1
|
Tew HX, Subramani P, Chan YY, Nik Mohd Noor NZ, Guruswamy P. Challenges and Considerations in Selecting Animal Models for Evaluating a Live, Cold-Chain-Free, Dual-Use Vaccine (MyChol) for Diarrhoeal Diseases: A Comprehensive Review. Malays J Med Sci 2024; 31:41-55. [PMID: 39416734 PMCID: PMC11477463 DOI: 10.21315/mjms2024.31.5.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 10/19/2024] Open
Abstract
Diarrhoeal diseases are the second leading cause of death for children under 5 years old in 69 low- and middle-income countries, with an annual economic burden of US$ 4 billion and over 525,000 lives lost. Cholera and enterotoxigenic Escherichia coli (ETEC) traveller's diarrhoea are major diarrhoeal diseases caused by Vibrio cholerae (O1 and O139 serogroups) and ETEC, which have similar pathogeneses and can co-infect. There is no exclusive vaccine for ETEC, but cholera vaccines containing the cholera toxin B (CT-B) component offer short-term cross-protection. However, licensed oral cholera vaccines are expensive due to cold-chain supplies and the need for multiple doses. A cost-effective, dual-protection, live, cold-chain-free vaccine is, therefore, required for vaccination campaigns in low-resource settings, and MyChol - a prototype cold-chain-free live attenuated cholera vaccine, targeting V. cholerae O139 and ETEC H10407 - was developed in this context. The vaccine was evaluated in three animal models (Sprague Dawley [SD] rats, BALB/c mice and New Zealand white rabbits) for safety, colonisation capacity, reactogenicity and immunogenicity against challenge strains. In suckling mice, MyChol displayed high colonisation potential compared to unformulated VCUSM14P (the vaccine candidate) and wild-type O139. In the acute toxicity assessment, the SD rats with the highest MyChol dose (1 × 107 colony-forming unit [CFU]/kg) demonstrated no adverse effects or mortality. Mice vaccinated with MyChol exhibited elevated antibody levels, including anti-CT, anti-heat-labile enterotoxin (LT), anti-CT-B and anti-LT-B. Anti-CT antibodies neutralised LT toxin in ETEC H10407 in challenge studies and cross-protected against ETEC H10407 in both mice and rabbits, preventing weight loss and diarrhoea. Ileal loop experiments in rabbits and BALB/c mice showed no reactogenicity. This review, based on our previous research, therefore provides valuable insights into improving the selection of animal models to advance preclinical evaluations of diarrhoeal vaccines.
Collapse
Affiliation(s)
- Hui Xian Tew
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | | | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nik Zuraina Nik Mohd Noor
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Prabhakaran Guruswamy
- Centre of Excellence for Vaccine Development (CoEVD), AIMST University, Kedah, Malaysia
| |
Collapse
|
2
|
Dual-Use Vaccine for Diarrhoeal Diseases: Cross-Protective Immunogenicity of a Cold-Chain-Free, Live-Attenuated, Oral Cholera Vaccine against Enterotoxigenic Escherichia coli (ETEC) Challenge in BALB/c Mice. Vaccines (Basel) 2022; 10:vaccines10122161. [PMID: 36560571 PMCID: PMC9787504 DOI: 10.3390/vaccines10122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In low- and middle-income countries, diarrhoeal diseases are the second most common cause of mortality in children, mainly caused by enterotoxin-producing bacteria, such as Shigella, Vibrio, Salmonella, and Escherichia coli. Cholera and traveller's diarrhoea are caused by Vibrio cholerae (O1 and O139 serogroups) and enterotoxigenic Escherichia coli (ETEC), respectively. The cholera toxin (CT) produced by V. cholerae and the heat-labile enterotoxin (LT) of ETEC are closely related by structure, function, and the immunological response to them. There is no exclusive vaccine for ETEC; however, cholera vaccines based on the CT-B component elicit a short-term cross-protection against ETEC infection. In this context, the cross-protective efficacy of MyCholTM, a prototype cold-chain-free, live-attenuated, oral cholera vaccine against V. cholerae O139 was evaluated in BALB/c mice. The 100% lethal dose (LD100) of 109 CFU/mL of the ETEC H10407 strain was used for the challenge studies. The mice immunised with MyChol™ survived the challenge by producing anti-CT antibodies, which cross-neutralised the LT toxin with no body weight loss and no sign of diarrhoea. Compared to unimmunised mice, the immunised mice elicited the neutralising antitoxin that markedly decreased ETEC colonisation and fluid accumulation caused by ETEC H10407 in the intestines. The immunised mice recorded higher antibody titres, including anti-CT IgG, anti-LT IgG, anti-CT-B IgG, and anti-LTB IgG. Only a two-fold rise in anti-CT/CT-B/LT/LT-B IgA was recorded in serum samples from immunised mice. No bactericidal antibodies against ETEC H10407 were detected. This investigation demonstrates the safety, immunogenicity, and cross-protective efficacy of MyCholTM against the ETEC H10407 challenge in BALB/c mice.
