1
|
Nemours S, Solé C, Goicoechea I, Armesto M, Arestin M, Urruticoechea A, Rezola M, López IÁ, Schaapveld R, Schultz I, Zhang L, Lawrie CH. Use of Gain-of-Function Screening to Identify miRNAs Involved in Paclitaxel Resistance in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13630. [PMID: 39769392 PMCID: PMC11728027 DOI: 10.3390/ijms252413630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Paclitaxel is a widely used chemotherapeutic agent for the treatment of breast cancer (BC), including as a front-line treatment for triple-negative breast cancer (TNBC) patients. However, resistance to paclitaxel remains one of the major causes of death associated with treatment failure. Multiple studies have demonstrated that miRNAs play a role in paclitaxel resistance and are associated with both disease progression and metastasis. In the present study, we used a miRNA-encoding lentiviral library as a gain-of-function screen for paclitaxel resistance in the MDA-MB-231 TNBC cell line. We identified that miR-181b, miR-29a, miR-30c, miR-196 and miR-1295 conferred a resistant phenotype to cells. The expression of miR-29a also induced resistance to eribulin and vinorelbine, while miR-181b and miR-30c induced resistance to vinorelbine. We measured the levels of these miRNAs in breast cancer patients and observed higher levels of miR-29a in treatment-refractory patients. Taken together, we suggest that miR-29a and miR-181b may be good candidates for miRNA inhibition to overcome resistance to chemotherapy.
Collapse
Affiliation(s)
- Stéphane Nemours
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Carla Solé
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ibai Goicoechea
- Department of Personalized Medicine, NASERTIC, Government of Navarra, 31011 Pamplona, Spain
| | - María Armesto
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - María Arestin
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
| | - Ander Urruticoechea
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Marta Rezola
- Department of Pathology, Hospital Universitario Donostia Osakidetza, 20014 Donostia, Spain;
| | - Isabel Álvarez López
- Breast Cancer Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (A.U.); (I.Á.L.)
- Gipuzkoa Cancer Unit, OSI Donostialdea—Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - Roel Schaapveld
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Iman Schultz
- InteRNA Technologies, 3584 Utrecht, The Netherlands; (R.S.); (I.S.)
| | - Lei Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
| | - Charles H. Lawrie
- Molecular Oncology Group, Biogipuzkoa Health Research Institute, 20014 San Sebastian, Spain; (S.N.); (C.S.); (M.A.); (M.A.)
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201800, China;
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
2
|
Yu W, Lin X, Leng S, Hou Y, Dang Z, Xue S, Li N, Zhang F. The PRC2 complex epigenetically silences GATA4 to suppress cellular senescence and promote the progression of breast cancer. Transl Oncol 2024; 46:102014. [PMID: 38843657 PMCID: PMC11214403 DOI: 10.1016/j.tranon.2024.102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND The transcription factor GATA4 is pivotal in cancer development but is often silenced through mechanisms like DNA methylation and histone modifications. This silencing suppresses the transcriptional activity of GATA4, disrupting its normal functions and promoting cancer progression. However, the precise molecular mechanisms and implications of GATA4 silencing in tumorigenesis remain unclear. Here, we aim to elucidate the mechanisms underlying GATA4 silencing and explore its role in breast cancer progression and its potential as a therapeutic target. METHODS The GATA4-breast cancer prognosis link was explored via bioinformatics analyses, with GATA4 expression measured in breast tissues. Functional gain/loss experiments were performed to gauge GATA4's impact on breast cancer cell malignancy. GATA4-PRC2 complex interaction was analyzed using silver staining and mass spectrometry. Chromatin immunoprecipitation, coupled with high-throughput sequencing, was used to identify GATA4-regulated downstream target genes. The in vitro findings were validated in an in situ breast cancer xenograft mouse model. RESULTS GATA4 mutation and different breast cancer subtypes were correlated, suggesting its involvement in disease progression. GATA4 suppressed cell proliferation, invasion, and migration while inducing apoptosis and senescence in breast cancer cells. The GATA4-PRC2 complex interaction silenced GATA4 expression, which altered the regulation of FAS, a GATA4 downstream gene. In vivo experiments verified that GATA4 inhibits tumor growth, suggesting its regulatory function in tumorigenesis. CONCLUSIONS This comprehensive study highlights the epigenetic regulation of GATA4 and its impact on breast cancer development, highlighting the PRC2-GATA4-FAS pathway as a potential target for therapeutic interventions in breast cancers.
Collapse
Affiliation(s)
- Wenqian Yu
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Xiaona Lin
- Department of Cardiovascular Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China
| | - Shuai Leng
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yiming Hou
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Zhiqiao Dang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4, Duanxin West Road, Jinan, Shandong 250022, China; Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong 250022, China.
| | - Fengquan Zhang
- Research Center of Translational Medicine, Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
3
|
Čeprnja T, Tomić S, Perić Balja M, Marušić Z, Blažićević V, Spagnoli GC, Juretić A, Čapkun V, Vuger AT, Pogorelić Z, Mrklić I. Prognostic Value of "Basal-like" Morphology, Tumor-Infiltrating Lymphocytes and Multi-MAGE-A Expression in Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:4513. [PMID: 38674098 PMCID: PMC11050590 DOI: 10.3390/ijms25084513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
"Basal-like" (BL) morphology and the expression of cancer testis antigens (CTA) in breast cancer still have unclear prognostic significance. The aim of our research was to explore correlations of the morphological characteristics and tumor microenvironment in triple-negative breast carcinomas (TNBCs) with multi-MAGE-A CTA expression and to determine their prognostic significance. Clinical records of breast cancer patients who underwent surgery between January 2017 and December 2018 in four major Croatian clinical centers were analyzed. A total of 97 non-metastatic TNBCs with available tissue samples and treatment information were identified. Cancer tissue sections were additionally stained with programmed death-ligand 1 (PD-L1) Ventana (SP142) and multi-MAGE-A (mAb 57B). BL morphology was detected in 47 (49%) TNBCs and was associated with a higher Ki-67 proliferation index and histologic grade. Expression of multi-MAGE-A was observed in 77 (79%) TNBCs and was significantly associated with BL morphology. Lymphocyte-predominant breast cancer (LPBC) status was detected in 11 cases (11.3%) and significantly correlated with the Ki-67 proliferation index, increased number of intratumoral lymphocytes (itTIL), and PD-L1 expression. No impact of BL morphology, multi-MAGE-A expression, histologic type, or LPBC status on disease-free survival was observed. Our data suggest that tumor morphology could help identify patients with potential benefits from CTA-targeting immunotherapy.
Collapse
Affiliation(s)
- Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
| | - Snježana Tomić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| | - Melita Perić Balja
- Department of Pathology, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
| | - Zlatko Marušić
- Department of Pathology, Zagreb University Hospital Center, 10000 Zagreb, Croatia
| | | | | | - Antonio Juretić
- Department of Oncology, University Hospital Dubrava, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Vesna Čapkun
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia
| | - Ana Tečić Vuger
- Department of Oncology, University Hospital “Sestre Milosrdnice”, 10000 Zagreb, Croatia;
| | - Zenon Pogorelić
- Department of Pediatric Surgery, University Hospital of Split, 21000 Split, Croatia
- Department of Surgery, School of Medicine, University of Split, 21000 Split, Croatia
| | - Ivana Mrklić
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia; (T.Č.); (S.T.); (I.M.)
