1
|
Nasrullah M, Kc R, Nickel K, Parent K, Kucharski C, Meenakshi Sundaram DN, Rajendran AP, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA Nanoparticles Targeting the Signal Transducer and Activator of Transcription 5A Disrupts Proliferation of Acute Lymphoblastic Leukemia. ACS Pharmacol Transl Sci 2024; 7:2840-2855. [PMID: 39296267 PMCID: PMC11406681 DOI: 10.1021/acsptsci.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024]
Abstract
The therapeutic potential of small interfering RNAs (siRNAs) in gene-targeted treatments is substantial, but their suboptimal delivery impedes widespread clinical applications. Critical among these is the inability of siRNAs to traverse the cell membranes due to their anionic nature and high molecular weight. This limitation is particularly pronounced in lymphocytes, which pose additional barriers due to their smaller size and scant cytoplasm. Addressing this, we introduce an innovative lipid-conjugated polyethylenimine lipopolymer platform, engineered for delivery of therapeutic siRNAs into lymphocytes. This system utilizes the cationic nature of the polyethylenimine for forming stable complexes with anionic siRNAs, while the lipid component facilitates cellular entry of siRNA. The resulting lipopolymer/siRNA complexes are termed lipopolymer nanoparticles (LPNPs). We comprehensively profiled the efficacy of this platform in human peripheral blood mononuclear cells (PBMCs) as well as in vitro and in vivo models of acute lymphoblastic leukemia (ALL), emphasizing the inhibition of the oncogenic signal transducer and activator of transcription 5A (STAT5A) gene. The lipopolymers demonstrated high efficiency in delivering siRNA to ALL cell lines (RS4;11 and SUP-B15) and primary patient cells, effectively silencing the STAT5A gene. The resultant gene silencing induced apoptosis and significantly reduced colony formation in vitro. Furthermore, in vivo studies showed a significant decrease in tumor volumes without causing substantial toxicity. The lipopolymers did not induce the secretion of proinflammatory cytokines (IL-6, TNF-α, and INF-γ) in PBMCs from healthy volunteers, underscoring their immune safety profile. Our observations indicate that LPNP-based siRNA delivery systems offer a promising therapeutic approach for ALL in terms of both safety and therapeutic efficacy.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kyle Nickel
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Kylie Parent
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | | | - Amarnath Praphakar Rajendran
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, British Colombia Cancer Research Institute and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H1, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta T6G 1R1, Canada
| |
Collapse
|
2
|
Ansari AS, K C R, Morales LC, Nasrullah M, Meenakshi Sundaram DN, Kucharski C, Jiang X, Brandwein J, Uludağ H. Lipopolymer mediated siRNA delivery targeting aberrant oncogenes for effective therapy of myeloid leukemia in preclinical animal models. J Control Release 2024; 367:821-836. [PMID: 38360178 DOI: 10.1016/j.jconrel.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
The clinical development of tyrosine kinase inhibitors (TKI) has led to great strides in improving the survival of chronic myeloid leukemia (CML) and acute myeloid leukemia (AML) patients. But even the new generation TKIs are rendered futile in the face of evolving landscape of acquired mutations leading to drug resistance, necessitating the pursuit of alternative therapeutic approaches. In contrast to exploiting proteins as targets like most conventional drugs and TKIs, RNA Interference (RNAi) exerts its therapeutic action towards disease-driving aberrant genes. To realize the potential of RNAi, the major challenge is to efficiently deliver the therapeutic mediator of RNAi, small interfering RNA (siRNA) molecules. In this study, we explored the feasibility of using aliphatic lipid (linoleic acid and lauric acid)-grafted polymers (lipopolymers) for the delivery of siRNAs against the FLT3 oncogene in AML and BCR-ABL oncogene in CML. The lipopolymer delivered siRNA potently suppressed the proliferation AML and CML cells via silencing of the targeted oncogenes. In both AML and CML subcutaneous xenografts generated in NCG mice, intravenously administered lipopolymer/siRNA complexes displayed significant inhibitory effect on tumor growth. Combining siFLT3 complexes with gilteritinib allowed for reduction of effective drug dosage, longer duration of remission, and enhanced survival after relapse, compared to gilteritinib monotherapy. Anti-leukemic activity of siBCR-ABL complexes was similar in wild-type and TKI-resistant cells, and therapeutic efficacy was confirmed in vivo through prolonged survival of the NCG hosts systemically implanted with TKI-resistant cells. These results demonstrate the preclinical efficacy of lipopolymer facilitated siRNA delivery, providing a novel therapeutic platform for myeloid leukemias.