Collapse
|
3
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
4
|
Machado JN, Costa JC, Costa T, Rodrigues C. Mucosal bacterial vaccines in clinical practice - a novel approach to an old problem? Rev Assoc Med Bras (1992) 2020; 66:659-665. [PMID: 32638954 DOI: 10.1590/1806-9282.66.5.659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 12/28/2019] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVES To evaluate the efficacy of mucosal bacterial vaccines (MBV) in reducing the number of exacerbations in patients with chronic respiratory disease. METHODS A prospective cohort study of patients followed at the Pneumology Unit of the University and Hospital Centre of Coimbra, with frequent infectious exacerbations (3 or more) despite the best therapeutic strategies employed. MBV was used as additional therapy. The number of exacerbations 1 year before therapy and 1 year after it were analyzed. RESULTS A sample of 11 individuals, 45.5% male, mean age 62.5 years. Eight patients had non-cystic fibrosis bronchiectasis, 2 COPD (1 on long-term oxygen therapy), and 1 patient with Mounier Kuhn's syndrome. Three patients were on azithromycin, 1 on inhaled colistin, and 2 on inhaled tobramycin. Out of the 11 patients, one presented complication (fever), which led to a suspension of therapy (excluded from results). Of the 10 patients who completed treatment, 5 had bacterial colonization and were submitted to a custom vaccine. The remaining 6 completed the standard composition. The average of infectious exacerbations in the previous year was 4.3 (0.7 with hospitalization). In the year after therapy, the mean number was 1.5 (0.5 with hospitalization). CONCLUSION The results obtained in this study favor the use of bacterial immunostimulation to reduce the frequency of RRIs in patients with chronic respiratory disease.
Collapse
Affiliation(s)
- João Neiva Machado
- Unidade de Pneumologia, Universidade e Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - José Coutinho Costa
- Unidade de Pneumologia, Universidade e Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Teresa Costa
- Unidade de Pneumologia, Universidade e Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Cidália Rodrigues
- Unidade de Pneumologia, Universidade e Centro Hospitalar de Coimbra, Coimbra, Portugal
| |
Collapse
|
5
|
Sánchez Ramón S, Manzanares M, Candelas G. MUCOSAL anti-infections vaccines: Beyond conventional vaccines. REUMATOLOGIA CLINICA 2020; 16:49-55. [PMID: 30527360 DOI: 10.1016/j.reuma.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/24/2022]
Abstract
An urgent search is currently underway for alternatives to antibiotics to prevent infections, due to the accelerated evolution and increase in antibiotic resistance. This problem is more serious for patients with recurrent infections, since they have to use many cycles of antibiotics per year, so the risk for antibiotic resistance is higher and can be life-threatening. In recent years, the use of prophylactic vaccines via the mucosal route for these patients with recurrent infections has been demonstrated as a potentially beneficial and safe alternative to prevent infections. The new knowledge about mucosal immunity and trained immunity, a form of innate immunity memory that can enhance the response to different infectious threads, has made it easier to extend its use. The application of the new concepts of trained immunity may explain the simultaneous pro-tolerogenic and boosting effect or effects of these drugs on diverse immune cells for different infections. In this review, we describe the immunomodulatory mechanisms of mucosal polybacterial vaccines and their connection with trained immunity and its utility in the prevention of recurrent infections in immunosuppressed patients.