- Department of Pathology, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
4
|
Sarfraz Z, Sarfraz A, Mehak O, Akhund R, Bano S, Aftab H. Racial and socioeconomic disparities in triple-negative breast cancer treatment. Expert Rev Anticancer Ther 2024; 24:107-116. [PMID: 38436305 DOI: 10.1080/14737140.2024.2326575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) continues to be a significant concern, especially among minority populations, where treatment disparities are notably pronounced. Addressing these disparities, especially among African American women and other minorities, is crucial for ensuring equitable healthcare. AREAS COVERED This review delves into the continuum of TNBC treatment, noting that the standard of care, previously restricted to chemotherapy, has now expanded due to emerging clinical trial results. With advances like PARP inhibitors, immunotherapy, and antibody-drug conjugates, a more personalized treatment approach is on the horizon. The review highlights innovative interventions tailored for minorities, such as utilizing technology like text messaging, smartphone apps, and targeted radio programming, coupled with church-based behavioral interventions. EXPERT OPINION Addressing TNBC treatment disparities demands a multifaceted approach, blending advanced medical treatments with culturally sensitive community outreach. The potential of technology, especially in the realm of promoting health awareness, is yet to be fully harnessed. As the field progresses, understanding and integrating the socio-economic, biological, and access-related challenges faced by minorities will be pivotal for achieving health equity in TNBC care.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Onaiza Mehak
- Department of Medicine, Aziz Fatimah Medical and Dental College, Faisalabad, Pakistan
| | - Ramsha Akhund
- Department of Surgery, University of Alabama at Birmingham, Tuscaloosa, AL, USA
| | - Shehar Bano
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Hinna Aftab
- Department of Medicine, CMH Lahore Medical College, Lahore, Pakistan
| |
Collapse
|
5
|
Reddy M VS, Viswambharan V, Shetty V, Sharma S. Novel Insights Into the Epidemiological and Clinico-Pathological Profile of Triple-Negative Breast Cancer: Dissection of an Aggressive Variant. Cureus 2024; 16:e56124. [PMID: 38618474 PMCID: PMC11015063 DOI: 10.7759/cureus.56124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/16/2024] Open
Abstract
Objective Triple-negative breast cancer (TNBC) represents an aggressive and prognostically poor variant of breast cancer. Over the years, detailed research has been conducted and published in Western literature. However, there lacks a detailed account of TNBC cases from the perspective of a low-volume institution. This study aims to assess the clinical features of TNBC, as well as their prognostic implications in a tertiary care centre. Methods and materials This prospective observational study took place at a tertiary health centre for two years, spanning from 2021 to 2023. The study aimed to investigate various clinicopathological and epidemiological parameters, thereby highlighting the shortcomings in the existing knowledge about the subject in the context of a low-volume centre, as well as additional contributing factors in developing countries like India. A group of 150 participants diagnosed with TNBC through biopsy and immunohistochemistry and >40 years of age were included in the study. Patients who tested positive for hormonal receptors and who refused to give consent for participation were excluded from the study. The study subjects were categorized according to their clinical TNM (cTNM) stage and eventually segregated into two primary heads, namely pre-surgery chemotherapy with breast-conserving surgery (BCS) after a good response, or modified radical mastectomy (MRM) upfront. Important demographic details, including age, socioeconomic status, and education, were also recorded. A comprehensive follow-up assessment post-treatment was performed to detect early recurrence. After data collection, the recurrence rates were correlated with the TNBC status to establish the aggressiveness of the cancer. Statistical analysis of the data was done using the Statistical Package for Social Sciences (SPSS) -16version software. Results The average age of the 150 participants in the study was 52.21 years (SD±4.89 years). The highest recorded age was 64 years, while the lowest recorded age was 45 years. In the study, it was observed that 41% of the participants diagnosed with TNBC had stage III disease, whereas 33.5% had stage I disease, 22% had stage IV disease and 3.6% had stage II disease. A total of 27.5% of individuals with TNBC exhibited metastases in various anatomical sites, whereas the other 72.5% did not show any signs of metastasis. Conclusion Triple-negative breast cancer has earned its position as a unique subtype of breast cancer due to its unusual molecular characteristics, aggressive behavior, limited treatment options, and poor prognosis. The lower per-capita income and limited knowledge pertaining to this variant, along with the absence of more specific treatment options, contribute to the already high levels of morbidity and mortality associated with this illness. To effectively address this unique and very virulent ailment and customize our strategies, it is imperative to do further comprehensive investigations, thereby enabling us to deliver the highest quality of medical attention to individuals afflicted by this pathology.
Collapse
Affiliation(s)
- Vijay Sai Reddy M
- General Surgery, Dr. D.Y. Patil Medical College Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Varsha Viswambharan
- General Surgery, Dr. D.Y. Patil Medical College Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Varun Shetty
- General Surgery, Dr. D.Y. Patil Medical College Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| | - Sarthak Sharma
- General Surgery, Dr. D.Y. Patil Medical College Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth, Pune, IND
| |
Collapse
|
6
|
Gou WB, Yang YQ, Song BW, He P. Solid basal adenoid cystic carcinoma of the breast: A case report and literature review. Medicine (Baltimore) 2024; 103:e37010. [PMID: 38241532 PMCID: PMC10798743 DOI: 10.1097/md.0000000000037010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/21/2024] Open
Abstract
RATIONALE Adenoid cystic carcinoma (AdCC) is a rare malignancy of the breast with a low Ki-67 index and good prognosis. Owing to the rarity of breast AdCC, the misdiagnosis rate is as high as 50%, and there is no consensus or recognized guidelines for the treatment of this disease. Therefore, it is necessary to conduct a detailed clinical and pathological analysis in combination with a literature review to improve our understanding, diagnosis, and treatment of the disease. METHODS A 68-year-old woman sought medical attention due to a recently increasing mass in the breast. The left breast mass was 1.3 cm × 1 cm in size. We analyzed the morphology, immunohistochemistry, and molecular characteristics of the tumor removed by surgery, and reviewed relevant literature. DIAGNOSES Solid basal AdCC of the breast. INTERVENTIONS We performed biopsy, immunohistochemistry and molecular testing on surgical resection specimens. OUTCOMES Combining morphological and immunohistochemical features, it is consistent with solid basal AdCC of the breast, and Fish detected MYB gene break. LESSONS Due to the high misdiagnosis rate of AdCC, accurate histopathological diagnosis is particularly important. At present, breast conserving surgery and local tumor resection are mainly used for the treatment of breast AdCC, and postoperative adjuvant radiotherapy is feasible.
Collapse
Affiliation(s)
- Wen Bin Gou
- Department of Pathology, People’s Hospital of Wanning, Wanning, Hainan, China
| | - Yong Qiang Yang
- Department of Endoscopy, People’s Hospital of Wanning, Wanning, Hainan, China
| | - Bei Wen Song
- Department of Endoscopy, People’s Hospital of Wanning, Wanning, Hainan, China
| | - Pei He
- Department of Clinical laboratory, Xinjiang Production and Construction Corps Sixth Division Hospital, Wujiaqu, Xinjiang, China
| |
Collapse
|
7
|
Lozar T, Wang W, Gavrielatou N, Christensen L, Lambert PF, Harari PM, Rimm DL, Burtness B, Grasic Kuhar C, Carchman EH. Emerging Prognostic and Predictive Significance of Stress Keratin 17 in HPV-Associated and Non HPV-Associated Human Cancers: A Scoping Review. Viruses 2023; 15:2320. [PMID: 38140561 PMCID: PMC10748233 DOI: 10.3390/v15122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
A growing body of literature suggests that the expression of cytokeratin 17 (K17) correlates with inferior clinical outcomes across various cancer types. In this scoping review, we aimed to review and map the available clinical evidence of the prognostic and predictive value of K17 in human cancers. PubMed, Web of Science, Embase (via Scopus), Cochrane Central Register of Controlled Trials, and Google Scholar were searched for studies of K17 expression in human cancers. Eligible studies were peer-reviewed, published in English, presented original data, and directly evaluated the association between K17 and clinical outcomes in human cancers. Of the 1705 studies identified in our search, 58 studies met criteria for inclusion. Studies assessed the prognostic significance (n = 54), predictive significance (n = 2), or both the prognostic and predictive significance (n = 2). Altogether, 11 studies (19.0%) investigated the clinical relevance of K17 in cancers with a known etiologic association to HPV; of those, 8 (13.8%) were focused on head and neck squamous cell carcinoma (HNSCC), and 3 (5.1%) were focused on cervical squamous cell carcinoma (SCC). To date, HNSCC, as well as triple-negative breast cancer (TNBC) and pancreatic cancer, were the most frequently studied cancer types. K17 had prognostic significance in 16/17 investigated cancer types and 43/56 studies. Our analysis suggests that K17 is a negative prognostic factor in the majority of studied cancer types, including HPV-associated types such as HNSCC and cervical cancer (13/17), and a positive prognostic factor in 2/17 studied cancer types (urothelial carcinoma of the upper urinary tract and breast cancer). In three out of four predictive studies, K17 was a negative predictive factor for chemotherapy and immune checkpoint blockade therapy response.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Leslie Christensen
- Ebling Library, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (T.L.)
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | - Paul M. Harari
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L. Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Barbara Burtness
- Department of Medicine and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Evie H. Carchman
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
8
|
Lozar T, Laklouk I, Golfinos AE, Gavrielatou N, Xu J, Flynn C, Keske A, Yu M, Bruce JY, Wang W, Grasic Kuhar C, Bailey HH, Harari PM, Dinh HQ, Rimm DL, Hu R, Lambert PF, Fitzpatrick MB. Stress Keratin 17 Is a Predictive Biomarker Inversely Associated with Response to Immune Check-Point Blockade in Head and Neck Squamous Cell Carcinomas and Beyond. Cancers (Basel) 2023; 15:4905. [PMID: 37835599 PMCID: PMC10571921 DOI: 10.3390/cancers15194905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Low response rates in immune check-point blockade (ICB)-treated head and neck squamous cell carcinoma (HNSCC) drive a critical need for robust, clinically validated predictive biomarkers. Our group previously showed that stress keratin 17 (CK17) suppresses macrophage-mediated CXCL9/CXCL10 chemokine signaling involved in attracting activated CD8+ T cells into tumors, correlating with decreased response rate to pembrolizumab-based therapy in a pilot cohort of ICB-treated HNSCC (n = 26). Here, we performed an expanded analysis of the predictive value of CK17 in ICB-treated HNSCC according to the REMARK criteria and investigated the gene expression profiles associated with high CK17 expression. Pretreatment samples from pembrolizumab-treated HNSCC patients were stained via immunohistochemistry using a CK17 monoclonal antibody (n = 48) and subjected to spatial transcriptomic profiling (n = 8). Our findings were validated in an independent retrospective cohort (n = 22). CK17 RNA expression in pembrolizumab-treated patients with various cancer types was investigated for predictive significance. Of the 48 patients (60% male, median age of 61.5 years), 21 (44%) were CK17 high, and 27 (56%) were CK17 low. A total of 17 patients (35%, 77% CK17 low) had disease control, while 31 patients (65%, 45% CK17 low) had progressive disease. High CK17 expression was associated with a lack of disease control (p = 0.037), shorter time to treatment failure (p = 0.025), and progression-free survival (PFS, p = 0.004), but not overall survival (OS, p = 0.06). A high CK17 expression was associated with lack of disease control in an independent validation cohort (p = 0.011). PD-L1 expression did not correlate with CK17 expression or clinical outcome. CK17 RNA expression was predictive of PFS and OS in 552 pembrolizumab-treated cancer patients. Our findings indicate that high CK17 expression may predict resistance to ICB in HNSCC patients and beyond.
