1
|
Lotfimehr H, Mardi N, Narimani S, Nasrabadi HT, Karimipour M, Sokullu E, Rahbarghazi R. mTOR signalling pathway in stem cell bioactivities and angiogenesis potential. Cell Prolif 2023; 56:e13499. [PMID: 37156724 PMCID: PMC10693190 DOI: 10.1111/cpr.13499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that responds to different stimuli such as stresses, starvation and hypoxic conditions. The modulation of this effector can lead to the alteration of cell dynamic growth, proliferation, basal metabolism and other bioactivities. Considering this fact, the mTOR pathway is believed to regulate the diverse functions in several cell lineages. Due to the pleiotropic effects of the mTOR, we here, hypothesize that this effector can also regulate the bioactivity of stem cells in response to external stimuli pathways under physiological and pathological conditions. As a correlation, we aimed to highlight the close relationship between the mTOR signalling axis and the regenerative potential of stem cells in a different milieu. The relevant publications were included in this study using electronic searches of the PubMed database from inception to February 2023. We noted that the mTOR signalling cascade can affect different stem cell bioactivities, especially angiogenesis under physiological and pathological conditions. Modulation of mTOR signalling pathways is thought of as an effective strategy to modulate the angiogenic properties of stem cells.
Collapse
Affiliation(s)
- Hamid Lotfimehr
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Narges Mardi
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Samaneh Narimani
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Mohammad Karimipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Emel Sokullu
- Koç University Research Center for Translational Medicine (KUTTAM)IstanbulTurkey
| | - Reza Rahbarghazi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
- Department of Applied Cell Sciences, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
2
|
Fodil S, Arnaud M, Vaganay C, Puissant A, Lengline E, Mooney N, Itzykson R, Zafrani L. Endothelial cells: major players in acute myeloid leukaemia. Blood Rev 2022; 54:100932. [DOI: 10.1016/j.blre.2022.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
3
|
Gutjahr JC, Bayer E, Yu X, Laufer JM, Höpner JP, Tesanovic S, Härzschel A, Auer G, Rieß T, Salmhofer A, Szenes E, Haslauer T, Durand-Onayli V, Ramspacher A, Pennisi SP, Artinger M, Zaborsky N, Chigaev A, Aberger F, Neureiter D, Pleyer L, Legler DF, Orian-Rousseau V, Greil R, Hartmann TN. CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica 2021; 106:2102-2113. [PMID: 32616529 PMCID: PMC8327716 DOI: 10.3324/haematol.2019.231944] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors in progenitor cell adhesion in bone marrow. Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML bone marrow samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent of VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. As a further consequence, the increased adhesion on VCAM-1 allowed AML cells to bind stromal cells strongly. Thereby, the VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, enhancing AML cell retention in the supportive bone marrow microenvironment.
Collapse
Affiliation(s)
- Julia C Gutjahr
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Elisabeth Bayer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Xiaobing Yu
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | - Jan P Höpner
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Georg Auer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja Rieß
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Astrid Salmhofer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Eva Szenes
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Theresa Haslauer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Valerie Durand-Onayli
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Sandra P Pennisi
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Nadja Zaborsky
- 1Laboratory for Immunological and Molecular Cancer Research
| | | | - Fritz Aberger
- Department Biosciences, Paris-Lodron University of Salzburg
| | | | - Lisa Pleyer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | | | - Richard Greil
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja N Hartmann
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| |
Collapse
|
4
|
Kuek V, Hughes AM, Kotecha RS, Cheung LC. Therapeutic Targeting of the Leukaemia Microenvironment. Int J Mol Sci 2021; 22:6888. [PMID: 34206957 PMCID: PMC8267786 DOI: 10.3390/ijms22136888] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the conduct of uniform prospective clinical trials has led to improved remission rates and survival for patients with acute myeloid leukaemia and acute lymphoblastic leukaemia. However, high-risk patients continue to have inferior outcomes, where chemoresistance and relapse are common due to the survival mechanisms utilised by leukaemic cells. One such mechanism is through hijacking of the bone marrow microenvironment, where healthy haematopoietic machinery is transformed or remodelled into a hiding ground or "sanctuary" where leukaemic cells can escape chemotherapy-induced cytotoxicity. The bone marrow microenvironment, which consists of endosteal and vascular niches, can support leukaemogenesis through intercellular "crosstalk" with niche cells, including mesenchymal stem cells, endothelial cells, osteoblasts, and osteoclasts. Here, we summarise the regulatory mechanisms associated with leukaemia-bone marrow niche interaction and provide a comprehensive review of the key therapeutics that target CXCL12/CXCR4, Notch, Wnt/b-catenin, and hypoxia-related signalling pathways within the leukaemic niches and agents involved in remodelling of niche bone and vasculature. From a therapeutic perspective, targeting these cellular interactions is an exciting novel strategy for enhancing treatment efficacy, and further clinical application has significant potential to improve the outcome of patients with leukaemia.