Collapse
MESH Headings
- Humans
- Animals
- Mice
- RNA, Small Interfering
- Fusion Proteins, bcr-abl/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Oncogenes
- Models, Animal
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Drug Resistance, Neoplasm
- Aniline Compounds
- Pyrazines
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Remant K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Luis C Morales
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2H1, Alberta, Canada
| | | | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - Xiaoyan Jiang
- Department of Molecular Genetics and Terry Fox Labs, University of British Columbia, Vancouver V5Z 1L3, British Columbia, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2H1, Alberta, Canada.
| |
Collapse
|
3
|
Issa H, Swart LE, Rasouli M, Ashtiani M, Nakjang S, Jyotsana N, Schuschel K, Heuser M, Blair H, Heidenreich O. Nanoparticle-mediated targeting of the fusion gene RUNX1/ETO in t(8;21)-positive acute myeloid leukaemia. Leukemia 2023; 37:820-834. [PMID: 36823395 PMCID: PMC10079536 DOI: 10.1038/s41375-023-01854-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
A hallmark of acute myeloid leukaemias (AMLs) are chromosomal rearrangements that give rise to novel leukaemia-specific fusion genes. Most of these fusion genes are both initiating and driving events in AML and therefore constitute ideal therapeutic targets but are challenging to target by conventional drug development. siRNAs are frequently used for the specific suppression of fusion gene expression but require special formulations for efficient in vivo delivery. Here we describe the use of siRNA-loaded lipid nanoparticles for the specific therapeutic targeting of the leukaemic fusion gene RUNX1/ETO. Transient knockdown of RUNX1/ETO reduces its binding to its target genes and alters the binding of RUNX1 and its co-factor CBFβ. Transcriptomic changes in vivo were associated with substantially increased median survival of a t(8;21)-AML mouse model. Importantly, transient knockdown in vivo causes long-lasting inhibition of leukaemic proliferation and clonogenicity, induction of myeloid differentiation and a markedly impaired re-engraftment potential in vivo. These data strongly suggest that temporary inhibition of RUNX1/ETO results in long-term restriction of leukaemic self-renewal. Our results provide proof for the feasibility of targeting RUNX1/ETO in a pre-clinical setting and support the further development of siRNA-LNPs for the treatment of fusion gene-driven malignancies.
Collapse
Affiliation(s)
- Hasan Issa
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Pediatrics, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura E Swart
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Milad Rasouli
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Minoo Ashtiani
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, Mayoh C, Kavallaris M, Lock RB. Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics 2021; 13:pharmaceutics13101681. [PMID: 34683974 PMCID: PMC8539450 DOI: 10.3390/pharmaceutics13101681] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Standard of care therapies for children with acute myeloid leukemia (AML) cause potent off-target toxicity to healthy cells, highlighting the need to develop new therapeutic approaches that are safe and specific for leukemia cells. Long non-coding RNAs (lncRNAs) are an emerging and highly attractive therapeutic target in the treatment of cancer due to their oncogenic functions and selective expression in cancer cells. However, lncRNAs have historically been considered ‘undruggable’ targets because they do not encode for a protein product. Here, we describe the development of a new siRNA-loaded lipid nanoparticle for the therapeutic silencing of the novel oncogenic lncRNA LINC01257. Transcriptomic analysis of children with AML identified LINC01257 as specifically expressed in t(8;21) AML and absent in healthy patients. Using NxGen microfluidic technology, we efficiently and reproducibly packaged anti-LINC01257 siRNA (LNP-si-LINC01257) into lipid nanoparticles based on the FDA-approved Patisiran (Onpattro®) formulation. LNP-si-LINC01257 size and ζ-potential were determined by dynamic light scattering using a Malvern Zetasizer Ultra. LNP-si-LINC01257 internalization and siRNA delivery were verified by fluorescence microscopy and flow cytometry analysis. lncRNA knockdown was determined by RT-qPCR and cell viability was characterized by flow cytometry-based apoptosis assay. LNP-siRNA production yielded a mean LNP size of ~65 nm with PDI ≤ 0.22 along with a >85% siRNA encapsulation rate. LNP-siRNAs were efficiently taken up by Kasumi-1 cells (>95% of cells) and LNP-si-LINC01257 treatment was able to successfully ablate LINC01257 expression which was accompanied by a significant 55% reduction in total cell count following 48 h of treatment. In contrast, healthy peripheral blood mononuclear cells (PBMCs), which do not express LINC01257, were unaffected by LNP-si-LINC01257 treatment despite comparable levels of LNP-siRNA uptake. This is the first report demonstrating the use of LNP-assisted RNA interference modalities for the silencing of cancer-driving lncRNAs as a therapeutically viable and non-toxic approach in the management of AML.