Collapse
Affiliation(s)
- Taja Lozar
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Israa Laklouk
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Athena E Golfinos
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | - Niki Gavrielatou
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Christopher Flynn
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Aysenur Keske
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Menggang Yu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Justine Y Bruce
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Wei Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
| | - Cvetka Grasic Kuhar
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Howard H Bailey
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Paul M Harari
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - David L Rimm
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, 6459 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705 WI, USA
| | - Megan B Fitzpatrick
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, MC 8550, 600 Highland Ave, Madison, WI 53792, USA
| |
Collapse
|
9
|
Choi S, Cho SI, Jung W, Lee T, Choi SJ, Song S, Park G, Park S, Ma M, Pereira S, Yoo D, Shin S, Ock CY, Kim S. Deep learning model improves tumor-infiltrating lymphocyte evaluation and therapeutic response prediction in breast cancer. NPJ Breast Cancer 2023; 9:71. [PMID: 37648694 PMCID: PMC10469174 DOI: 10.1038/s41523-023-00577-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) have been recognized as key players in the tumor microenvironment of breast cancer, but substantial interobserver variability among pathologists has impeded its utility as a biomarker. We developed a deep learning (DL)-based TIL analyzer to evaluate stromal TILs (sTILs) in breast cancer. Three pathologists evaluated 402 whole slide images of breast cancer and interpreted the sTIL scores. A standalone performance of the DL model was evaluated in the 210 cases (52.2%) exhibiting sTIL score differences of less than 10 percentage points, yielding a concordance correlation coefficient of 0.755 (95% confidence interval [CI], 0.693-0.805) in comparison to the pathologists' scores. For the 226 slides (56.2%) showing a 10 percentage points or greater variance between pathologists and the DL model, revisions were made. The number of discordant cases was reduced to 116 (28.9%) with the DL assistance (p < 0.001). The DL assistance also increased the concordance correlation coefficient of the sTIL score among every two pathologists. In triple-negative and human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients who underwent the neoadjuvant chemotherapy, the DL-assisted revision notably accentuated higher sTIL scores in responders (26.8 ± 19.6 vs. 19.0 ± 16.4, p = 0.003). Furthermore, the DL-assistant revision disclosed the correlation of sTIL-high tumors (sTIL ≥ 50) with the chemotherapeutic response (odd ratio 1.28 [95% confidence interval, 1.01-1.63], p = 0.039). Through enhancing inter-pathologist concordance in sTIL interpretation and predicting neoadjuvant chemotherapy response, here we report the utility of the DL-based tool as a reference for sTIL scoring in breast cancer assessment.
Collapse
Affiliation(s)
- Sangjoon Choi
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | | | | | | - Su Jin Choi
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | | | | | | | - Minuk Ma
- Lunit Inc, Seoul, Republic of Korea
| | | | | | | | | | - Seokhwi Kim
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea.
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
10
|
Passos ID, Papadimitriou D, Katsouda A, Papavasileiou GE, Galatas A, Tzitzis P, Mpakosi A, Mironidou-Tzouveleki M. In Vitro and In Vivo Effects of Docetaxel and Dasatinib in Triple-Negative Breast Cancer: A Research Study. Cureus 2023; 15:e43534. [PMID: 37719631 PMCID: PMC10500968 DOI: 10.7759/cureus.43534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Triple-negative breast cancer (TNBC) comprises a heterogeneous group of tumors with a single trait in common: an evident aggressive nature with higher rates of relapse and lower overall survival in the metastatic context when compared to other subtypes of breast cancer. To date, not a single targeted therapy has been approved for the treatment of TNBC, and cytotoxic chemotherapy remains the standard treatment. In the present experimental study, we examine the effects of the chemotherapeutic docetaxel and the bcr/abl kinase inhibitor dasatinib on TNBC cell lines (in vitro) and on TNBC tumor xenograft mouse models (in vivo). Materials and methods TNBC cell lines were cultivated and treated with various concentrations of docetaxel and dasatinib (5 nM to 100 nM). Cell death and apoptosis were studied by flow cytometry. TNBC cell lines were then injected in BALB/c athymic nude mice to express the tumor in vivo. Four groups of mice were created (group A: control; group B: DOC; group C: DAS; group D: DOC + DAS) and treated, respectively, with the drugs and their combination. Tumors were obtained, maintained in a 10% formaldehyde solution, embedded in paraffin, and sent for further histological evaluation (hematoxylin-eosin staining and immune-histochemical analysis) to assess the tumor growth inhibition. Results The cytotoxic effects of docetaxel seem statistically important, with little effect on apoptosis. The effect of dasatinib in vitro and vivo is statistically important, in terms of apoptosis and tumor reduction, with little adverse effects. Conclusions TNBC is a difficult-to-treat oncologic condition, even in an experimental setting. Promising results concerning the addition of targeted therapies (dasatinib) to the conventional cytotoxic ones (docetaxel) have been shown, awaiting further evaluation.
Collapse
Affiliation(s)
- Ioannis D Passos
- Surgical Department, 219 Mobile Army Surgical Hospital, Didymoteicho, GRC
| | - Dimochristos Papadimitriou
- Laboratory of Clinical Pharmacology, Faculty of Medicine, School of Health Sciences, General Hospital of Thessaloniki "G. Gennimatas" /Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Areti Katsouda
- Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| | | | - Apostolos Galatas
- Surgical Department, 219 Mobile Army Surgical Hospital, Didymoteicho, GRC
| | - Panagiotis Tzitzis
- 1st Department of Obstetrics & Gynaecology, Medical Faculty, Papageorgiou General Hospital/Aristotle University of Thessaloniki, Thessaloniki, GRC
| | - Alexandra Mpakosi
- Department of Microbiology, General State Hospital of Nikaia "Saint Panteleimon", Nikaia, GRC
| | - Maria Mironidou-Tzouveleki
- 1st Department of Pharmacology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GRC
| |
Collapse
|
11
|
Mohapatra M. Clinicopathological and prognostic characteristic features of triple negative and nontriple negative breast cancer at a tertiary care hospital. J Cancer Res Ther 2023; 19:1186-1193. [PMID: 37787282 DOI: 10.4103/jcrt.jcrt_1222_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Context Carcinoma breast is a complex disease having diverse clinical, histopathological, and immunohistochemical features. Basing on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptor (HER2) status, these tumors are divided into triple-negative breast cancers (TNBC) where tumor cells are negative for all three receptors and nontriple negative breast cancer (non-TNBC) where tumor cells are positive for one or two or all. The clinicopathological and characteristic prognostic features are highlighted here. Aim The aim of this study is to evaluate the clinicopathological and prognostic features of TNBC and non-TNBC cases diagnosed in our hospital setting. Settings and Design Single institution, retrospective study conducted over 7 and half years. Subjects and Methods Histopathologically confirmed breast cancer cases with ER, PR, and HER2 receptor assessment were categorized into TNBC and non-TNBC. Detailed study on clinicopathological and prognostic features including pathological prognostic stage as per 8th AJCC was done in cases who underwent modified radical mastectomy. Statistical Analysis Used Data were analyzed in percentage and presented in tables and charts. Results The present study included 794 cases consisting of 253, 31.9% TNBC and 541, 68.1% non-TNBC cases. The mean age of TNBC and non-TNBC cases was 50.4 years and 51.7 years, respectively. Coagulative necrosis, lymphovascular invasion, lymph nodal metastasis, higher histopathological tumor grade, and NPI were observed in higher percentage of TNBC cases, i.e., 19 (10.9%), 21 (11.6%), 105 (57.7%), 127 (69.8%), and 149 (81.9%) cases, respectively, than non-TNBC seen in 18 (6.6%), 24 (8.8%), 135 (49.6%), 165 (60.7%), and 194 (71.3%) cases, respectively. Further, 25 (13.7%) TNBC and 1 (0.4%) non-TNBC case were upstaged, whereas 130 (47.8%) non-TNBC and 2 (1.1%) TNBC cases were downstaged by the pathological prognostic stage. Conclusions TNBC is more aggressive having a poor prognosis than non-TNBC.
