1
|
Morabito F, Adornetto C, Monti P, Amaro A, Reggiani F, Colombo M, Rodriguez-Aldana Y, Tripepi G, D’Arrigo G, Vener C, Torricelli F, Rossi T, Neri A, Ferrarini M, Cutrona G, Gentile M, Greco G. Genes selection using deep learning and explainable artificial intelligence for chronic lymphocytic leukemia predicting the need and time to therapy. Front Oncol 2023; 13:1198992. [PMID: 37719021 PMCID: PMC10501728 DOI: 10.3389/fonc.2023.1198992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/31/2023] [Indexed: 09/19/2023] Open
Abstract
Analyzing gene expression profiles (GEP) through artificial intelligence provides meaningful insight into cancer disease. This study introduces DeepSHAP Autoencoder Filter for Genes Selection (DSAF-GS), a novel deep learning and explainable artificial intelligence-based approach for feature selection in genomics-scale data. DSAF-GS exploits the autoencoder's reconstruction capabilities without changing the original feature space, enhancing the interpretation of the results. Explainable artificial intelligence is then used to select the informative genes for chronic lymphocytic leukemia prognosis of 217 cases from a GEP database comprising roughly 20,000 genes. The model for prognosis prediction achieved an accuracy of 86.4%, a sensitivity of 85.0%, and a specificity of 87.5%. According to the proposed approach, predictions were strongly influenced by CEACAM19 and PIGP, moderately influenced by MKL1 and GNE, and poorly influenced by other genes. The 10 most influential genes were selected for further analysis. Among them, FADD, FIBP, FIBP, GNE, IGF1R, MKL1, PIGP, and SLC39A6 were identified in the Reactome pathway database as involved in signal transduction, transcription, protein metabolism, immune system, cell cycle, and apoptosis. Moreover, according to the network model of the 3D protein-protein interaction (PPI) explored using the NetworkAnalyst tool, FADD, FIBP, IGF1R, QTRT1, GNE, SLC39A6, and MKL1 appear coupled into a complex network. Finally, all 10 selected genes showed a predictive power on time to first treatment (TTFT) in univariate analyses on a basic prognostic model including IGHV mutational status, del(11q) and del(17p), NOTCH1 mutations, β2-microglobulin, Rai stage, and B-lymphocytosis known to predict TTFT in CLL. However, only IGF1R [hazard ratio (HR) 1.41, 95% CI 1.08-1.84, P=0.013), COL28A1 (HR 0.32, 95% CI 0.10-0.97, P=0.045), and QTRT1 (HR 7.73, 95% CI 2.48-24.04, P<0.001) genes were significantly associated with TTFT in multivariable analyses when combined with the prognostic factors of the basic model, ultimately increasing the Harrell's c-index and the explained variation to 78.6% (versus 76.5% of the basic prognostic model) and 52.6% (versus 42.2% of the basic prognostic model), respectively. Also, the goodness of model fit was enhanced (χ2 = 20.1, P=0.002), indicating its improved performance above the basic prognostic model. In conclusion, DSAF-GS identified a group of significant genes for CLL prognosis, suggesting future directions for bio-molecular research.