Collapse
Affiliation(s)
- Vincent Kuek
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Anastasia M. Hughes
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| | - Rishi S. Kotecha
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children’s Hospital, Perth, WA 6009, Australia
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Laurence C. Cheung
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA 6009, Australia; (V.K.); (A.M.H.); (R.S.K.)
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
5
|
Sottnik JL, Vanderlinden L, Joshi M, Chauca-Diaz A, Owens C, Hansel DE, Sempeck C, Ghosh D, Theodorescu D. Androgen Receptor Regulates CD44 Expression in Bladder Cancer. Cancer Res 2021; 81:2833-2846. [PMID: 33687952 PMCID: PMC8782536 DOI: 10.1158/0008-5472.can-20-3095] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/29/2020] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
The androgen receptor (AR) is important in the development of both experimental and human bladder cancer. However, the role of AR in bladder cancer growth and progression is less clear, with literature indicating that more advanced stage and grade disease are associated with reduced AR expression. To determine the mechanisms underlying these relationships, we profiled AR-expressing human bladder cancer cells by AR chromatin immunoprecipitation sequencing and complementary transcriptomic approaches in response to in vitro stimulation by the synthetic androgen R1881. In vivo functional genomics consisting of pooled shRNA or pooled open reading frame libraries was employed to evaluate 97 genes that recapitulate the direction of expression associated with androgen stimulation. Interestingly, we identified CD44, the receptor for hyaluronic acid, a potent biomarker and driver of progressive disease in multiple tumor types, as significantly associated with androgen stimulation. CRISPR-based mutagenesis of androgen response elements associated with CD44 identified a novel silencer element leading to the direct transcriptional repression of CD44 expression. In human patients with bladder cancer, tumor AR and CD44 mRNA and protein expression were inversely correlated, suggesting a clinically relevant AR-CD44 axis. Collectively, our work describes a novel mechanism partly explaining the inverse relationship between AR and bladder cancer tumor progression and suggests that AR and CD44 expression may be useful for prognostication and therapeutic selection in primary bladder cancer. SIGNIFICANCE: This study describes novel AREs that suppress CD44 and an expected inverse correlation of AR-CD44 expression observed in human bladder tumors.
Collapse
Affiliation(s)
- Joseph L Sottnik
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Lauren Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
- Functional Genomics Facility, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Ana Chauca-Diaz
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Charles Owens
- Department of Surgery, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Donna E Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, Oregon
| | - Colin Sempeck
- Department of Molecular Cellular & Developmental Biology, University of Colorado - Boulder, Boulder, Colorado
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado - Anschutz Medical Campus, Aurora, Colorado
| | - Dan Theodorescu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
6
|
Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur J Pharmacol 2021; 903:174147. [PMID: 33961871 DOI: 10.1016/j.ejphar.2021.174147] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
CD44 is a cell surface adhesion molecule, which is overexpressed on cancer stem cells. The interaction of CD44 with hyaluronan is responsible for tumor development, metastasis, and expression of the chemoresistant phenotype. The overexpression of CD44 impedes the cytotoxic effect of chemotherapy medications in various cancers. Therefore, the high expression of CD44 is associated with a poor prognosis in affected patients. This high expression of CD44 in various cancers has provided an ample opportunity for the treatment of patients with chemoresistant malignancy. This review aims to demonstrate the various cross-talk between CD44 and intracellular and extracellular factors and highlight its role in developing chemoresistant tumors in some troublesome cancers.