Collapse
Affiliation(s)
- Patrick Connerty
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ernest Moles
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles E. de Bock
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nisitha Jayatilleke
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
| | - Jenny L. Smith
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.L.S.); (S.M.)
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98109, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.L.S.); (S.M.)
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA 98109, USA
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Maria Kavallaris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, ARC Centre of Excellence in Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard B. Lock
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia; (P.C.); (E.M.); (C.E.d.B.); (N.J.); (C.M.); (M.K.)
- School of Women’s and Children’s Health, UNSW Sydney, Sydney, NSW 2052, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence: ; Tel.: +61-(02)-7209-6765
| |
Collapse
|
5
|
Swart LE, Heidenreich O. The RUNX1/RUNX1T1 network: translating insights into therapeutic options. Exp Hematol 2021; 94:1-10. [PMID: 33217477 PMCID: PMC7854360 DOI: 10.1016/j.exphem.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
RUNX1/RUNX1T1 is the most common fusion gene found in acute myeloid leukemia. Seminal contributions by many different research groups have revealed a complex regulatory network promoting leukemic self-renewal and propagation. Perturbation of RUNX1/RUNX1T1 levels and its DNA binding affects chromatin accessibility and transcription factor occupation at multiple gene loci associated with changes in gene expression levels. Exploration of this transcriptional program by targeted RNAi screens uncovered a crucial role of RUNX1/RUNX1T1 in cell cycle progression by regulating CCND2. This dependency results in a high vulnerability toward inhibitors of CDK4 and CDK6 and suggests new avenues for therapeutic intervention against acute myeloid leukemia.
Collapse
MESH Headings
- Animals
- Cell Cycle
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Gene Expression Regulation, Leukemic
- Gene Regulatory Networks
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Interaction Maps
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Laura E Swart
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Olaf Heidenreich
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12102766. [PMID: 32993115 PMCID: PMC7600396 DOI: 10.3390/cancers12102766] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary NUP98-NSD1-positive acute myeloid leukemia (AML) frequently shows an additional mutation in Neuroblastoma rat sarcoma (NRAS). However, the synergistic effect of NUP98-NSD1 and NRASG12D in leukemic transformation remained unclear. In addition, NUP98-NSD1 positive AML patients respond poorly to chemotherapy and lack a targeted therapeutic option. Our study aimed to identify the cooperation of NUP98-NSD1 fusion and NRASG12D mutation and to develop a novel therapeutic approach for this AML. We found that NUP98-NSD1 alone can cause leukemia with long latency, and NRASG12D contributes to the aggressiveness of this AML. Additionally, we validated a novel NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of patient-derived xenograft (PDX) mice with NUP98-NSD1-positive AML. Abstract NUP98-NSD1-positive acute myeloid leukemia (AML) is a poor prognostic subgroup that is frequently diagnosed in pediatric cytogenetically normal AML. NUP98-NSD1-positive AML often carries additional mutations in genes including FLT3, NRAS, WT1, and MYC. The purpose of our study was to characterize the cooperative potential of the fusion and its associated Neuroblastoma rat sarcoma (NRAS) mutation. By constitutively expressing NUP98-NSD1 and NRASG12D in a syngeneic mouse model and using a patient-derived xenograft (PDX) model from a NUP98-NSD1-positive AML patient, we evaluated the functional role of these genes and tested a novel siRNA formulation that inhibits the oncogenic driver NUP98-NSD1. NUP98-NSD1 transformed murine bone marrow (BM) cells in vitro and induced AML in vivo. While NRASG12D expression was insufficient to transform cells alone, co-expression of NUP98-NSD1 and NRASG12D enhanced the leukemogenicity of NUP98-NSD1. We developed a NUP98-NSD1-targeting siRNA/lipid nanoparticle formulation that significantly prolonged the survival of the PDX mice. Our study demonstrates that mutated NRAS cooperates with NUP98-NSD1 and shows that direct targeting of the fusion can be exploited as a novel treatment strategy in NUP98-NSD1-positive AML patients.