Collapse
Affiliation(s)
| | - Carlo Adornetto
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Paola Monti
- Mutagenesis and Cancer Prevention Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Adriana Amaro
- Tumor Epigenetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Reggiani
- Tumor Epigenetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Colombo
- Molecular Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Giovanni Tripepi
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Reggio Calabria, Italy
| | - Graziella D’Arrigo
- Consiglio Nazionale delle Ricerche, Istituto di Fisiologia Clinica del Consiglio Nazionale delle Ricerche (CNR), Reggio Calabria, Italy
| | - Claudia Vener
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Crabtree Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Crabtree Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Scientific Directorate, Azienda Unità Sanitaria Locale - Istituto di Ricovero e Cura a Carattere Scientifico (USL-IRCCS) of Reggio Emilia, Reggio Emilia, Italy
| | - Manlio Ferrarini
- Unità Operariva (UO) Molecular Pathology, Ospedale Policlinico San Martino Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genoa, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Massimo Gentile
- Hematology Unit, Department of Onco-Hematology, Azienda Ospedaliera (A.O.) of Cosenza, Cosenza, Italy
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| |
Collapse
|
2
|
Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers (Basel) 2021; 13:cancers13215448. [PMID: 34771611 PMCID: PMC8582520 DOI: 10.3390/cancers13215448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tyro3, Axl, and MerTK are receptor tyrosine kinases of the TAM family, which are activated by their ligands Gas6 and Protein S. TAM receptors have large physiological implications, including the removal of dead cells, activation of immune cells, and prevention of bleeding. In the last decade, TAM receptors have been suggested to play a relevant role in liver fibrogenesis and the development of hepatocellular carcinoma. The understanding of TAM receptor functions in tumor cells and their cellular microenvironment is of utmost importance to advances in novel therapeutic strategies that conquer chronic liver disease including hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, showing high mortality of patients due to limited therapeutic options at advanced stages of disease. The receptor tyrosine kinases Tyro3, Axl and MerTK—belonging to the TAM family—exert a large impact on various aspects of cancer biology. Binding of the ligands Gas6 or Protein S activates TAM receptors causing homophilic dimerization and heterophilic interactions with other receptors to modulate effector functions. In this context, TAM receptors are major regulators of anti-inflammatory responses and vessel integrity, including platelet aggregation as well as resistance to chemotherapy. In this review, we discuss the relevance of TAM receptors in the intrinsic control of HCC progression by modulating epithelial cell plasticity and by promoting metastatic traits of neoplastic hepatocytes. Depending on different etiologies of HCC, we further describe the overt role of TAM receptors in the extrinsic control of HCC progression by focusing on immune cell infiltration and fibrogenesis. Additionally, we assess TAM receptor functions in the chemoresistance against clinically used tyrosine kinase inhibitors and immune checkpoint blockade in HCC progression. We finally address the question of whether inhibition of TAM receptors can be envisaged for novel therapeutic strategies in HCC.
Collapse
|
3
|
Tirado-Gonzalez I, Descot A, Soetopo D, Nevmerzhitskaya A, Schaffer A, Kur IM, Czlonka E, Wachtel C, Tsoukala I, Muller L, Schafer AL, Weitmann M, Dinse P, Alberto E, Buck MC, Landry JJM, Baying B, Slotta-Huspenina J, Roesler J, Harter PN, Kubasch AS, Meinel J, Elwakeel E, Strack E, Tran Quang C, Abdel-Wahab O, Schmitz M, Weigert A, Schmid T, Platzbecker U, Benes V, Ghysdael J, Bonig H, Gotze KS, Rothlin CV, Ghosh S, Medyouf H. AXL inhibition in macrophages stimulates host-versus-leukemia immunity and eradicates naive and treatment resistant leukemia. Cancer Discov 2021; 11:2924-2943. [PMID: 34103328 DOI: 10.1158/2159-8290.cd-20-1378] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/04/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
Acute leukemias are systemic malignancies associated with a dire outcome. Due to low immunogenicity, leukemias display a remarkable ability to evade immune control and are often resistant to checkpoint blockade. Here, we discover that leukemia cells actively establish a suppressive environment to prevent immune attacks by co-opting a signaling axis that skews macrophages towards a tumor promoting tissue repair phenotype, namely the GAS6/AXL axis. Using aggressive leukemia models, we demonstrate that ablation of the AXL receptor specifically in macrophages, or its ligand GAS6 in the environment, stimulates anti-leukemic immunity and elicits effective and lasting NK- and T-cell dependent immune response against naive and treatment resistant leukemia. Remarkably, AXL deficiency in macrophages also enables PD1 checkpoint blockade in PD1-refractory leukemias. Lastly, we provide proof-of-concept that a clinical grade AXL inhibitor can be used in combination with standard of care therapy to cure established leukemia, regardless on AXL expression in malignant cells.