Collapse
Affiliation(s)
| | - Mario Manzanares
- Servicio de Inmunología, Hospital Clínico San Carlos, Madrid, España
| | - Gloria Candelas
- Servicio de Reumatología, Hospital Clínico San Carlos, Madrid, España.
| |
Collapse
|
6
|
Jwa MY, Ko EB, Kim HY, Kim SK, Jeong S, Seo HS, Yun CH, Han SH. Gamma-irradiation-killed Streptococcus pneumoniae potently induces the expression of IL-6 and IL-8 in human bronchial epithelial cells. Microb Pathog 2018; 124:38-46. [PMID: 30114464 DOI: 10.1016/j.micpath.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen that can cause pneumonia, meningitis, and otitis media. Although capsular polysaccharide-based vaccines are commercially available, there is a need for broad-spectrum, serotype-independent, and cost-effective vaccines. Recently, an intranasal vaccine formulated with gamma-irradiated nonencapsulated S. pneumoniae whole cells has been developed and its immunogenicity is under investigation. Since innate immunity influences the subsequent adaptive immunity, in the present study, we investigated the immunostimulatory activity of gamma-irradiated S. pneumoniae (r-SP) in the human bronchial epithelial cell-line, BEAS-2B, by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP). r-SP potently induced interleukin (IL)-6 and IL-8 at both mRNA and protein levels in a dose- and time-dependent manner, whereas h-SP and f-SP poorly induced them. Of note, the mRNA levels of IL-6 and IL-8 were approximately two-fold higher when cells were stimulated with 3 × 107 CFU/ml of r-SP for 3 h, while the protein levels of IL-6 and IL-8 were approximately five-fold higher after stimulation with 3 × 107 CFU/ml of r-SP for 24 h. Furthermore, r-SP exhibited potent activation of Toll-like receptor 2 compared with h-SP or f-SP. The expression of IL-6 and IL-8 induced by r-SP was mediated through the activation of mitogen-activated protein kinases. Remarkably, when r-SP was further treated with heat or formalin, there was a decrease in the aforementioned activities. Taken together, we suggest that r-SP stimulates the human respiratory epithelial cells to produce the cytokines IL-6 and IL-8, which might influence the induction of adaptive immune responses.
Collapse
Affiliation(s)
- Min Yong Jwa
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun Byeol Ko
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Young Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sun Kyung Kim
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soyoung Jeong
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho Seong Seo
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Gamma-irradiation of Streptococcus pneumoniae for the use as an immunogenic whole cell vaccine. J Microbiol 2018; 56:579-585. [PMID: 30047087 DOI: 10.1007/s12275-018-8347-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Streptococcus pneumoniae is a major respiratory pathogen that causes millions of deaths worldwide. Although subunit vaccines formulated with the capsular polysaccharides or their protein conjugates are currently-available, low-cost vaccines with wide serotype coverage still remain to be developed, especially for developing countries. Recently, gamma- irradiation has been considered as an effective inactivation method to prepare S. pneumoniae vaccine candidate. In this study, we investigated the immunogenicity and protective immunity of gamma-irradiated S. pneumoniae (r-SP), by comparing with heat-inactivated S. pneumoniae (h-SP) and formalin-inactivated S. pneumoniae (f-SP), both of which were made by traditional inactivation methods. Intranasal immunization of C57BL/6 mice with r-SP in combination with cholera toxin as an adjuvant enhanced S. pneumoniaespecific antibodies on the airway mucosal surface and in sera more potently than that with h-SP or f-SP under the same conditions. In addition, sera from mice immunized with r-SP potently induced opsonophagocytic killing activity more effectively than those of h-SP or f-SP, implying that r-SP could induce protective antibodies. Above all, immunization with r-SP effectively protected mice against S. pneumoniae infection. Collectively, these results suggest that gamma- irradiation is an effective method for the development of a killed whole cell pneumococcal vaccine that elicits robust mucosal and systemic immune responses.