Collapse
|
7
|
Abstract
The RNA interference (RNAi) pathway regulates mRNA stability and translation in nearly all human cells. Small double-stranded RNA molecules can efficiently trigger RNAi silencing of specific genes, but their therapeutic use has faced numerous challenges involving safety and potency. However, August 2018 marked a new era for the field, with the US Food and Drug Administration approving patisiran, the first RNAi-based drug. In this Review, we discuss key advances in the design and development of RNAi drugs leading up to this landmark achievement, the state of the current clinical pipeline and prospects for future advances, including novel RNAi pathway agents utilizing mechanisms beyond post-translational RNAi silencing.
Collapse
|
8
|
Sharma A, Jyotsana N, Gabdoulline R, Heckl D, Kuchenbauer F, Slany RK, Ganser A, Heuser M. Meningioma 1 is indispensable for mixed lineage leukemia-rearranged acute myeloid leukemia. Haematologica 2019; 105:1294-1305. [PMID: 31413090 PMCID: PMC7193500 DOI: 10.3324/haematol.2018.211201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Mixed lineage leukemia (MLL/KMT2A) rearrangements (MLL-r) are one of the most frequent chromosomal aberrations in acute myeloid leukemia. We evaluated the function of Meningioma 1 (MN1), a co-factor of HOXA9 and MEIS1, in human and murine MLL-rearranged leukemia by CRISPR-Cas9 mediated deletion of MN1. MN1 was required for in vivo leukemogenicity of MLL positive murine and human leukemia cells. Loss of MN1 inhibited cell cycle and proliferation, promoted apoptosis and induced differentiation of MLL-rearranged cells. Expression analysis and chromatin immunoprecipitation with sequencing from previously reported data sets demonstrated that MN1 primarily maintains active transcription of HOXA9 and HOXA10, which are critical downstream genes of MLL, and their target genes like BCL2, MCL1 and Survivin. Treatment of MLL-rearranged primary leukemia cells with anti-MN1 siRNA significantly reduced their clonogenic potential in contrast to normal CD34+ hematopoietic progenitor cells, suggesting a therapeutic window for MN1 targeting. In summary, our findings demonstrate that MN1 plays an essential role in MLL fusion leukemias and serve as a therapeutic target in MLL-rearranged acute myeloid leukemia.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Nidhi Jyotsana
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Razif Gabdoulline
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Dirk Heckl
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Robert K Slany
- Department of Genetics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Mintzas K, Heuser M. Emerging strategies to target the dysfunctional cohesin complex in cancer. Expert Opin Ther Targets 2019; 23:525-537. [PMID: 31020869 DOI: 10.1080/14728222.2019.1609943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mutations in cohesin genes have been described in numerous solid cancers and hematologic malignancies; subsequent experimental evidence has linked these mutations with carcinogenesis. Areas covered: In this review, we present current information about the physiological role of the cohesin complex in normal and malignant cells and describe current therapeutic strategies that are being explored in cohesin-mutated cancers. We discuss a range of targets and strategies that should be explored to develop targeted therapies for patients with aberrant cohesin. Expert opinion: Targeting of the cohesin complex is an underexplored area of drug development. There is a high frequency of cohesin mutations in multiple cancers, hence specific targeting strategies should be explored. Cohesins play a crucial role in cellular organization; therefore, we expect a narrow therapeutic window of direct inhibitors of cohesin components. Exploiting experimental approaches that correct dysfunctional cohesins and coupling them with current therapeutic strategies can provide novel, innovative and more effective treatment regimens.