Collapse
Affiliation(s)
| | - Arnaud Descot
- Cell Biology and Tumor Biology Program, German Cancer Research Center
| | | | | | | | | | | | | | | | - Luise Muller
- Institute of Immunology, Medical Faculty, TU Dresden
| | | | | | | | | | - Michele C Buck
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München (TUM)
| | | | | | | | - Jenny Roesler
- Institute of Neurology (Edinger Institute), Goethe-University
| | | | - Anne-Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, University Hospital Leipzig
| | - Jörn Meinel
- Department of Pathology, University of Cologne
| | | | | | | | | | - Marc Schmitz
- Institute of Immunology, Medical Faculty, TU Dresden
| | | | - Tobias Schmid
- Institute of Biochemistry I, Goethe University Frankfurt
| | - Uwe Platzbecker
- Med. Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus
| | - Vladimir Benes
- GeneCore, European Molecular Biology Laboratory, Heidelberg, Germany, Genomics Core Facility
| | | | - Halvard Bonig
- Medicine/Transfusion Medicine and Immunohematology, Goethe University
| | - Katharina S Gotze
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München (TUM)
| | | | | | | |
Collapse
|
4
|
Maiti GP, Sinha S, Mahmud H, Boysen J, Mendez MT, Vesely SK, Holter-Chakrabarty J, Kay NE, Ghosh AK. SIRT3 overexpression and epigenetic silencing of catalase regulate ROS accumulation in CLL cells activating AXL signaling axis. Blood Cancer J 2021; 11:93. [PMID: 34001853 PMCID: PMC8129117 DOI: 10.1038/s41408-021-00484-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial metabolism is the key source for abundant ROS in chronic lymphocytic leukemia (CLL) cells. Here, we detected significantly lower superoxide anion (O2−) levels with increased accumulation of hydrogen peroxide (H2O2) in CLL cells vs. normal B-cells. Further analysis indicated that mitochondrial superoxide dismutase (SOD)2, which converts O2− into H2O2 remained deacetylated in CLL cells due to SIRT3 overexpression resulting its constitutive activation. In addition, catalase expression was also reduced in CLL cells suggesting impairment of H2O2-conversion into water and O2 which may cause H2O2-accumulation. Importantly, we identified two CpG-islands in the catalase promoter and discovered that while the distal CpG-island (−3619 to −3765) remained methylated in both normal B-cells and CLL cells, variable degrees of methylation were discernible in the proximal CpG-island (−174 to −332) only in CLL cells. Finally, treatment of CLL cells with a demethylating agent increased catalase mRNA levels. Functionally, ROS accumulation in CLL cells activated the AXL survival axis while upregulated SIRT3, suggesting that CLL cells rapidly remove highly reactive O2− to avoid its cytotoxic effect but maintain increased H2O2-level to promote cell survival. Therefore, abrogation of aberrantly activated cell survival pathways using antioxidants can be an effective intervention in CLL therapy in combination with conventional agents.
Collapse
Affiliation(s)
- Guru P Maiti
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sutapa Sinha
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Justin Boysen
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mariana T Mendez
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sara K Vesely
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | | | - Neil E Kay
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Asish K Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
5
|
Sinha S, Secreto CR, Boysen JC, Lesnick C, Wang Z, Ding W, Call TG, Kenderian SJ, Parikh SA, Warner SL, Bearss DJ, Ghosh AK, Kay NE. Upregulation of AXL and β-catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance. Blood Cancer J 2021; 11:37. [PMID: 33602892 PMCID: PMC7893033 DOI: 10.1038/s41408-021-00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sutapa Sinha
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Zhiquan Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Asish K Ghosh
- Stephenson Cancer Center and Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Humtsoe JO, Kim HS, Leonard B, Ling S, Keam B, Marchionni L, Afsari B, Considine M, Favorov AV, Fertig EJ, Kang H, Ha PK. Newly Identified Members of FGFR1 Splice Variants Engage in Cross-talk with AXL/AKT Axis in Salivary Adenoid Cystic Carcinoma. Cancer Res 2021; 81:1001-1013. [PMID: 33408119 DOI: 10.1158/0008-5472.can-20-1780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Adenoid cystic carcinoma (ACC) is the second most common malignancy of the salivary gland. Although characterized as an indolent tumor, ACC often leads to incurable metastatic disease. Patients with ACC respond poorly to currently available therapeutic drugs and factors contributing to the limited response remain unknown. Determining the role of molecular alterations frequently occurring in ACC may clarify ACC tumorigenesis and advance the development of effective treatment strategies. Applying Splice Expression Variant Analysis and outlier statistics on RNA sequencing of primary ACC tumors and matched normal salivary gland tissues, we identified multiple alternative splicing events (ASE) of genes specific to ACC. In ACC cells and patient-derived xenografts, FGFR1 was a uniquely expressed ASE. Detailed PCR analysis identified three novel, truncated, intracellular domain-lacking FGFR1 variants (FGFR1v). Cloning and expression analysis suggest that the three FGFR1v are cell surface proteins, that expression of FGFR1v augmented pAKT activity, and that cells became more resistant to pharmacologic FGFR1 inhibitor. FGFR1v-induced AKT activation was associated with AXL function, and inhibition of AXL activity in FGFR1v knockdown cells led to enhanced cytotoxicity in ACC. Moreover, cell killing effect was increased by dual inhibition of AXL and FGFR1 in ACC cells. This study demonstrates that these previously undescribed FGFR1v cooperate with AXL and desensitize cells to FGFR1 inhibitor, which supports further investigation into combined FGFR1 and AXL inhibition as an effective ACC therapy.This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor suggestive of a potential resistance mechanism in ACC. SIGNIFICANCE: This study identifies several FGFR1 variants that function through the AXL/AKT signaling pathway independent of FGF/FGFR1, desensitizing cells to FGFR1 inhibitor, suggestive of a potential resistance mechanism in ACC.