Collapse
Affiliation(s)
- Manisha Mohapatra
- Department of Pathology, GSL Medical College and General Hospital, Rajahmundry, Andhra Pradesh, India
| |
Collapse
|
12
|
Bergeron A, Bertaut A, Beltjens F, Charon-Barra C, Amet A, Jankowski C, Desmoulins I, Ladoire S, Arnould L. Anticipating changes in the HER2 status of breast tumours with disease progression-towards better treatment decisions in the new era of HER2-low breast cancers. Br J Cancer 2023; 129:122-134. [PMID: 37120672 PMCID: PMC10307899 DOI: 10.1038/s41416-023-02287-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND HER2 expression is often negative or low in primary breast cancers (BCs) but its changes with disease progression remain poorly known. We aimed to estimate them between primary and recurrent tumours, and identify predictive factors. METHODS We compared the HER2 status, and clinical and pathological characteristics by its evolution category (stable or changed), between all primary BCs and matched recurrences registered in our database in 2000-2020 (n = 512). RESULTS HER2-low tumours were the most prevalent at diagnosis (44.9%), followed by HER2-negative tumours (39.3%). HER2 status significantly changed in 37.3% of recurrences, mainly of HER2-negative and HER2-low tumours. HER2-negative tumours which relapsed as HER2-low significantly more frequently expressed oestrogen receptors (ER) and recurred later than stably HER2-negative tumours. Changed HER2 status in distant metastases correlated with lower proliferation rates and higher ER expression in primary tumours, and among metastases of hormone receptor-positive (HR+) tumours-with weak progesterone receptor (PR) expression in primary tumours. CONCLUSIONS HER2 status changes with BC progression, with enrichment of HER2-low tumours in advanced stages. The ER+/PR- status, low proliferation index and time to late recurrence correlated with these changes. These findings highlight the need of retesting recurrences, especially of HR + primary tumours, to identify candidates for new anti-HER2 therapies.
Collapse
Affiliation(s)
- Anthony Bergeron
- Unit of Pathology, Department of Biology and Pathology of Tumours, Georges-François Leclerc [Cancer] Centre, 1 rue du Professeur Marion, 21000, Dijon, France.
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Georges-François Leclerc [Cancer] Center, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Françoise Beltjens
- Unit of Pathology, Department of Biology and Pathology of Tumours, Georges-François Leclerc [Cancer] Centre, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Céline Charon-Barra
- Unit of Pathology, Department of Biology and Pathology of Tumours, Georges-François Leclerc [Cancer] Centre, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Alix Amet
- Department of Surgery, Georges-François Leclerc [Cancer] Center, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Clémentine Jankowski
- Department of Surgery, Georges-François Leclerc [Cancer] Center, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Georges-François Leclerc [Cancer] Center, 1 rue du Professeur Marion, 21000, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Georges-François Leclerc [Cancer] Center, 1 rue du Professeur Marion, 21000, Dijon, France
- INSERM U1231, 7 boulevard Jeanne d'Arc, 21000, Dijon, France
- University of Burgundy-Franche Comté, 32 avenue de l'Observatoire, 25000, Besançon, France
| | - Laurent Arnould
- Unit of Pathology, Department of Biology and Pathology of Tumours, Georges-François Leclerc [Cancer] Centre, 1 rue du Professeur Marion, 21000, Dijon, France
- INSERM U1231, 7 boulevard Jeanne d'Arc, 21000, Dijon, France
| |
Collapse
|
13
|
Antony GR, Littleflower AB, Parambil ST, Subhadradevi L. PD-1/PD-L1 blockade inhibits epithelial-mesenchymal transition and improves chemotherapeutic response in breast cancer. Med Oncol 2023; 40:108. [PMID: 36842157 DOI: 10.1007/s12032-023-01965-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/27/2023]
Abstract
Therapies targeting the PD-1/PD-L1 axis have recently been implemented for triple negative breast cancer (TNBC) management with limited efficacy, indicating that this axis may promote tumor growth by means other than immune suppression. Because PD-L1 overexpression causes resistance to the chemotherapeutic response in many cancers, here we explored the tumor promoting role of the PD-1/PD-L1 axis in breast cancer. We observed that the downregulation of PD-L1 by specific siRNA and pharmacological inhibitor significantly suppressed tumor cell proliferation, invasion and migration thereby enhancing T cell-mediated cell killing in vitro. We also showed that inhibiting PD-L1 improves cytotoxic sensitivity to chemotherapy in TNBC cells. Our in vivo results confirmed that combining a PD-L1 inhibitor with chemotherapy could significantly reduce tumor progression by inhibiting epithelial-mesenchymal transition. Overall, our results proved that PD-L1 contributes to the transformation and progression of breast cancer cells and that its intervention is a promising therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Gisha Rose Antony
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Ajeesh Babu Littleflower
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Sulfath Thottungal Parambil
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India
| | - Lakshmi Subhadradevi
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, 695011, India.
| |
Collapse
|
14
|
Tsang JY, Tse GM. Update on triple-negative breast cancers - highlighting subtyping update and treatment implication. Histopathology 2023; 82:17-35. [PMID: 36468263 DOI: 10.1111/his.14784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) remains a major challenge in breast cancer management. Continuing research in the past years aimed at understanding the biology of this tumour and developing more effective therapeutic options. It is now clear that TNBC is vastly heterogeneous with diverse histological, molecular, immunological profiles and clinical differences. Current evidence suggested the existence of at least four predominant subtypes based on expression profiling across studies. These subtypes exhibited specific genomic alterations and tumour microenvironment. Subtype-specific therapeutic strategies were identified. Recognising these subtypes allows not only an improved prognostication but also a better treatment decision. Herein, we provide an overview of the recent findings on TNBC heterogeneity at different levels and corresponding subtyping. The characteristic of subtypes and the implication of these subtypings in therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
G. V, Hasan QA, Kumar R, Eranki A. Analysis of single-nucleotide polymorphisms in genes associated with triple-negative breast cancer. Front Genet 2022; 13:1071352. [PMID: 36561320 PMCID: PMC9763624 DOI: 10.3389/fgene.2022.1071352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a rare variant of breast cancer (BC) known to be aggressive and refractory. TNBC lacks effective early diagnostic and therapeutic options leading to poorer outcomes. The genomic landscape and alterations leading to BC and TNBC are vast and unclear. Single nucleotide polymorphisms (SNPs) are a widespread form of genetic alterations with a multi-faceted impact on multiple diseases, including BC and TNBC. In this study, we attempted to construct a framework that could identify genes associated with TNBC and screen the SNPs reported in these genes using a set of computational predictors. This framework helped identify BRCA1, BRCA2, EGFR, PIK3CA, PTEN, and TP53 as recurrent genes associated with TNBC. We found 2%-29% of reported SNPs across genes to be typed pathogenic by all the predictors in the framework. We demonstrate that our framework prediction on BC samples identifies 99% of alterations as pathogenic by at least one predictor and 32% as pathogenic by all the predictors. Our framework could be an initial step in developing an early diagnosis of TNBC and potentially help improve the understanding of therapeutic resistance and sensitivity.
Collapse
Affiliation(s)
- Vigneshwaran G.
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India
| | - Qurratulain Annie Hasan
- Department of Genetics and Molecular Medicine, Kamineni Hospitals, Hyderabad, Telangana, India
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India
| | - Avinash Eranki
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, Telangana, India,*Correspondence: Avinash Eranki,
| |
Collapse
|
16
|
MCT4/Lactate Promotes PD-L1 Glycosylation in Triple-Negative Breast Cancer Cells. JOURNAL OF ONCOLOGY 2022; 2022:3659714. [PMID: 36199799 PMCID: PMC9529401 DOI: 10.1155/2022/3659714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Triple-negative breast cancer (TNBC) has the highest percentage of lymphocytic infiltration among breast cancer subtypes, and TNBC patients may benefit from anti-PD-1/PD-L1 immunotherapy. However, some cases whether the immune checkpoint blockade (ICB) shows low targeting efficiency have occurred and effective synergistic targets need to be found, which inspired our exploration of the co-expression analysis of MCT4 (SLC16A3) and PD-L1 (CD274) and their potential regulatory mechanisms. After bioinformatic analysis of the relationship between MCT4 and PD-L1, we validated their positive co-expression relationship in triple-negative breast cancer through multiple immunohistochemical staining (mIHC), CRISPR/Cas9, and lentiviral transduction for MCT4 knockout (sgMCT4/231 KO) or overexpression (pEGFP-N1-MCT4/231). We examined the effect of lactate treatment on PD-L1 expression in triple-negative breast cancer cells by qRT-PCR and Western blot. Combined with our results, we found that MCT4 positively regulated PD-L1 expression through discharging lactate and stabilized PD-L1 through promoting its glycosylation by the classic WNT pathway in MDA-MB-231 cells. More importantly, the high co-expression of MCT4 and PD-L1 appears to predict more effective targets for treating TNBC, which would improve immune checkpoint therapy for TNBC.
Collapse
|
17
|
Werner M, Dyas A, Parfentev I, Schmidt GE, Mieczkowska IK, Müller-Kirschbaum LC, Müller C, Kalkhof S, Reinhardt O, Urlaub H, Alves F, Gallwas J, Prokakis E, Wegwitz F. ROBO3s: a novel ROBO3 short isoform promoting breast cancer aggressiveness. Cell Death Dis 2022; 13:762. [PMID: 36057630 PMCID: PMC9440919 DOI: 10.1038/s41419-022-05197-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
Basal-like breast cancer (BLBC) is a highly aggressive breast cancer subtype frequently associated with poor prognosis. Due to the scarcity of targeted treatment options, conventional cytotoxic chemotherapies frequently remain the standard of care. Unfortunately, their efficacy is limited as BLBC malignancies rapidly develop resistant phenotypes. Using transcriptomic and proteomic approaches in human and murine BLBC cells, we aimed to elucidate the molecular mechanisms underlying the acquisition of aggressive and chemotherapy-resistant phenotypes in these mammary tumors. Specifically, we identified and characterized a novel short isoform of Roundabout Guidance Receptor 3 (ROBO3s), upregulated in BLBC in response to chemotherapy and encoding for a protein variant lacking the transmembrane domain. We established an important role for the ROBO3s isoform, mediating cancer stem cell properties by stimulating the Hippo-YAP signaling pathway, and thus driving resistance of BLBC cells to cytotoxic drugs. By uncovering the conservation of ROBO3s expression across multiple cancer types, as well as its association with reduced BLBC-patient survival, we emphasize its potential as a prognostic marker and identify a novel attractive target for anti-cancer drug development.