Collapse
|
8
|
Lee EY, Lee S, Rho S, Kim JO, Choi SK, Lee YJ, Park JY, Song M, Yang JS. Immunogenicity of a bivalent killed thimerosal-free oral cholera vaccine, Euvichol, in an animal model. Clin Exp Vaccine Res 2018; 7:104-110. [PMID: 30112349 PMCID: PMC6082675 DOI: 10.7774/cevr.2018.7.2.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
PURPOSE An oral cholera vaccine (OCV), Euvichol, with thimerosal (TM) as preservative, was prequalified by the World Health Organization (WHO) in 2015. In recent years, public health services and regulatory bodies recommended to eliminate TM in vaccines due to theoretical safety concerns. In this study, we examined whether TM-free Euvichol induces comparable immunogenicity to its TM-containing formulation in animal model. MATERIALS AND METHODS To evaluate and compare the immunogenicity of the two variations of OCV, mice were immunized with TM-free or TM-containing Euvichol twice at 2-week interval by intranasal or oral route. One week after the last immunization, mice were challenged with Vibrio cholerae O1 and daily monitored to examine the protective immunity against cholera infection. In addition, serum samples were obtained from mice to measure vibriocidal activity and vaccine-specific IgG, IgM, and IgA antibodies using vibriocidal assay and enzyme-linked immunosorbent assay, respectively. RESULTS No significant difference in immunogenicity, including vibriocidal activity and vaccine-specific IgG, IgM, and IgA in serum, was observed between mice groups administered with TM-free and -containing Euvichol, regardless of immunization route. However, intranasally immunized mice elicited higher levels of serum antibodies than those immunized via oral route. Moreover, intranasal immunization completely protected mice against V. cholerae challenge but not oral immunization. There was no significant difference in protection between two Euvichol variations. CONCLUSION These results suggested that TM-free Euvichol could provide comparable immunogenicity to the WHO prequalified Euvichol containing TM as it was later confirmed in a clinical study. The pulmonary mouse cholera model can be considered useful to examine in vivo the potency of OCVs.
Collapse
Affiliation(s)
- Eun Young Lee
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| | - Sena Lee
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| | - Semi Rho
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| | - Jae-Ouk Kim
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| | | | | | | | - Manki Song
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| | - Jae Seung Yang
- Clinical Research Laboratory, Sciences Unit, International Vaccine Institute, Seoul, Korea
| |
Collapse
|
9
|
Sim JR, Kang SS, Lee D, Yun CH, Han SH. Killed Whole-Cell Oral Cholera Vaccine Induces CCL20 Secretion by Human Intestinal Epithelial Cells in the Presence of the Short-Chain Fatty Acid, Butyrate. Front Immunol 2018; 9:55. [PMID: 29434590 PMCID: PMC5796904 DOI: 10.3389/fimmu.2018.00055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, butyrate, and propionate, modulate immune responses in the gut. However, the effect of SCFAs on mucosal vaccine-induced immune cell migration is poorly understood. Here, we investigated whether SCFAs modulate chemokine expression induced by the killed whole-cell oral cholera vaccine, Shanchol™, in human intestinal epithelial cells. Shanchol™ induced expression of CCL2, CCL5, CCL20, and CXCL10 at the mRNA level, but not at the protein level. Interestingly, CCL20 secretion was substantially increased by co-stimulation with Shanchol™ and butyrate, while neither acetate nor propionate showed such effect. Enhanced CCL20 secretion was associated with GPR109A activation, and histone deacetylase (HDAC) inhibition. In addition, co-treatment with Shanchol™ and butyrate synergistically increased the secretion of adenosine triphosphate (ATP). Moreover, CCL20 secretion was decreased by inhibiting the extracellular ATP receptor P2X7. However, neither inflammasomes nor caspases were involved in CCL20 production. The culture supernatant of cells treated with Shanchol™ and butyrate augmented human immature dendritic cell migration. Collectively, these results suggest that butyrate enhances Shanchol™-induced CCL20 production in human intestinal epithelial cells via HDAC inhibition and ATP-P2X7 signaling by activating GPR109A. These effects potentially enhance the mucosal immune responses in the gut induced by this oral cholera vaccine.
