δ (p110δD910A/D910A) in the Eμ-TCL1 murine chronic lymphocytic leukemia (CLL) model impaired B cell receptor signaling and B cell migration, and significantly delayed leukemia pathogenesis. Regardless of TCL1 expression, p110δ inactivation led to rectal prolapse in mice resembling autoimmune colitis in patients receiving idelalisib. Moreover, we showed that p110δ inactivation in the microenvironment protected against CLL and acute myeloid leukemia. After receiving higher numbers of TCL1 leukemia cells, half of p110δD910A/D910A mice spontaneously recovered from high disease burden and resisted leukemia rechallenge. Despite disease resistance, p110δD910A/D910A mice exhibited compromised CD4+ and CD8+ T cell response, and depletion of CD4+ or CD8+ T cells restored leukemia. Interestingly, p110δD910A/D910A mice showed significantly impaired Treg expansion that associated with disease clearance. Reconstitution of p110δD910A/D910A mice with p110δWT/WT Tregs reversed leukemia resistance. Our findings suggest that p110δ inhibitors may have direct antileukemic and indirect immune-activating effects, further supporting that p110δ blockade may have a broader immune-modulatory role in types of leukemia that are not sensitive to p110δ inhibition.
Collapse
Affiliation(s)
- Shuai Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Bonnie K Harrington
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,College of Veterinary Medicine
| | - Eileen Y Hu
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Medical Scientist Training Program
| | - Joseph T Greene
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Molecular, Cellular, and Developmental Biology Program, and
| | - Amy M Lehman
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Minh Tran
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Ronni L Wasmuth
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Amy J Johnson
- Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center.,Janssen Research and Development LLC, Spring House, Pennsylvania, USA
| | - John C Byrd
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy.,Division of Hematology, Department of Internal Medicine and Comprehensive Cancer Center
| |
Collapse
|
11
|
Hanna BS, Roessner PM, Yazdanparast H, Colomer D, Campo E, Kugler S, Yosifov D, Stilgenbauer S, Schmidt M, Gabriel R, Lichter P, Seiffert M. Control of chronic lymphocytic leukemia development by clonally-expanded CD8 + T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia 2018; 33:625-637. [PMID: 30267008 DOI: 10.1038/s41375-018-0250-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/30/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is associated with substantial alterations in T-cell composition and function. However, the role of T-cells in CLL remains largely controversial. Here, we utilized the Eµ-TCL1 mouse model of CLL as well as blood and lymph node samples of CLL patients to investigate the existence of anti-tumoral immune responses in CLL, and to characterize involved immune cell populations. Thereby, we identified an oligoclonal CD8+ effector T-cell population that expands along with CLL progression and controls disease development. We further show that a higher percentage of CD8+ effector T-cells produces IFNγ, and demonstrate that neutralization of IFNγ results in faster CLL progression in mice. Phenotypical and functional analyses of expanded CD8+ effector T-cells show significant differences in disease-affected tissues in mice, with cells in secondary lymphoid organs harboring hallmarks of activation-induced T-cell exhaustion. Notably, we further describe a respective population of exhausted CD8+ T-cells that specifically accumulate in lymph nodes, but not in peripheral blood of CLL patients. Collectively, these data emphasize the non-redundant role of CD8+ T-cells in suppressing CLL progression and highlight their dysfunction that can be exploited as target of immunotherapy in this malignancy.