Collapse
Affiliation(s)
- Zohreh Yaghobi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Shiva Pourvahdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Abstract
Blood is generated throughout life by continued proliferation and differentiation of hematopoietic progenitors, while at the top of the hierarchy, hematopoietic stem cells (HSCs) remain largely quiescent. This way HSCs avoid senescence and preserve their capacity to repopulate the hematopoietic system. But HSCs are not always quiescent, proliferating extensively in conditions such as those found in the fetal liver. Understanding the elusive mechanisms that regulate HSC fate would enable us to comprehend a crucial piece of HSC biology and pave the way for ex-vivo HSC expansion with clear clinical benefit. Here we review how metabolism, endoplasmic reticulum stress and oxidative stress condition impact HSCs decision to self-renew or differentiate and how these signals integrate into the mammalian target of rapamycin (mTOR) pathway. We argue that the bone marrow microenvironment continuously favors differentiation through the activation of the mTOR complex (mTORC)1 signaling, while the fetal liver microenvironment favors self-renewal through the inverse mechanism. In addition, we also postulate that strategies that have successfully achieved HSC expansion, directly or indirectly, lead to the inactivation of mTORC1. Finally, we propose a mechanism by which mTOR signaling, during cell division, conditions HSC fate. This mechanism has already been demonstrated in mature hematopoietic cells (T-cells), that face a similar decision after activation, either undergoing clonal expansion or differentiation.
Collapse
|
8
|
Gu W, Liu T, Fan D, Zhang J, Xia Y, Meng F, Xu Y, Cornelissen JJ, Liu Z, Zhong Z. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. J Control Release 2021; 329:706-716. [DOI: 10.1016/j.jconrel.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
|
9
|
Shi W, Jin W, Xia L, Hu Y. Novel agents targeting leukemia cells and immune microenvironment for prevention and treatment of relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. Acta Pharm Sin B 2020; 10:2125-2139. [PMID: 32837873 PMCID: PMC7326461 DOI: 10.1016/j.apsb.2020.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Relapse remains the worst life-threatening complications after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with acute myeloid leukemia (AML), whose prognosis has been historically dismal. Given the rapid development of genomics and immunotherapies, the interference strategies for AML recurrence have been changing these years. More and more novel targeting agents that have received the U.S. Food and Drug Administration (FDA) approval for de novo AML treatment have been administrated in the salvage or maintenance therapy of post-HSCT relapse. Targeted strategies that regulate the immune microenvironment of and optimize the graft versus leukemia (GVL) effect of immune cells are gradually improved. Such agents not only have been proven to achieve clinical benefits from a single drug, but if combined with classic therapies, can significantly improve the poor prognosis of AML patients who relapse after allo-HSCT. This review will focus on currently available and promising upcoming agents and also discuss the challenges and limitations of targeted therapies in the allogeneic hematopoietic stem cell transplantation community.
Collapse
Affiliation(s)
- Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Weiwei Jin
- Department of Cardiovascular, Optical Valley School District, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430061, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan 430074, China
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Alsharif NA, Aleisa FA, Liu G, Ooi BS, Patel N, Ravasi T, Merzaban JS, Kosel J. Functionalization of Magnetic Nanowires for Active Targeting and Enhanced Cell-Killing Efficacy. ACS APPLIED BIO MATERIALS 2020; 3:4789-4797. [DOI: 10.1021/acsabm.0c00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nouf A. Alsharif
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Fajr A. Aleisa
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Guangyu Liu
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Boon S. Ooi
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Niketan Patel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Jasmeen S. Merzaban
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| | - Jürgen Kosel
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Jeddah 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Hamatani H, Eng DG, Hiromura K, Pippin JW, Shankland SJ. CD44 impacts glomerular parietal epithelial cell changes in the aged mouse kidney. Physiol Rep 2020; 8:e14487. [PMID: 32597007 PMCID: PMC7322268 DOI: 10.14814/phy2.14487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023] Open
Abstract
CD44 contributes to the activation of glomerular parietal epithelial cells (PECs). Although CD44 expression is higher in PECs of healthy aged mice, the biological role of CD44 in PECs in this context remains unclear. Accordingly, young (4 months) and aged (24 months) CD44-/- mice were compared to age-matched CD44+/+ mice, both aged in a nonstressed environment. Parietal epithelial cell densities were similar in both young and aged CD44+/+ and CD44-/- mice. Phosphorylated ERK 1/2 (pERK) was higher in aged CD44+/+ mice. Vimentin and α-SMA, markers of changes to the epithelial cell phenotype, were present in PECs in aged CD44+/+ mice, but absent in aged CD44-/- mice in both outer cortical (OC) and juxtamedullary (JM) glomeruli. Because age-related glomerular hypertrophy was lower in CD44-/- mice, mTOR activation was assessed by phospho-S6 ribosomal protein (pS6RP) staining. Parietal epithelial cells and glomerular tuft staining for pS6RP was lower in aged CD44-/- mice compared to aged CD44+/+ mice. Podocyte density was higher in aged CD44-/- mice in both OC and JM glomeruli. These changes were accompanied by segmental and global glomerulosclerosis in aged CD44+/+ mice, but absent in aged CD44-/- mice. These results show that the increase in CD44 in PECs in aged kidneys contributes to several changes to the glomerulus during healthy aging in mice, and may involve ERK and mTOR activation.