Collapse
Affiliation(s)
- Ju-Ri Sim
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, Dongguk University Seoul, Goyang, South Korea
| | - Daesang Lee
- The 5th R&D Institute, Agency for Defense Development, Daejeon, South Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
10
|
Protein energy malnutrition alters mucosal IgA responses and reduces mucosal vaccine efficacy in mice. Immunol Lett 2017; 190:247-256. [PMID: 28860040 DOI: 10.1016/j.imlet.2017.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/26/2017] [Accepted: 08/24/2017] [Indexed: 01/27/2023]
Abstract
Oral vaccine responsiveness is often lower in children from less developed countries. Childhood malnutrition may be associated with poor immune response to oral vaccines. The present study was designed to investigate whether protein energy malnutrition (PEM) impairs B cell immunity and ultimately reduces oral vaccine efficacy in a mouse model. Purified isocaloric diets containing low protein (1/10 the protein of the control diet) were used to determine the effect of PEM. PEM increased both nonspecific total IgA and oral antigen-specific IgA in serum without alteration of gut permeability. However, PEM decreased oral antigen-specific IgA in feces, which is consistent with decreased expression of polymeric Immunoglobulin receptor (pIgR) in the small intestine. Of note, polymeric IgA was predominant in serum under PEM. In addition, PEM altered B cell development status in the bone marrow and increased the frequency of IgA-secreting B cells, as well as IgA secretion by long-lived plasma cells in the small intestinal lamina propria. Moreover, PEM reduced the protective efficacy of the mucosally administered cholera vaccine and recombinant attenuated Salmonella enterica serovar Typhimurium vaccine in a mouse model. Our results suggest that PEM can impair mucosal immunity where IgA plays an important role in host protection and may partly explain the reduced efficacy of oral vaccines in malnourished subjects.
Collapse
|
11
|
Lee TH, Cha SS, Lee CS, Rhee JH, Woo HR, Chung KM. Cross-protection against Vibrio cholerae infection by monoclonal antibodies against Vibrio vulnificus RtxA1/MARTX Vv. Microbiol Immunol 2016; 60:793-800. [PMID: 27921342 DOI: 10.1111/1348-0421.12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Gram-negative Vibrio species secrete multifunctional autoprocessing repeats-in-toxin (MARTX) toxins associated with bacterial pathogenesis. Here, the cross-reactivity and cross-protectivity of mAbs against V. vulnificus RtxA1/MARTXVv was evaluated. Passive administration of any of these mAbs (21RA, 24RA, 46RA, 47RA and 50RA) provided strong protection against lethal V. cholerae infection. Interestingly, 24RA and 46RA, which map to the cysteine protease domain of V. cholerae MARTXVc , inhibited CPD autocleavage in vitro; this process is involved in V. cholerae pathogenesis. These results generate new insight into the development of broadly protective mAbs and/or vaccines against Vibrio species with MARTX toxins.