Collapse
Affiliation(s)
- Joseph O Humtsoe
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hyun-Su Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Brandon Leonard
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Shizhang Ling
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Bhumsuk Keam
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of South Korea
| | - Luigi Marchionni
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Bahman Afsari
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Michael Considine
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland
| | - Alexander V Favorov
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.,Laboratory of Systems Biology and Computational Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Elana J Fertig
- Department of Oncology, Division of Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, Maryland.,Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hyunseok Kang
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| |
Collapse
|
7
|
Mahmud H, Mendez M, Mukhopadhyay B, Holter-Chakrabarty J, Ghosh AK. HSP90 overexpression potentiates the B-cell receptor and fibroblast growth factor receptor survival signals in chronic lymphocytic leukemia cells. Oncotarget 2020; 11:2037-2046. [PMID: 32547702 PMCID: PMC7275782 DOI: 10.18632/oncotarget.27409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/16/2019] [Indexed: 12/02/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is still an incurable disease despite aggressive chemotherapies including the B-cell receptor (BCR) targeted-inhibitors. Therefore, we assessed the expression status of key signal mediators of the BCR pathway in CLL cells. Indeed, we detected aberrantly elevated levels of CD79a, B-cell adaptor for PI3K (BCAP) and phospholipase C (PLC)γ2, key mediators of BCR signal, in CLL cells. As HSP90 is also overexpressed in CLL cells, we hypothesized that HSP90 could potentiate the BCR signal via stabilization of multiple key components of the BCR-signalosome. We found that HSP90 formed a multi-molecular complex with CD79a, BCAP, PLCγ2, LYN, SYK, Bruton tyrosine kinase (BTK) and AKT and that, pharmacologic inhibition or partial depletion of HSP90 reduced the expression of these signal mediators in CLL cells. In addition, our findings also demonstrated that HSP90 could stabilize the tyrosine phosphatase, PTPN22 which positively regulates AKT phosphorylation, and the constitutively active fibroblast growth factor receptor 3 (FGFR3) in CLL cells. Finally, HSP90 inhibition induced apoptosis in CLL cells in a dose-dependent manner likely via downregulation of anti-apoptotic proteins MCL-1 and XIAP, but not BCL2, reported to be overexpressed in CLL cells. In total, our findings suggest that HSP90-inhibition may sensitize the leukemic B-cells to BCR-targeted agents, particularly those become resistant to these therapies.
Collapse
Affiliation(s)
- Hasan Mahmud
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mariana Mendez
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bedabrata Mukhopadhyay
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | - Asish K Ghosh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
8
|
Yan S, Vandewalle N, De Beule N, Faict S, Maes K, De Bruyne E, Menu E, Vanderkerken K, De Veirman K. AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers (Basel) 2019; 11:E1727. [PMID: 31694201 PMCID: PMC6896070 DOI: 10.3390/cancers11111727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
AXL belongs to the TAM (TYRO3, AXL, and MERTK) receptor family, a unique subfamily of the receptor tyrosine kinases. Their common ligand is growth arrest-specific protein 6 (GAS6). The GAS6/TAM signaling pathway regulates many important cell processes and plays an essential role in immunity, hemostasis, and erythropoiesis. In cancer, AXL overexpression and activation has been associated with cell proliferation, chemotherapy resistance, tumor angiogenesis, invasion, and metastasis; and has been correlated with a poor prognosis. In hematological malignancies, the expression and function of AXL is highly diverse, not only between the different tumor types but also in the surrounding tumor microenvironment. Most research and clinical evidence has been provided for AXL inhibitors in acute myeloid leukemia. However, recent studies also revealed an important role of AXL in lymphoid leukemia, lymphoma, and multiple myeloma. In this review, we summarize the basic functions of AXL in various cell types and the role of AXL in different hematological cancers, with a focus on AXL in the dormancy of multiple myeloma. In addition, we provide an update on the most promising AXL inhibitors currently in preclinical/clinical evaluation and discuss future perspectives in this emerging field.