Collapse
Affiliation(s)
- Hiroko Hamatani
- Division of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
- Department of Nephrology and RheumatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Diana G. Eng
- Division of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Keiju Hiromura
- Department of Nephrology and RheumatologyGunma University Graduate School of MedicineMaebashiJapan
| | - Jeffrey W. Pippin
- Division of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Stuart J. Shankland
- Division of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| |
Collapse
|
12
|
Pievani A, Biondi M, Tomasoni C, Biondi A, Serafini M. Location First: Targeting Acute Myeloid Leukemia Within Its Niche. J Clin Med 2020; 9:E1513. [PMID: 32443460 PMCID: PMC7290711 DOI: 10.3390/jcm9051513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.
Collapse
Affiliation(s)
- Alice Pievani
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Marta Biondi
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Chiara Tomasoni
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| | - Andrea Biondi
- Department of Pediatrics, Pediatric Hematology-Oncology Unit, Fondazione MBBM/San Gerardo Hospital, 20900 Monza, Italy;
| | - Marta Serafini
- Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, 20900 Monza, Italy; (A.P.); (M.B.); (C.T.)
| |
Collapse
|
13
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
14
|
Kaiser Y, Eklund A, Grunewald J. Moving target: shifting the focus to pulmonary sarcoidosis as an autoimmune spectrum disorder. Eur Respir J 2019; 54:13993003.021532018. [PMID: 31000677 DOI: 10.1183/13993003.021532018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/01/2019] [Indexed: 12/27/2022]
Abstract
Despite more than a century of research, the causative agent(s) in sarcoidosis, a heterogeneous granulomatous disorder mainly affecting the lungs, remain(s) elusive. Following identification of genetic factors underlying different clinical phenotypes, increased understanding of CD4+ T-cell immunology, which is believed to be central to sarcoid pathogenesis, as well as the role of B-cells and other cells bridging innate and adaptive immunity, contributes to novel insights into the mechanistic pathways influencing disease resolution or chronicity. Hopefully, new perspectives and state-of-the-art technology will help to shed light on the still-elusive enigma of sarcoid aetiology. This perspective article highlights a number of recent advances in the search for antigenic targets in sarcoidosis, as well as the main arguments for sarcoidosis as a spectrum of autoimmune conditions, either as a result of an external (microbial) trigger and/or due to defective control mechanisms regulating the balance between T-cell activation and inhibition.
Collapse
Affiliation(s)
- Ylva Kaiser
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Dept of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
15
|
Heath JL, Cohn GM, Zaidi SK, Stein GS. The role of cell adhesion in hematopoiesis and leukemogenesis. J Cell Physiol 2019; 234:19189-19198. [PMID: 30980400 DOI: 10.1002/jcp.28636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/26/2019] [Indexed: 01/23/2023]
Abstract
The cells of the bone marrow microenvironment are emerging as important contributors and regulators of normal hematopoiesis. This microenvironment is perturbed during leukemogenesis, and evidence points toward a bidirectional communication between leukemia cells and the normal cells of the bone marrow, mediated by direct cell-cell contact as well as soluble factors. These interactions are increasingly appreciated to play a role in leukemogenesis and possibly in resistance to chemotherapy. In fact, several compounds that specifically target the bone marrow microenvironment, including inhibitors of cell adhesion, are being tested as adjuncts to leukemia therapy.