Collapse
Affiliation(s)
- Bola S Hanna
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Philipp M Roessner
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hematopathology Unit, Hospital Clinic, CIBERONC, Barcelona, Spain
| | | | - Deyan Yosifov
- Internal Medicine III, University of Ulm, Ulm, Germany
| | | | - Manfred Schmidt
- Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Gabriel
- Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Lichter
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Reiners KS, Shatnyeva O, Vasyutina E, Bösl T, Hansen HP, Hallek M, Herling M, von Strandmann EP. Extracellular vesicles released from chronic lymphocytic leukemia cells exhibit a disease relevant mRNA signature and transfer mRNA to bystander cells. Haematologica 2016; 102:e100-e103. [PMID: 27856511 DOI: 10.3324/haematol.2016.153197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Katrin S Reiners
- Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Olga Shatnyeva
- Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Elena Vasyutina
- Department I of Internal Medicine, University Hospital of Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, CECAD, Germany
| | - Teresa Bösl
- Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Hinrich P Hansen
- Department I of Internal Medicine, University Hospital of Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, University Hospital of Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, CECAD, Germany.,Center of Integrated Oncology Köln Bonn, CIO, Germany
| | - Marco Herling
- Department I of Internal Medicine, University Hospital of Cologne, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases, CECAD, Germany.,Center of Integrated Oncology Köln Bonn, CIO, Germany
| | - Elke Pogge von Strandmann
- Department I of Internal Medicine, University Hospital of Cologne, Germany .,Clinic for Hematology, Oncology and Immunology, Experimental Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Marburg, Germany
| |
Collapse
|
13
|
Friedman DR, Sibley AB, Owzar K, Chaffee KG, Slager S, Kay NE, Hanson CA, Ding W, Shanafelt TD, Weinberg JB, Wilcox RA. Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multi-institutional study. Am J Hematol 2016; 91:687-91. [PMID: 27037726 DOI: 10.1002/ajh.24376] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 11/12/2022]
Abstract
Monocyte-derived cells, constituents of the cancer microenvironment, support chronic lymphocytic leukemia (CLL) cell survival in vitro via direct cell-cell interaction and secreted factors. We hypothesized that circulating absolute monocyte count (AMC) reflects the monocyte-derived cells in the microenvironment, and that higher AMC is associated with increased CLL cell survival in vivo and thus inferior CLL patient outcomes. We assessed the extent to which AMC at diagnosis of CLL is correlated with clinical outcomes, and whether this information adds to currently used prognostic markers. We evaluated AMC, clinically used prognostic markers, and time to event data from 1,168 CLL patients followed at the Mayo Clinic, the Duke University Medical Center, and the Durham VA Medical Center. Elevated AMC was significantly associated with inferior clinical outcomes, including time to first therapy (TTT) and overall survival (OS). AMC combined with established clinical and molecular prognostic markers significantly improved risk-stratification of CLL patients for TTT. As an elevated AMC at diagnosis is associated with accelerated disease progression, and monocyte-derived cells in the CLL microenvironment promote CLL cell survival and proliferation, these findings suggest that monocytes and monocyte-derived cells are rational therapeutic targets in CLL. Am. J. Hematol. 91:687-691, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daphne R. Friedman
- Department of Medicine; Duke University Medical Center; Durham North Carolina
- Durham VA Medical Center; Durham North Carolina
| | | | | | - Kari G. Chaffee
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | - Susan Slager
- Department of Health Sciences Research; Mayo Clinic; Rochester Minnesota
| | - Neil E. Kay
- Department of Internal Medicine; Division of Hematology; Mayo Clinic; Rochester Minnesota
| | | | - Wei Ding
- Department of Internal Medicine; Division of Hematology; Mayo Clinic; Rochester Minnesota
| | - Tait D. Shanafelt
- Department of Internal Medicine; Division of Hematology; Mayo Clinic; Rochester Minnesota
| | - J. Brice Weinberg
- Department of Medicine; Duke University Medical Center; Durham North Carolina
- Durham VA Medical Center; Durham North Carolina
| | - Ryan A. Wilcox
- Department of Internal Medicine; University of Michigan; Ann Arbor Michigan
| |
Collapse
|
14
|
Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rößner PM, Benner A, Dürr C, Egle A, Gribben JG, Lichter P, Seiffert M. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia 2015; 30:570-9. [PMID: 26522085 DOI: 10.1038/leu.2015.305] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/22/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by apoptosis resistance and a dysfunctional immune system. Previous reports suggested a potential role of myeloid cells in mediating these defects. However, the composition and function of CLL-associated myeloid cells have not been thoroughly investigated in vivo. Using the Eμ-TCL1 mouse model, we observed severe skewing of myeloid cell populations with CLL development. Monocytes and M2-like macrophages infiltrated the peritoneal cavity of leukemic mice. Monocytes also accumulated in the spleen in a CCR2-dependent manner, and were severely skewed toward Ly6C(low) patrolling or nonclassical phenotype. In addition, the percentage of MHC-II(hi) dendritic cells and macrophages significantly dropped in the spleen. Gene expression profiling of CLL-associated monocytes revealed aberrantly high PD-L1 expression and secretion of multiple inflammatory and immunosuppressive cytokines like interleukin-10, tumor necrosis factor-α and CXCL9. In vivo myeloid cell depletion using liposomal Clodronate resulted in a significant control of CLL development accompanied by a pronounced repair of innate immune cell phenotypes and a partial resolution of systemic inflammation. In addition, CLL-associated skewing of T cells toward antigen-experienced phenotypes was repaired. The presented data suggest that targeting nonmalignant myeloid cells might serve as a novel immunotherapeutical strategy for CLL.
Collapse
Affiliation(s)
- B S Hanna
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F McClanahan
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - H Yazdanparast
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - N Zaborsky
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department for Hematology, Paracelsus Private Medical University Hospital, Salzburg, Austria
| | - V Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P M Rößner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - C Dürr
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Egle
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department for Hematology, Paracelsus Private Medical University Hospital, Salzburg, Austria
| | - J G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - P Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|