Collapse
Affiliation(s)
- Marcel Werner
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany ,grid.4567.00000 0004 0483 2525Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Anna Dyas
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany ,grid.4372.20000 0001 2105 1091International Max-Planck Research School for Molecular Biology, Göttingen, Germany ,Early Cancer Institute, University of Cambridge, Department of Oncology, Hutchison Research Centre, Box 197 Cambridge Biomedical Campus, Cambridge, Germany
| | - Iwan Parfentev
- grid.4372.20000 0001 2105 1091Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Geske E. Schmidt
- grid.411984.10000 0001 0482 5331Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - Iga K. Mieczkowska
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lukas C. Müller-Kirschbaum
- grid.411984.10000 0001 0482 5331Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Claudia Müller
- grid.418008.50000 0004 0494 3022Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stefan Kalkhof
- grid.418008.50000 0004 0494 3022Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Oliver Reinhardt
- grid.4372.20000 0001 2105 1091Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- grid.4372.20000 0001 2105 1091Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- grid.4372.20000 0001 2105 1091Translational Molecular Imaging, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany ,grid.411984.10000 0001 0482 5331Department of Hematology and Medical Oncology, University Medicine Goettingen, Göttingen, Germany
| | - Julia Gallwas
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Evangelos Prokakis
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| | - Florian Wegwitz
- grid.411984.10000 0001 0482 5331Department of Gynecology and Obstetrics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Immunohistochemical expression of PD-L1 and MDR1 in breast tumors: association with clinico-pathological parameters and treatment outcome. Clin Exp Med 2022:10.1007/s10238-022-00852-x. [PMID: 35810258 DOI: 10.1007/s10238-022-00852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 11/03/2022]
Abstract
Antitumor immune evasion is a hallmark for the development and progression of cancer. Tumor cells adopt various mechanisms to escape the host immune system recognition. One such mechanism is the over expression of programmed death ligand (PD-L1), a negative T cell regulatory molecule. Because PD-L1 overexpression causes resistance to chemotherapeutic response in many cancers, herein we explored the relationship between PD-L1 and multidrug resistance protein MDR1 in breast cancer. Immunohistochemical evaluation of PD-L1 and MDR1 proteins in 194 breast cancer tissue samples were carried out. The relationship between PD-L1 and MDR1 expression on cancer cells with clinicopathological factors and prognosis was investigated. IHC showed a significant correlation between PD-L1 and MDR1 expression on tumor cells. Increased PD-L1 expression was also associated with lymph node status and tumor grade of the patient. Our results also revealed that the expression of PD-L1 and MDR1 was higher in TNBC subtype compared to other breast cancer subtypes. Therefore, a better understanding of the molecular mechanism through which PD-1/PD-L1 pathway contribute to the chemoresistance might bring forth the prognostic significance of PD-L1 and selection of patients who may benefit from immunotherapy.
Collapse
|
19
|
Hardeman AA, Han YJ, Grushko TA, Mueller J, Gomez MJ, Zheng Y, Olopade OI. Subtype-specific expression of MELK is partly due to copy number alterations in breast cancer. PLoS One 2022; 17:e0268693. [PMID: 35749404 PMCID: PMC9231703 DOI: 10.1371/journal.pone.0268693] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Maternal embryonic leucine-zipper kinase (MELK) regulates cell cycle progression and is highly expressed in many cancers. The molecular mechanism of MELK dysregulation has not been determined in aggressive forms of breast cancer, such as triple negative breast cancer (TNBC). To evaluate molecular markers of MELK aberrations in aggressive breast cancer, we assessed MELK gene amplification and expression in breast tumors. MELK mRNA expression is highly up-regulated in basal-like breast cancer (BLBC), the major molecular subtype of TNBC, compared to luminal or other subtypes of breast tumors. MELK copy number (CN) gains are significantly associated with BLBC, whereas no significant association of CpG site methylation or histone modifications with breast cancer subtypes was observed. Accordingly, the CN gains appear to contribute to an increase in MELK expression, with a significant correlation between mRNA expression and CN in breast tumors and cell lines. Furthermore, immunohistochemistry (IHC) assays revealed that both nuclear and cytoplasmic staining scores of MELK were significantly higher in invasive ductal carcinoma (IDC) tumors compared to ductal carcinoma in situ (DCIS) and normal breast tissues. Our data showed that upregulation of MELK in BLBC may be in part driven by CN gains, rather than epigenetic modifications, indicating a potential for overexpression and CN gains of MELK to be developed as a diagnostic and prognostic marker to identify patients who have more aggressive breast cancer.
Collapse
Affiliation(s)
- Ashley A. Hardeman
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yoo Jane Han
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| | - Tatyana A. Grushko
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- Abbott Molecular Inc, Des Plaines, IL, United States of America
| | - Jeffrey Mueller
- Department of Pathology, University of Chicago, Chicago, IL, United States of America
| | - Maria J. Gomez
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Yonglan Zheng
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
| | - Olufunmilayo I. Olopade
- Department of Medicine, University of Chicago, Chicago, IL, United States of America
- * E-mail: (OIO); (YJH)
| |
Collapse
|
20
|
Binay S, Kaptan E. Transcription factor Runx2 changes the expression of some matricellular proteins in metastatic breast cancer cells. Mol Biol Rep 2022; 49:6433-6441. [PMID: 35441354 DOI: 10.1007/s11033-022-07457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Runx2 is one of the runt-related genes that are overexpressed in human cancers and contribute to metastasis. The cancer cell metastasis requires modifications of the extracellular matrix (ECM) and reduction in ECM-cell interaction. This process is performed by various enzymes and proteins secreted by cancer and surrounding cells. This study aimed to investigate the effect of the Runx2 transcription factor on the expression of matricellular proteins such as HPA1, LOX, SPARC, and OPN, which have important roles in ECM modification and ECM-cell interaction in human breast cancer. Also, the changes in their associated oncogenic pathways including Akt, Erk, FAK activities, and c-jun protein expression were investigated. METHODS AND RESULTS Runx2 knockdown model was created using runx2 siRNA in MDA-MB-231 human metastatic breast cancer cells. The changes in the mRNA and protein expressions of ECM proteins were shown by the qPCR and Western blotting, respectively. The results showed that there was a decrease in both mRNA and protein expressions of HPA1, SPARC, and LOX, whereas there was no change in those of OPN. Phosphorylated Akt, Erk, FAK levels, and protein expression of c-jun, however, decreased in the cells. CONCLUSION Our results revealed that Runx2 affected matricellular protein expression, which is important for metastasis and invasion of breast cancer. Hence, we have concluded that runx2 appears to be efficient for regulating breast cancer metastasis through an expression of matricellular proteins.
Collapse
Affiliation(s)
- Sevgi Binay
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey
| | - Engin Kaptan
- Faculty of Science, Department of Biology, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
21
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
22
|
Mohamed MAN, Ibrahim BB, El Sheikh SAM, Magid MSA. Stem Cell Marker Aldehyde Dehydrogenase 1A1 Expression in Triple-negative Breast Carcinoma. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Increasing evidence has proposed that tumor contains tumor initiating cells or cancer stem cells (CSCs) are responsible for its progression and relapse. Aldehyde dehydrogenase 1A1 (ALDH1A1) has recently been identified as a marker for cancer stem cells in some human malignancies including breast cancer.Triple negative breast carcinomas (TNBCs) are group of primary breast tumors with aggressive clinical behavior that have no targeted therapy at present.
Aim: The assessment of immunohistochemical expression of ALDH1A1 in triple negative breast carcinoma and its correlation with the clinicopathological features of TNBC.
Material and Methods: This study consisted of 60 cases of TNBC. Immunohistochemical reactions were carried out by using ALDH1A1 monoclonal antibody. A total score of ALDH1A1 expression is obtained by multiplying the score of staining intensity & percentage of stained cells to obtain score ranging from 0 up to 300. Due to the relatively large number of positive cases, a statistical analysis was performed with a negative (score ≤ 10) and positive (score > 10) cutoff [1].
Results: Evaluation of the results of immunostaining for ALDH1A1 showed 88.3% of totalcases (53 cases) having a positive cytoplasmic reactivity. Statistical analysis for a possible correlation between ALDH1A1 expression and prognostic clinicopathological parameters; age, size, tumor grade, histologic subtypes, lymphovascular invasion, intraductal components, tumor infiltrating lymphocytes and TNM stage grouping revealed a non-significant correlation.
Conclusion: ALDH1A1 couldn’t be used solely as a diagnostic or prognostic marker In TNBCs. Further research combining with other biomarkers and with a greater number of patients is necessary to confirm the role of ALDH1A1 in TNBC.