Collapse
Affiliation(s)
- Siyang Yan
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
- Department of Hematology, Tianjin Medical University, Tianjin 300060, China
| | - Niels Vandewalle
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Nathan De Beule
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
9
|
Flem Karlsen K, McFadden E, Flørenes VA, Davidson B. Soluble AXL is ubiquitously present in malignant serous effusions. Gynecol Oncol 2019; 152:408-415. [PMID: 30448261 DOI: 10.1016/j.ygyno.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective of this study was to analyze the expression level and clinical role of soluble AXL (sAXL) in cancers affecting the serosal surfaces, with focus on ovarian carcinoma. METHODS sAXL protein expression by ELISA was analyzed in 572 effusion supernatants, including 424 peritoneal, 147 pleural and 1 pericardial specimens. RESULTS sAXL was overexpressed in peritoneal effusions compared to pleural and pericardial specimens (p < 0.001). sAXL levels were additionally significantly higher in effusions from patients with ovarian carcinoma, malignant mesothelioma and breast carcinoma compared to specimens from patients with other cancers (predominantly carcinomas of lung, gastrointestinal or uterine corpus/cervix origin) or benign reactive effusions (p < 0.001). sAXL was further overexpressed in high-grade serous carcinoma (HGSC; n = 373) compared to low-grade serous carcinoma (LGSC; n = 32; p = 0.036). In HGSC, sAXL levels were significantly lower in post-chemotherapy effusions compared to primary diagnosis pre-chemotherapy specimens (p = 0.002). sAXL levels in HGSC were unrelated to chemoresponse at diagnosis, progression-free survival or overall survival. Levels were similarly unrelated to survival in LGSC and breast carcinoma. CONCLUSIONS sAXL is widely expressed in malignant effusions, particularly in ovarian and breast carcinoma and in malignant mesothelioma. sAXL is overexpressed in HGSC compared to LGSC and its levels are lower following exposure to chemotherapy. However, sAXL levels are not informative of chemoresponse or survival.
Collapse
Affiliation(s)
- Karine Flem Karlsen
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway
| | - Erin McFadden
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Vivi Ann Flørenes
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310 Oslo, Norway; University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, N-0316 Oslo, Norway.
| |
Collapse
|
10
|
Chronic lymphocytic leukemia cells from ibrutinib treated patients are sensitive to Axl receptor tyrosine kinase inhibitor therapy. Oncotarget 2018; 9:37173-37184. [PMID: 30647852 PMCID: PMC6324680 DOI: 10.18632/oncotarget.26444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
Earlier we have shown the expression of a constitutively active receptor tyrosine kinase Axl in CLL B-cells from previously untreated CLL patients, and that Axl inhibitor TP-0903 induces robust leukemic B-cell death. To explore whether Axl is an effective target in relapsed/refractory CLL patients, we analyzed CLL B-cells obtained from CLL patients on ibrutinib therapy. Ibrutinib-exposed CLL B-cells were treated with increasing doses (0.01- 0.50μM) of a new formulation of high-affinity Axl inhibitor, TP-0903 (tartrate salt), for 24 hours and LD50 doses were determined. Sensitivity of CLL B-cells was compared with known prognostic factors and effect of TP-0903 was also evaluated on Axl signaling pathway in CLL B-cells from this cohort. We detected sustained overexpression of Axl in CLL B-cells from CLL patients on ibrutinib treatment, suggests targeting Axl could be a promising strategy to overcome drug resistance and killing of CLL B-cells in these patients. We found that CLL B-cells from sixty-nine percent of relapsed CLL patients actively on ibrutinib therapy were found to be highly sensitive to TP-0903 with induction of apoptosis at nanomolar doses (≤0.50 μM). TP-0903 treatment effectively inhibited Axl phosphorylation and reduced expression levels of anti-apoptotic proteins (Mcl-1, XIAP) in ibrutinib exposed CLL B-cells. In total, our in vitro preclinical studies showing that TP-0903 is very effective at inducing apoptosis in CLL B-cells obtained from ibrutinib-exposed patients supports further testing of this drug in relapsed/refractory CLL.