Collapse
Affiliation(s)
- Jessica L Heath
- Department of Pediatrics, University of Vermont, Burlington, Vermont.,Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gabriel M Cohn
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Sayyed K Zaidi
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont, Burlington, Vermont.,University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
16
|
Wu Y, Pan S, Leng J, Xie T, Jamal M, Yin Q, Li J, He C, Dong X, Shao L, Zhang Q. The prognostic value of matrix metalloproteinase-7 and matrix metalloproteinase-15 in acute myeloid leukemia. J Cell Biochem 2019; 120:10613-10624. [PMID: 30809850 DOI: 10.1002/jcb.28351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022]
Abstract
Matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases, are involved in a variety of physiological and pathological processes. We analyzed 11 data sets from Gene Expression Omnibus Database and found that MMP7 and MMP15 were highly expressed in multiple carcinomas. GSE13204 showed that MMP7 and MMP15 were overexpressed in acute myeloid leukemia (AML) patients. The Cancer Genome Atlas data set exhibited that high expression of MMP7 or MMP15 in bone marrow (BM) of AML patients predicted poor overall survival. The χ 2 test results indicated that high expression level of MMP7 and MMP15 were correlated with high-risk stratification and high BM blast cell percentage in AML patients. To confirm these findings, we performed reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and found that MMP7 and MMP15 were highly expressed in three AML cell lines. Further study showed that MMP7 and MMP15 were highly expressed both in BM and peripheral blood in collected AML samples compared with healthy individuals. Additionally, long noncoding RNA (lncRNA) microarray of BM samples of AML patients revealed that multiple lncRNAs were correlated with MMP7 and MMP15, suggesting that lncRNAs might be involved in the pathogenesis of AML via modulating MMPs. In conclusion, our study uncovers the potential roles of MMP7 and MMP15 in the prognosis of AML.
Collapse
Affiliation(s)
- Yingjie Wu
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Shan Pan
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Jun Leng
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Tian Xie
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Qian Yin
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Jingyuan Li
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Chunjiang He
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xin Dong
- Department of Genetics, School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuping Zhang
- Department of Immunology, School of Basic Medical Science, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
17
|
Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv 2017; 1:2799-2816. [PMID: 29296932 DOI: 10.1182/bloodadvances.2017004317] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/10/2017] [Indexed: 12/29/2022] Open
Abstract
CD34 is routinely used to identify and isolate human hematopoietic stem/progenitor cells (HSPCs) for use clinically in bone marrow transplantation, but its function on these cells remains elusive. Glycoprotein ligands on HSPCs help guide their migration to specialized microvascular beds in the bone marrow that express vascular selectins (E- and P-selectin). Here, we show that HSPC-enriched fractions from human hematopoietic tissue expressing CD34 (CD34pos) bound selectins, whereas those lacking CD34 (CD34neg) did not. An unbiased proteomics screen identified potential glycoprotein ligands on CD34pos cells revealing CD34 itself as a major vascular selectin ligand. Biochemical and CD34 knockdown analyses highlight a key role for CD34 in the first prerequisite step of cell migration, suggesting that it is not just a marker on these cells. Our results also entice future potential strategies to investigate the glycoforms of CD34 that discriminate normal HSPCs from leukemic cells and to manipulate CD34neg HSPC-enriched bone marrow or cord blood populations as a source of stem cells for clinical use.