Key words: Cancer stem cells (CSCs), Aldehyde dehydrogenase 1A1 (ALDH1A1), Triple Negative Breast cancer (TNBC).
Collapse
|
23
|
Hamm C, Fifield BA, Kay A, Kulkarni S, Gupta R, Mathews J, Ferraiuolo RM, Al-Wahsh H, Mailloux E, Hussein A, Porter LA. A prospective phase II clinical trial identifying the optimal regimen for carboplatin plus standard backbone of anthracycline and taxane-based chemotherapy in triple negative breast cancer. Med Oncol 2022; 39:49. [PMID: 35103812 DOI: 10.1007/s12032-021-01637-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Addition of platinums to combination chemotherapy for triple negative breast cancer (TNBC) has shown efficacy and is increasingly accepted in the clinic, yet optimal delivery is unknown. A prospective clinical trial with TNBC patients was conducted to determine the optimal chemotherapy regimen to deliver carboplatin with standard dose dense ACT. Tissue microarray was conducted to isolate markers indicative of response to treatment. 90 TNBC patients were enrolled onto our trial. The most successful version placed the carboplatin on the second and final paclitaxel treatment with liberal hematological parameters. Our final regimen had the lowest grade 3 or 4 toxicities, no delays, no dose reductions of carboplatin, and 32% reduction in paclitaxel doses. Stage I (AJCC7) patients did well with carboplatin-based chemotherapy with zero relapse rate. Reduction in protein levels of androgen receptor and PD-L1 were found to be potential indicators of patient relapse. We have optimized a protocol for the addition of carboplatin to standard of care chemotherapy in TNBC patients. Early data indicates reduced protein levels of androgen receptor and PD-L1 as indicators of response to treatment.Trial registration This trial was registered at Canadian Cancer Trials. http://www.canadiancancertrials.ca/.
Collapse
Affiliation(s)
- Caroline Hamm
- University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Western University, Windsor, ON, N9B 3P4, Canada.
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| | - Bre-Anne Fifield
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | - Amin Kay
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
| | - Swati Kulkarni
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada
| | - Rasna Gupta
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | - John Mathews
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Western University, Windsor, ON, N9B 3P4, Canada
| | - Rosa-Maria Ferraiuolo
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | | | - Emily Mailloux
- University of Windsor, Windsor, ON, N9B 3P4, Canada
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada
| | | | - Lisa A Porter
- University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Windsor Cancer Research Group, Windsor, ON, N9B 3P4, Canada.
- WE-SPARK Health Institute, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
24
|
Hu J, Lai Y, Huang H, Ramakrishnan S, Pan Y, Ma VWS, Cheuk W, So GYK, He Q, Geoffrey Lau C, Zhang L, Cho WCS, Chan KM, Wang X, Rebecca Chin Y. TCOF1 upregulation in triple-negative breast cancer promotes stemness and tumour growth and correlates with poor prognosis. Br J Cancer 2022; 126:57-71. [PMID: 34718356 PMCID: PMC8727631 DOI: 10.1038/s41416-021-01596-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with poor prognosis. By performing multiomic profiling, we recently uncovered super-enhancer heterogeneity between breast cancer subtypes. Our data also revealed TCOF1 as a putative TNBC-specific super-enhancer-regulated gene. TCOF1 plays a critical role in craniofacial development but its function in cancer remains unclear. METHODS Overall survival and multivariant Cox regression analyses were conducted using the METABRIC data set. The effect of TCOF1 knockout on TNBC growth and stemness was evaluated by in vitro and in vivo assays. RNA-seq and rescue experiments were performed to explore the underlying mechanisms. RESULTS TCOF1 is frequently upregulated in TNBC and its elevated expression correlates with shorter overall survival. TCOF1 depletion significantly inhibits the growth and stemness of basal-like TNBC, but not of mesenchymal-like cells, highlighting the distinct molecular dependency in different TNBC subgroups. RNA-seq uncovers several stem cell molecules regulated by TCOF1. We further demonstrate that KIT is a downstream effector of TCOF1 in mediating TNBC stemness. TCOF1 expression in TNBC is regulated by the predicted super-enhancer. CONCLUSIONS TCOF1 depletion potently attenuates the growth and stemness of basal-like TNBC. Expression of TCOF1 may serve as a TNBC prognostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Yuni Lai
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Victor W S Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Grace Y K So
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - C Geoffrey Lau
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
25
|
Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells. Appl Biochem Biotechnol 2021; 194:18-36. [PMID: 34741262 DOI: 10.1007/s12010-021-03723-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
We investigated the combined potency of metformin and cisplatin on the MDA-MB-231, triple-negative breast cancer (TNBC) cells with the application of electrical pulses. There are no targeted therapies for this subset of breast cancer because of the absence of specific biomarkers. Cytotoxic chemotherapy is the mainstream mode of treatment for TNBC, and cisplatin is the most commonly used chemotherapeutic drug. While there is a good response initially, TNBC cells develop drug resistance eventually. Thus, there is a need for alternate therapies. Toward this, we studied the antiproliferation characteristics of electrical pulse-mediated combination therapy using metformin, the commonly used Type-2 diabetes drug, along with cisplatin. We used metformin, as it has various anticancer properties caused by repressing energy pathways in a cancer cell. Application of 8 pulses of 1000 V/cm, 100 µs, at 1 Hz frequency, enhanced the drug uptake leading to cell viability as low as 25.86% at 30 µM cisplatin and 5 mM metformin in a 24 h study. Also, the same studies were conducted on MCF10A, a non-cancerous human epithelial cell. It aided in comparing the result for both MDA-MB-231 and MCF10A cell lines while establishing a better understanding of the experimental outcomes. Overall, the various experimental results from colony-forming assay, reactive oxidative analysis, and the intracellular glucose metabolic assay indicate the possibility of the electrical pulses-based cisplatin and metformin drug combination as a potential alternative to TNBC treatment.
Collapse
|
26
|
Polemi KM, Nguyen VK, Heidt J, Kahana A, Jolliet O, Colacino JA. Identifying the link between chemical exposures and breast cancer in African American women via integrated in vitro and exposure biomarker data. Toxicology 2021; 463:152964. [PMID: 34600088 PMCID: PMC8593892 DOI: 10.1016/j.tox.2021.152964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022]
Abstract
Among women, breast cancer is the most prevalent form of cancer worldwide and has the second highest mortality rate of any cancer in the United States. The breast cancer related death rate is 40 % higher in non-Hispanic Black women compared to non-Hispanic White women. The incidence of triple negative breast cancer (TNBC), an aggressive subtype of breast cancer for which there is no targeted therapy, is also approximately three times higher for Black, relative to, White women. The drivers of these differences are poorly understood. Here, we aimed to identify chemical exposures which play a role in breast cancer disparities. Using chemical biomonitoring data from the National Health and Nutrition Examination Survey (NHANES) and biological activity data from the EPA's ToxCast program, we assessed the toxicological profiles of chemicals to which US Black women are disproportionately exposed. We conducted a literature search to identify breast cancer targets in ToxCast to analyze the response of chemicals with exposure disparities in these assays. Forty-three chemical biomarkers are significantly higher in Black women. Investigation of these chemicals in ToxCast resulted in 32,683 assays for analysis, 5172 of which contained nonzero values for the concentration at which the dose-response fitted model reaches the cutoff considered "active". Of these chemicals BPA, PFOS, and thiram are most comprehensively assayed. 2,5-dichlorophenol, 1,4-dichlorobenzene, and methyl and propyl parabens had higher biomarker concentrations in Black women and moderate testing and activity in ToxCast. The distribution of active concentrations for these chemicals in ToxCast assays are comparable to biomarker concentrations in Black women NHANES participants. Through this integrated analysis, we identify that multiple chemicals, including thiram, propylparaben, and p,p' DDE, have disproportionate exposures in Black women and have breast cancer associated biological activity at human exposure relevant doses.
Collapse
Affiliation(s)
- Katelyn M Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Julien Heidt
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Adam Kahana
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Olivier Jolliet
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Van Bockstal MR, Cooks M, Nederlof I, Brinkhuis M, Dutman A, Koopmans M, Kooreman L, van der Vegt B, Verhoog L, Vreuls C, Westenend P, Kok M, van Diest PJ, Nauwelaers I, Laudus N, Denkert C, Rimm D, Siziopikou KP, Ely S, Zardavas D, Roberts M, Floris G, Hartman J, Acs B, Peeters D, Bartlett JM, Dequeker E, Salgado R, Giudici F, Michiels S, Horlings H, van Deurzen CHM. Interobserver Agreement of PD-L1/SP142 Immunohistochemistry and Tumor-Infiltrating Lymphocytes (TILs) in Distant Metastases of Triple-Negative Breast Cancer: A Proof-of-Concept Study. A Report on Behalf of the International Immuno-Oncology Biomarker Working Group. Cancers (Basel) 2021; 13:cancers13194910. [PMID: 34638394 PMCID: PMC8507620 DOI: 10.3390/cancers13194910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 01/12/2023] Open
Abstract
Patients with advanced triple-negative breast cancer (TNBC) benefit from treatment with atezolizumab, provided that the tumor contains ≥1% of PD-L1/SP142-positive immune cells. Numbers of tumor-infiltrating lymphocytes (TILs) vary strongly according to the anatomic localization of TNBC metastases. We investigated inter-pathologist agreement in the assessment of PD-L1/SP142 immunohistochemistry and TILs. Ten pathologists evaluated PD-L1/SP142 expression in a proficiency test comprising 28 primary TNBCs, as well as PD-L1/SP142 expression and levels of TILs in 49 distant TNBC metastases with various localizations. Interobserver agreement for PD-L1 status (positive vs. negative) was high in the proficiency test: the corresponding scores as percentages showed good agreement with the consensus diagnosis. In TNBC metastases, there was substantial variability in PD-L1 status at the individual patient level. For one in five patients, the chance of treatment was essentially random, with half of the pathologists designating them as positive and half negative. Assessment of PD-L1/SP142 and TILs as percentages in TNBC metastases showed poor and moderate agreement, respectively. Additional training for metastatic TNBC is required to enhance interobserver agreement. Such training, focusing on metastatic specimens, seems worthwhile, since the same pathologists obtained high percentages of concordance (ranging from 93% to 100%) on the PD-L1 status of primary TNBCs.