Collapse
|
11
|
Aurora kinase and FGFR3 inhibition results in significant apoptosis in molecular subgroups of multiple myeloma. Oncotarget 2018; 9:34582-34594. [PMID: 30349651 PMCID: PMC6195373 DOI: 10.18632/oncotarget.26180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
Aberrant expression of proteins involved in cell division is a constant feature in multiple myeloma (MM), especially in high-risk disease. Increasingly, therapy of myeloma is moving towards individualization based on underlying genetic abnormalities. Aurora kinases are important mediators of cell cycle and are up regulated in MM. Functional loss of Aurora kinases results in genetic instability and dysregulated division leading to cellular aneuploidy and growth arrest. We investigated the role of Aurora kinase inhibition in MM, using a small molecule inhibitor A1014907. Low nanomolar A1014907 concentrations induced aneuploidy in MM cell lines independent of underlying cytogenetic abnormalities by inhibiting Aurora Kinases. However, A1014907 induced more pronounced and dose dependent apoptosis in cell lines with t(4;14) translocation. Translocation t(4;14) is observed in about 15% of patients with MM leading to constitutive activation of FGFR3 in two-thirds of these patients. Further investigation of the mechanism of action of A1014907 revealed potent FGFR3 pathway inhibition only in the sensitive cell lines. Thus, our results show that aurora kinase inhibition causes cell cycle arrest and aneuploidy with minimal apoptosis whereas inhibiting both aurora kinase and FGFR3 activity induced potent apoptosis in MM cells. These results support clinical evaluation of A1014907 in MM patients with t(4;14) translocation and/or FGFR3 expression.
Collapse
|
12
|
Li X, Guise CP, Taghipouran R, Yosaatmadja Y, Ashoorzadeh A, Paik WK, Squire CJ, Jiang S, Luo J, Xu Y, Tu ZC, Lu X, Ren X, Patterson AV, Smaill JB, Ding K. 2-Oxo-3, 4-dihydropyrimido[4, 5- d ]pyrimidinyl derivatives as new irreversible pan fibroblast growth factor receptor (FGFR) inhibitors. Eur J Med Chem 2017; 135:531-543. [DOI: 10.1016/j.ejmech.2017.04.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
13
|
Bi S, Wang C, Li Y, Zhang W, Zhang J, Lv Z, Wang J. LncRNA-MALAT1-mediated Axl promotes cell invasion and migration in human neuroblastoma. Tumour Biol 2017; 39:1010428317699796. [PMID: 28468579 DOI: 10.1177/1010428317699796] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of Axl has been noted to correlate with several human cancers. However, the regulatory mechanisms and effects of Axl in human neuroblastoma development remain unclear. Here, we explore the expression of Axl in neurobalstoma and related upstream regulatory mechanisms of invasion and migration. We found that Axl was overexpressed in metastatic neuroblastoma tissues and positively associated with long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1. Meanwhile, our data suggested that metastasis-associated lung adenocarcinoma transcript 1 upregulated Axl expression in neuroblastoma cells, resulting in cell invasion and migration. Furthermore, we found that targeting Axl by inhibitor R428 significantly suppressed the abilities of tumor cell invasion and migration. In summary, these results suggested that Axl, which is regulated by long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1, may exert great influence on invasion and migration of neuroblastoma.
Collapse
Affiliation(s)
- Shaojie Bi
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Chunyan Wang
- 2 Department of Emergency Medicine, The Second Hospital of Shandong University, Jinan, China
| | - Yixin Li
- 3 Department of Medical Imaging, The Second Hospital of Shandong University, Jinan, China
| | - Wei Zhang
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Juan Zhang
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Zhaopeng Lv
- 1 Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Junxia Wang
- 4 Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Targeting the TAM Receptors in Leukemia. Cancers (Basel) 2016; 8:cancers8110101. [PMID: 27834816 PMCID: PMC5126761 DOI: 10.3390/cancers8110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.
Collapse
|