1
|
Song J, Moscinski L, Zhang L, Zhang H. Case report: Co-existing chronic myeloid leukemia and chronic myelomonocytic leukemia-A clinically important but challenging scenario. Leuk Res Rep 2023; 20:100378. [PMID: 37415731 PMCID: PMC10319893 DOI: 10.1016/j.lrr.2023.100378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
Chronic myeloid leukemia (CML) and chronic myelomonocytic leukemia (CMML) are two common myeloid neoplasms with overlapping morphologic features. We report a patient initially diagnosed with CML and treated with Tyrosine kinase inhibitor (TKI) but who then developed persistent monocytosis and worsening thrombocytopenia one year later. Repeat bone marrow biopsies only showed CML at the molecular level. However, markedly hypercellular bone marrow, megakaryocytic dysplasia, and SRSF2, TET2, and RUNX1 mutations by NextGen sequencing pointed to a diagnosis of CMML. For CML patients with persistent monocytosis and cytopenia, a mutational profile by NGS is helpful to exclude or identify the coexisting CMML.
Collapse
Affiliation(s)
- Jinming Song
- Corresponding author at: 12902 USF Magnolia Drive, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
2
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
3
|
Valent P, Orazi A, Savona MR, Patnaik MM, Onida F, van de Loosdrecht AA, Haase D, Haferlach T, Elena C, Pleyer L, Kern W, Pemovska T, Vladimer GI, Schanz J, Keller A, Lübbert M, Lion T, Sotlar K, Reiter A, De Witte T, Pfeilstöcker M, Geissler K, Padron E, Deininger M, Orfao A, Horny HP, Greenberg PL, Arber DA, Malcovati L, Bennett JM. Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica 2019; 104:1935-1949. [PMID: 31048353 PMCID: PMC6886439 DOI: 10.3324/haematol.2019.222059] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) is a myeloid neoplasm characterized by dysplasia, abnormal production and accumulation of monocytic cells and an elevated risk of transforming into acute leukemia. Over the past two decades, our knowledge about the pathogenesis and molecular mechanisms in CMML has increased substantially. In parallel, better diagnostic criteria and therapeutic strategies have been developed. However, many questions remain regarding prognostication and optimal therapy. In addition, there is a need to define potential pre-phases of CMML and special CMML variants, and to separate these entities from each other and from conditions mimicking CMML. To address these unmet needs, an international consensus group met in a Working Conference in August 2018 and discussed open questions and issues around CMML, its variants, and pre-CMML conditions. The outcomes of this meeting are summarized herein and include diag nostic criteria and a proposed classification of pre-CMML conditions as well as refined minimal diagnostic criteria for classical CMML and special CMML variants, including oligomonocytic CMML and CMML associated with systemic mastocytosis. Moreover, we propose diagnostic standards and tools to distinguish between 'normal', pre-CMML and CMML entities. These criteria and standards should facilitate diagnostic and prognostic evaluations in daily practice and clinical studies in applied hematology.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria .,Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Michael R Savona
- Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Arjan A van de Loosdrecht
- Department of Hematology, Amsterdam UMC, location VU University Medical Center, Cancer Center Amsterdam, the Netherlands
| | - Detlef Haase
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Chiara Elena
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lisa Pleyer
- 3 Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Paracelsus Medical University, Salzburg, Austria
| | | | - Tea Pemovska
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Gregory I Vladimer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Julie Schanz
- Clinic of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Alexandra Keller
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Michael Lübbert
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Lion
- Children's Cancer Research Institute and Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Theo De Witte
- Department of Tumor Immunology-Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michael Pfeilstöcker
- Ludwig Boltzmann Institute for Hematology & Oncology, Vienna, Austria.,3 Medical Department, Hanusch Hospital, Vienna, Vienna, Austria
| | | | - Eric Padron
- Malignant Hematology Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael Deininger
- Huntsman Cancer Institute & Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Alberto Orfao
- Servicio Central de Citometría, Centro de Investigación del Cáncer (IBMCC, CSIC-USAL), CIBERONC and IBSAL, Universidad de Salamanca, Salamanca, Spain
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians University, Munich, Germany
| | | | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - John M Bennett
- Department of Pathology, Hematopathology Unit and James P Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|