Collapse
Affiliation(s)
- Mieke R. Van Bockstal
- Department of Pathology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maxine Cooks
- Department of Pathology, Erasmus Medical Center Cancer Institute, 3015 GD Rotterdam, The Netherlands;
| | - Iris Nederlof
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.N.); (M.K.)
| | - Mariël Brinkhuis
- Laboratory for Pathology East Netherlands, 7555 BB Hengelo, The Netherlands;
| | | | | | - Loes Kooreman
- Department of Pathology, Maastricht University Medical Center (MUMC), 6229 HX Maastricht, The Netherlands;
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands;
| | - Leon Verhoog
- Reinier Haga Medical Diagnostic Center, 2625 AD Delft, The Netherlands;
| | - Celine Vreuls
- Department of Pathology, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, The Netherlands; (C.V.); (P.J.v.D.)
| | | | - Marleen Kok
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (I.N.); (M.K.)
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht (UMCU), 3584 CX Utrecht, The Netherlands; (C.V.); (P.J.v.D.)
| | - Inne Nauwelaers
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35d, 3000 Leuven, Belgium; (I.N.); (N.L.); (E.D.)
| | - Nele Laudus
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35d, 3000 Leuven, Belgium; (I.N.); (N.L.); (E.D.)
| | - Carsten Denkert
- Institute of Pathology, Philipps-University Marburg and University Hospital Marburg (UKGM), Baldingerstr. 1, 35043 Marburg, Germany;
| | - David Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA;
| | | | - Scott Ely
- Translational Medicine, Bristol-Myers Squibb, Princeton, NJ 08540, USA; (S.E.); (M.R.)
| | - Dimitrios Zardavas
- BMS Oncology Clinical Development, Bristol-Myers Squibb, Princeton, NJ 08540, USA;
| | - Mustimbo Roberts
- Translational Medicine, Bristol-Myers Squibb, Princeton, NJ 08540, USA; (S.E.); (M.R.)
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven–University of Leuven, 3000 Leuven, Belgium;
- Department of Pathology, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Johan Hartman
- Department of Oncology and Pathology, CCK, Karolinkska Institutet, 17177 Stockholm, Sweden; (J.H.); (B.A.)
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, 17177 Stockholm, Sweden
| | - Balazs Acs
- Department of Oncology and Pathology, CCK, Karolinkska Institutet, 17177 Stockholm, Sweden; (J.H.); (B.A.)
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, 17177 Stockholm, Sweden
| | - Dieter Peeters
- HistoGenex NV, 2610 Antwerp, Belgium;
- Department of Pathology, AZ Sint-Maarten, 2800 Mechelen, Belgium
| | - John M.S. Bartlett
- Ontario Institute for Cancer Research, Toronto, ON M5G OA3, Canada;
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Els Dequeker
- Department of Public Health and Primary Care, Biomedical Quality Assurance Research Unit, University of Leuven, Kapucijnenvoer 35d, 3000 Leuven, Belgium; (I.N.); (N.L.); (E.D.)
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2050 Antwerp, Belgium;
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC 8006, Australia
| | - Fabiola Giudici
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France; (F.G.); (S.M.)
| | - Stefan Michiels
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France; (F.G.); (S.M.)
- Oncostat U1018, Inserm, University of Paris-Saclay, 94807 Villejuif, France
| | - Hugo Horlings
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Carolien H. M. van Deurzen
- Department of Medicine, Yale School of Medicine, New Haven, CT 06510, USA
- Correspondence: ; Tel.: +31-107-043-901
| |
Collapse
|
28
|
Marco V, Garcia F, Rubio IT, Soler T, Ferrazza L, Roig I, Mendez I, Andreu X, Mínguez CG, Tresserra F. Adenoid cystic carcinoma and basaloid carcinoma of the breast: A clinicopathological study. REVISTA ESPAÑOLA DE PATOLOGÍA : PUBLICACIÓN OFICIAL DE LA SOCIEDAD ESPAÑOLA DE ANATOMÍA PATOLÓGICA Y DE LA SOCIEDAD ESPAÑOLA DE CITOLOGÍA 2021; 54:242-249. [PMID: 34544554 DOI: 10.1016/j.patol.2020.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 11/28/2022]
Abstract
Adenoid cystic carcinoma of the breast (ACCB) is a rare triple negative tumor (TNT) with an excellent prognosis in most cases. Three different histologic types are recognized: classic ACCB, solid basaloid ACCB (SB-ACCB), and ACCB with high-grade transformation. A majority of these tumors show characteristic molecular and immunohistochemical (IHC) features, with fusion of MYB and NFIB genes and overexpression of MYB, respectively. Basaloid carcinomas of the breast (BCB) are infrequently described. They resemble SB-ACCB and TNT of no special type (TNT-NST). We have studied the clinicopathological features of 17 ACCB and 9 BCB, investigating the expression of MYB by IHC and the rearrangements of MYB by fluorescence in situ hybridization (FISH). MYB was expressed by IHC in 15 ACCB and in 3 BCB. MYB FISH detected rearrangements in 11 ACCB and in 2 BCB. After a mean follow-up of 90 months, with a range of 12-204 months, 2 patients with ACCB with high-grade transformation and 1 patient with BCB developed metastases and died of disease. In summary, most ACCB have a good prognosis, but tumors with adverse histopathological features may metastasize. BCB may overlap with ACCB and TNT-NST, and their prognosis should be further studied.
Collapse
Affiliation(s)
- Vicente Marco
- Hospital Quironsalud Barcelona, Pathology, Barcelona, Spain.
| | - Felip Garcia
- Hospital Quironsalud Barcelona, Pathology, Barcelona, Spain
| | | | - Teresa Soler
- Hospital Universitari Bellvitge/ICO/IDIBELL, Hospitalet de Llobregat, Spain
| | - Laura Ferrazza
- Hospital Universitari Bellvitge/ICO/IDIBELL, Hospitalet de Llobregat, Spain
| | - Ignasi Roig
- Consorci Sanitari de Terrassa, Pathology, Terrassa, Spain
| | | | | | | | | |
Collapse
|
29
|
The Role of WAVE2 Signaling in Cancer. Biomedicines 2021; 9:biomedicines9091217. [PMID: 34572403 PMCID: PMC8464821 DOI: 10.3390/biomedicines9091217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.
Collapse
|
30
|
Wang B, Jiang Y, Li SY, Niu RL, Blasberg JD, Kaifi JT, Liu G, Wang ZL. Breast metastases from primary lung cancer: a retrospective case series on clinical, ultrasonographic, and immunohistochemical features. Transl Lung Cancer Res 2021; 10:3226-3235. [PMID: 34430360 PMCID: PMC8350075 DOI: 10.21037/tlcr-21-542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/19/2021] [Indexed: 11/21/2022]
Abstract
Background Lung cancer metastases to the breast are less common and consequently have received much less attention in clinical practice. The purpose of this study was to provide a better understanding of clinical, ultrasonographic, and immunohistochemical features of breast metastases from primary lung cancer. Methods This retrospective case series included patients with breast metastases from primary lung cancer between January 2012 and December 2020. Clinical features, ultrasonographic characteristics, and immunohistochemical findings were evaluated in this analysis. Results In all, 7 cases (mean ± standard deviation age: 57.4±8.3 years; range, 49–70 years) were evaluated. The maximum size of breast lesions in 6 cases ranged from 1.2 to 4.5 cm, while 1 case showed a diffused pattern. Ultrasound features of breast metastases from lung cancer were irregular (5/7, 71.4%), indistinct (6/7, 85.7%), hypoechoic (7/7, 100.0%), and parallel (6/7, 85.7%) masses without calcification. Immunohistochemical staining test was positive for thyroid transcription factor 1 (TTF-1) in all patients (7/7, 100.0%), 3 cases (3/5, 60.0%) were negative for p63, 5 cases (5/5, 100.0%) were positive for cytokeratin 7 (CK7), 4 cases (4/5, 80.0%) were positive for napsin A. Conclusions The ultrasonographic features of lung metastases to the breast are clinically important to understand. A known history of the primary lung cancer is of great importance when evaluating patients with a breast nodule. The presence of an ipsilateral lung cancer, breast nodule and axillary lymphadenopathy should be considered with pathological and immunohistochemical data to differentiate breast metastases from a primary breast malignancy in this setting.