Collapse
Affiliation(s)
- Konstantinos Mintzas
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| | - Michael Heuser
- a Department of Hematology , Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School , Hannover , Germany
| |
Collapse
|
10
|
Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann Hematol 2019; 98:1905-1918. [PMID: 31104089 DOI: 10.1007/s00277-019-03713-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 01/04/2023]
Abstract
Efficient and safe delivery of siRNA in vivo is the biggest roadblock to clinical translation of RNA interference (RNAi)-based therapeutics. To date, lipid nanoparticles (LNPs) have shown efficient delivery of siRNA to the liver; however, delivery to other organs, especially hematopoietic tissues still remains a challenge. We developed DLin-MC3-DMA lipid-based LNP-siRNA formulations for systemic delivery against a driver oncogene to target human chronic myeloid leukemia (CML) cells in vivo. A microfluidic mixing technology was used to obtain reproducible ionizable cationic LNPs loaded with siRNA molecules targeting the BCR-ABL fusion oncogene found in CML. We show a highly efficient and non-toxic delivery of siRNA in vitro and in vivo with nearly 100% uptake of LNP-siRNA formulations in bone marrow of a leukemic model. By targeting the BCR-ABL fusion oncogene, we show a reduction of leukemic burden in our myeloid leukemia mouse model and demonstrate reduced disease burden in mice treated with LNP-BCR-ABL siRNA as compared with LNP-CTRL siRNA. Our study provides proof-of-principle that fusion oncogene specific RNAi therapeutics can be exploited against leukemic cells and promise novel treatment options for leukemia patients.
Collapse
|
11
|
Mohseni M, Uludag H, Brandwein JM. Advances in biology of acute lymphoblastic leukemia (ALL) and therapeutic implications. AMERICAN JOURNAL OF BLOOD RESEARCH 2018; 8:29-56. [PMID: 30697448 PMCID: PMC6334189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer and also occurs in adults. Although the outcomes of multi-agent chemotherapy regimens have greatly improved, high toxicity and relapses in many patients necessitate the development of novel therapeutic approaches. Advances in molecular profiling and cytogenetics have identified a broad range of genetic abnormalities, including gene mutations, chromosome translocations and aneuploidy, which has provided a more comprehensive understanding of the biology and pathogenesis of ALL. This understanding has also led to new targeted therapeutic approaches, including the use of selective small molecule inhibitors, nucleic acid-based therapies and immune-based therapies mediated by specific monoclonal antibodies and cellular immunotherapy, which are poised to revolutionize the treatment of various ALL subtypes. The main focus of this review is to highlight the latest advances in ALL biology, including the identification of prognostic factors and putative therapeutic targets. We also review the current status of, and ongoing progress in, the development of targeted therapies for ALL.
Collapse
Affiliation(s)
- Mahsa Mohseni
- Department of Medicine, University of Alberta Edmonton, Alberta, Canada
| | - Hasan Uludag
- Department of Chemical and Materials Engineering, University of Alberta Edmonton, Alberta, Canada
| | | |
Collapse
|
12
|
Impedimetric gene assay for BCR/ABL transcripts in plasmids of patients with chronic myeloid leukemia. Mikrochim Acta 2018; 185:415. [DOI: 10.1007/s00604-018-2958-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 08/10/2018] [Indexed: 12/27/2022]
|
13
|
Jyotsana N, Heuser M. Exploiting differential RNA splicing patterns: a potential new group of therapeutic targets in cancer. Expert Opin Ther Targets 2017; 22:107-121. [PMID: 29235382 DOI: 10.1080/14728222.2018.1417390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Mutations in genes associated with splicing have been found in hematologic malignancies, but also in solid cancers. Aberrant cancer specific RNA splicing either results from mutations or misexpression of the spliceosome genes directly, or from mutations in splice sites of oncogenes or tumor suppressors. Areas covered: In this review, we present molecular targets of aberrant splicing in various malignancies, information on existing and emerging therapeutics against such targets, and strategies for future drug development. Expert opinion: Alternative splicing is an important mechanism that controls gene expression, and hence pharmacologic and genetic control of aberrant alternative RNA splicing has been proposed as a potential therapy in cancer. To identify and validate aberrant RNA splicing patterns as therapeutic targets we need to (1) characterize the most common genetic aberrations of the spliceosome and of splice sites, (2) understand the dysregulated downstream pathways and (3) exploit in-vivo disease models of aberrant splicing. Antisense oligonucleotides show promising activity, but will benefit from improved delivery tools. Inhibitors of mutated splicing factors require improved specificity, as alternative and aberrant splicing are often intertwined like two sides of the same coin. In summary, targeting aberrant splicing is an early but emerging field in cancer treatment.
Collapse
Affiliation(s)
- Nidhi Jyotsana
- a Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation , Hannover Medical School , Hannover , Germany
| | - Michael Heuser
- a Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation , Hannover Medical School , Hannover , Germany
| |
Collapse
|