Collapse
Affiliation(s)
- Tae Hee Lee
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang-Seop Lee
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hye Ryun Woo
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Kyung Min Chung
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea.,Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
12
|
Kang SS, Baik JE, Yang JS, Cho K, Yun CH, Han SH. Protein profiles in mucosal and systemic compartments in response to Vibrio cholerae in a mouse pulmonary infection model. Microb Pathog 2015; 86:10-7. [PMID: 26150210 DOI: 10.1016/j.micpath.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/17/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
We have recently shown that a mouse lung infection model resulting in acute pneumonia could be used for evaluating the protective immunity induced by mucosal vaccines against Vibrio cholerae. In order to gain insight and better understanding of the pathogenicity of V. cholerae infection, we identified and compared proteins induced by V. cholerae in nasal washes, bronchoalveolar lavages (BAL), and sera. Intranasal administration of V. cholerae increased the concentration of total proteins in nasal washes and BAL fluids, but not in sera. LTQ-Orbitrap hybrid Fourier transform mass spectrometry showed that cytoskeletal proteins, protease inhibitors and anti-inflammatory mediators were present in nasal washes from uninfected mice. The distinctly expressed proteins in nasal washes in response to V. cholerae mainly consisted of protease inhibitors, anti-inflammatory proteins, and anti-microbial proteins. A number of protease inhibitors and anti-inflammatory proteins were selectively expressed in BAL fluids from V. cholerae-infected mice, while cytoskeletal proteins and heat shock proteins were mainly observed in BAL fluids from uninfected mice. A large number of serum complements, protease inhibitors, and acute phase proteins were expressed in V. cholerae-infected mice. Collectively, these results suggest that intranasal administration of V. cholerae leading to acute pneumonia elicited alterations of protein profiles associated with immune homeostasis and host protection in both the mucosal and systemic compartments.
Collapse
Affiliation(s)
- Seok-Seong Kang
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jung Eun Baik
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea
| | - Jae Seung Yang
- Clinical Immunology Section, Laboratory Sciences Division, International Vaccine Institute, Seoul 151-919, Republic of Korea
| | - Kun Cho
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Ochang 863-883, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul 110-749, Republic of Korea.
| |
Collapse
|
13
|
Baldauf KJ, Royal JM, Hamorsky KT, Matoba N. Cholera toxin B: one subunit with many pharmaceutical applications. Toxins (Basel) 2015; 7:974-96. [PMID: 25802972 PMCID: PMC4379537 DOI: 10.3390/toxins7030974] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022] Open
Abstract
Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT), which consists of two subunits: the A subunit (CTA) and the B subunit (CTB). CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.
Collapse
Affiliation(s)
- Keegan J Baldauf
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Joshua M Royal
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| | - Krystal Teasley Hamorsky
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Owensboro Cancer Research Program of James Graham Brown Cancer Center at University of Louisville School of Medicine, Owensboro, KY 42303, USA.
| |
Collapse
|
14
|
Evaluation of anticoagulants for serologic assays of cholera vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:854-8. [PMID: 24717970 DOI: 10.1128/cvi.00012-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blood collected with an anticoagulant is beneficial for simultaneous evaluation of immune cells and humoral components such as antibodies. However, it is critical that the anticoagulant does not affect quantitative and qualitative analyses of antibodies. In the present study, we examined the potential interference of the widely used anticoagulants heparin, EDTA, and acid citrate dextrose (ACD) on vibriocidal antibody activities and Vibrio cholerae lipopolysaccharide (LPS)-specific IgG, IgM, and IgA levels in the plasma and sera obtained from cholera patients or vaccinees. Serum vibriocidal antibody titer was inhibited in the presence of EDTA or ACD but not in the presence of heparin. Moreover, 100% (8/8) of the vibriocidal antibody titers of plasma samples obtained from the vaccinees in tubes containing heparin were identical to the titers of matched sera when compared with 37.5% (3/8) and 50% (4/8) of the plasma samples prepared with EDTA and ACD, respectively. Among LPS-specific Igs, the Pearson correlation coefficient (r) for IgA in serum and plasma was low (r = 0.716), and the coefficients for IgG and IgM were relatively high (r = 0.997 and r = 0.945, respectively) in heparinized plasma samples compared with the coefficient for IgG and IgM of EDTA- and ACD-treated plasma. Our results suggest that heparin is an appropriate anticoagulant for the collection of blood when measuring vibriocidal activities and antibody levels in plasma samples.
Collapse
|