Collapse
|
18
|
Kaiser Y, Lakshmikanth T, Chen Y, Mikes J, Eklund A, Brodin P, Achour A, Grunewald J. Mass Cytometry Identifies Distinct Lung CD4 + T Cell Patterns in Löfgren's Syndrome and Non-Löfgren's Syndrome Sarcoidosis. Front Immunol 2017; 8:1130. [PMID: 28955342 PMCID: PMC5601005 DOI: 10.3389/fimmu.2017.01130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/28/2017] [Indexed: 11/27/2022] Open
Abstract
Sarcoidosis is a granulomatous disorder of unknown etiology, characterized by accumulation of activated CD4+ T cells in the lungs. Disease phenotypes Löfgren’s syndrome (LS) and “non-LS” differ in terms of clinical manifestations, genetic background, HLA association, and prognosis, but the underlying inflammatory mechanisms largely remain unknown. Bronchoalveolar lavage fluid cells from four HLA-DRB1*03+ LS and four HLA-DRB1*03− non-LS patients were analyzed by mass cytometry, using a panel of 33 unique markers. Differentially regulated CD4+ T cell populations were identified using the Citrus algorithm, and t-stochastic neighborhood embedding was applied for dimensionality reduction and single-cell data visualization. We identified 19 individual CD4+ T cell clusters differing significantly in abundance between LS and non-LS patients. Seven clusters more frequent in LS patients were characterized by significantly higher expression of regulatory receptors CTLA-4, PD-1, and ICOS, along with low expression of adhesion marker CD44. In contrast, 12 clusters primarily found in non-LS displayed elevated expression of activation and effector markers HLA-DR, CD127, CD39, as well as CD44. Hierarchical clustering further indicated functional heterogeneity and diverse origins of T cell receptor Vα2.3/Vβ22-restricted cells in LS. Finally, a near-complete overlap of CD8 and Ki-67 expression suggested larger influence of CD8+ T cell activity on sarcoid inflammation than previously appreciated. In this study, we provide detailed characterization of pulmonary T cells and immunological parameters that define separate disease pathways in LS and non-LS. With direct association to clinical parameters, such as granuloma persistence, resolution, or chronic inflammation, these results provide a valuable foundation for further exploration and potential clinical application.
Collapse
Affiliation(s)
- Ylva Kaiser
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Chen
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Jaromir Mikes
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Eklund
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Petter Brodin
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Neonatology, Karolinska University Hospital, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Ali AJ, Abuelela AF, Merzaban JS. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells. Front Immunol 2017; 8:492. [PMID: 28515724 PMCID: PMC5413510 DOI: 10.3389/fimmu.2017.00492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/10/2017] [Indexed: 01/26/2023] Open
Abstract
Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.
Collapse
Affiliation(s)
- Amal J Ali
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Ayman F Abuelela
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| | - Jasmeen S Merzaban
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol 2017; 105:549-557. [PMID: 28357569 DOI: 10.1007/s12185-017-2221-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
Abstract
Leukemic stem cells (LSCs) in acute myeloid leukemia (AML) represent a low-frequency subpopulation of leukemia cells that possess stem cell properties distinct from the bulk leukemia cells, including self-renewal capacity and drug resistance. Due to these properties, LSCs are supposed to facilitate the development of relapse. The existence of LSCs is demonstrated by the ability to engraft and initiate human AML in immune-compromised mouse models. Although several lines of evidence suggest the complex heterogeneity of phenotypes displayed by LSC, many studies consider the CD34+/CD38- compartment as the most relevant. To increase the understanding of the true LSC, techniques such as multicolor flow cytometry, side-population assay and ALDH assay are utilized in many laboratories and could aid in this. A better understanding of different LSC phenotypes is necessary to enhance risk group classification, guide clinical decision-making and to identify new therapeutic targets. These efforts to eliminate LSC should ultimately improve the dismal AML outcome by preventing relapse development.
Collapse
Affiliation(s)
- Diana Hanekamp
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Department of Paediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerrit Jan Schuurhuis
- Department of Hematology, VU University Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Ghosh J, Kapur R. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Exp Hematol 2017; 50:13-21. [PMID: 28342808 DOI: 10.1016/j.exphem.2017.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
Dysregulation of the mechanistic target of rapamycin complex 1 (mTORC1)-p70 ribosomal protein kinase 1 (S6K1) signaling pathway occurs frequently in acute myeloid leukemia (AML) patients. This pathway also plays a critical role in maintaining normal cellular processes. Given the importance of leukemia stem cells (LSCs) in the development of minimal residual disease, it is critical to use therapeutic interventions that target the LSC population to prevent disease relapse. The mTORC1-S6K1 pathway has been identified as an important regulator of hematopoietic stem cell (HSC) and LSC functions. Both HSC and LSC functions require regulation of key cellular processes including proliferation, metabolism, and autophagy, which are regulated by mTORC1 pathway. Despite the mTORC1-S6K1 pathway being a critical regulator of AML initiation and progression, inhibitors of this pathway alone have yielded mixed results in clinical studies. Recent studies have identified strategies to develop new mTORC1-S6K1 inhibitors such as RapaLink-1, which could circumvent the drug resistance observed in AML cells and in LSCs. Here, we review recent advances made in identifying the role of different components of this pathway in the regulation of HSCs and LSCs and discuss possible therapeutic approaches.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|