Collapse
Affiliation(s)
- Bo Wang
- Department of Ultrasound, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ying Jiang
- School of Medicine, Nankai University, Tianjin, China
| | - Shi Yu Li
- Department of Ultrasound, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rui Lan Niu
- Department of Ultrasound, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Justin D Blasberg
- Section of Thoracic Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Jussuf T Kaifi
- Division for Cardiothoracic Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Gang Liu
- Department of Radiology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhi Li Wang
- Department of Ultrasound, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Cancer-Testis Antigens in Triple-Negative Breast Cancer: Role and Potential Utility in Clinical Practice. Cancers (Basel) 2021; 13:cancers13153875. [PMID: 34359776 PMCID: PMC8345750 DOI: 10.3390/cancers13153875] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer cells commonly express tumour-associated antigens that can induce immune responses to eradicate the tumour. Triple-negative breast cancer (TNBC) is a form of breast cancer lacking the expression of hormone receptors and cerbB2 (HER2) and tends to be more aggressive and associated with poorer prognoses due to the limited treatment options. Characterisation of biomarkers or treatment targets is thus of great significance in revealing additional therapeutic options. Cancer-testis antigens (CTAs) are tumour-associated antigens that have garnered strong attention as potential clinical biomarkers in targeted immunotherapy due to their cancer-restricted expressions and robust immunogenicity. Previous clinical studies reported that CTAs correlated with negative hormonal status, advanced tumour behaviour and a poor prognosis in a variety of cancers. Various studies also demonstrated the oncogenic potential of CTAs in cell proliferation by inhibiting cell death and inducing metastasis. Multiple clinical trials are in progress to evaluate the role of CTAs as treatment targets in various cancers. CTAs hold great promise as potential treatment targets and biomarkers in cancer, and further research could be conducted on elucidating the mechanism of actions of CTAs in breast cancer or combination therapy with other immune modulators. In the current review, we summarise the current understandings of CTAs in TNBC, addressing the role and utility of CTAs in TNBC, as well as discussing the potential applications and advantage of incorporating CTAs in clinical practise.
Collapse
|
32
|
Bergeron A, MacGrogan G, Bertaut A, Ladoire S, Arveux P, Desmoulins I, Bonnefoi H, Loustalot C, Auriol S, Beltjens F, Degrolard-Courcet E, Charon-Barra C, Richard C, Boidot R, Arnould L. Triple-negative breast lobular carcinoma: a luminal androgen receptor carcinoma with specific ESRRA mutations. Mod Pathol 2021; 34:1282-1296. [PMID: 33753865 PMCID: PMC8216909 DOI: 10.1038/s41379-021-00742-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
Primary triple-negative invasive lobular breast carcinomas (TN-ILCs), which do not express hormone receptors and HER2 at diagnosis, are rare and poorly known. In this study, we analyzed the largest TN-ILC series ever reported in the literature, in comparison to phenotypically similar breast tumor subtypes: triple-negative invasive ductal carcinoma (TN-IDC) and hormone receptor-positive invasive lobular carcinoma (HR + ILC). All primary TN-ILCs registered in our database between 2000 and 2018 (n = 38) were compared to tumors from control groups, matched by stage and Elston/Ellis grade, with regard to clinical, pathologic, and immunohistochemical characteristics. A comparative molecular analysis (whole-exome and RNA sequencing using next-generation technology) was also performed. We found that TN-ILC patients were older than those with HR + ILC (P = 0.002) or TN-IDC (P < 0.001). Morphologically, TN-ILCs had aggressive phenotypes, with more pleomorphism (P = 0.003) and higher nuclear grades than HR + ILCs (P = 0.009). Immunohistochemistry showed that TN-ILCs less frequently expressed basal markers (CK5/6, EGFR and SOX10) than TN-IDCs (P < 0.001), while androgen receptor (AR) positivity was more prevalent (P < 0.001). Survival curves analysis did not show differences between TN-ILC and TN-IDC patients, while overall and distant metastasis-free survival were significantly worse compared to those with HR + ILCs (P = 0.047 and P = 0.039, respectively). At a molecular level, we found that TN-ILCs had particular transcriptomic profiles, characterized by increased AR signaling, and associated with frequent alterations in the PI3K network and ERBB2. Interestingly, whole-exome analysis also identified three specific recurrent ESRRA hotspot mutations in these tumors, which have never been described in breast cancer to date and which were absent in the other two tumor subtypes. Our findings highlight that TN-ILC is a unique aggressive breast cancer associated with elderly age, which belong to the luminal androgen receptor subtype as determined by immunohistochemistry and transcriptomic profiling. Moreover, it harbors specific molecular alterations (PI3K, ERBB2 and ESRRA) which may pave the way for new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anthony Bergeron
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France.
| | - Gaëtan MacGrogan
- Department of Biopathology, Institut Bergonié, Bordeaux, France
- INSERM U1218, Bordeaux, France
| | - Aurélie Bertaut
- Unit of Methodology and Biostatistics, Centre Georges-François Leclerc, Dijon, France
| | - Sylvain Ladoire
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
- University of Burgundy-Franche Comté, Dijon, France
| | - Patrick Arveux
- Department of Epidemiology, Centre Georges-François Leclerc, Dijon, France
| | - Isabelle Desmoulins
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Hervé Bonnefoi
- INSERM U1218, Bordeaux, France
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
- University of Bordeaux, Bordeaux, France
| | | | - Sophie Auriol
- Department of Surgery, Institut Bergonié, Bordeaux, France
| | - Françoise Beltjens
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Emilie Degrolard-Courcet
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Céline Charon-Barra
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Corentin Richard
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Romain Boidot
- Unit of Molecular Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
| | - Laurent Arnould
- Unit of Pathology, Department of Biology and Pathology of the Tumors, Centre Georges-François Leclerc, Dijon, France
- INSERM U1231, Dijon, France
| |
Collapse
|
33
|
Wijesinghe HD, Fernando J, Senarath U, Wijesinghe GK, S Lokuhetty MD. A clinicopathological study of triple-negative breast carcinoma in a patient cohort from a tertiary care center in Sri Lanka. INDIAN J PATHOL MICR 2021; 63:388-396. [PMID: 32769327 DOI: 10.4103/ijpm.ijpm_657_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Triple negative breast carcinoma (TNBC) and basal-like breast carcinoma (BLBC) are subtypes of breast carcinoma (BCa) that are associated with poor survival. Aims To study the prevalence, clinicopathological profile and survival of TNBC among a Sri Lankan patient cohort and to determine the proportion and predictive histological features of BLBC among TNBCs. Study Setting and Design A cohort of 221 women undergoing primary surgery for BCa at a tertiary-care center in Sri Lanka was studied. Materials and Methods Clinicopathological and follow-up information were collected by patient interviews and review of slides and clinical records. Estrogen, progesterone, HER2 receptors, and basal markers (CK5/6, CK14, EGFR, 34βE12) were evaluated immunohistochemically. Statistical Analysis Data was analyzed with Chi-square test, multinomial logistic regression, and Cox regression using SPSS20.0. Results Fifty-three (24%) tumors were triple-negative (95%CI = 18.37%-29.63%). On multivariate analysis, young age (P = 0.002), high Nottingham grade (P = 0.005), moderate to severe tumor necrosis (P = 0.004), absent ductal carcinoma in situ (DCIS) (P = 0.04), reduced vascular density at tumor edge (P = 0.016) and distinct cell margins (P = 0.047) predicted TNBC over luminal subgroups, whereas reduced vascular density (P = 0.004) and low TNM stage (P = 0.011) distinguished TNBC and HER2. BLBC accounted for 45.28% (95%CI 32.66%-58.55%-24/53) of TNBC. The presence of extensive necrosis in TNBC correlated significantly with BLBC (P = 0.03). The survival among the TNBC subgroup did not differ significantly from other subgroups. Conclusion Twenty four percent were TNBCs by immunohistochemical analysis, comparable to studies in the Indian subcontinent, however higher than the West. TNBC status correlated with younger age, high tumor grade, necrosis, absent DCIS, reduced vascular density at tumor edge, and distinct cell margins. The presence of moderate to extensive necrosis in TNBC was predictive of BLBC.
Collapse
Affiliation(s)
| | - Janakie Fernando
- Department of Pathology, National Hospital of Sri Lanka, Sri Lanka
| | - Upul Senarath
- Department of Community Medicine, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Gayani K Wijesinghe
- Department of Pathology, Faculty of Medicine, University of Colombo, Sri Lanka
| | | |
Collapse
|
34
|
Tien TZ, Lee JNLW, Lim JCT, Chen XY, Thike AA, Tan PH, Yeong JPS. Delineating the breast cancer immune microenvironment in the era of multiplex immunohistochemistry/immunofluorescence. Histopathology 2021; 79:139-159. [PMID: 33400265 DOI: 10.1111/his.14328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer death in females worldwide. Treatment is challenging, especially for those who are triple-negative. Increasing evidence suggests that diverse immune populations are present in the breast tumour microenvironment, which opens up avenues for personalised drug targets. Historically, our investigations into the immune constitution of breast tumours have been restricted to analyses of one or two markers at a given time. Recent technological advances have allowed simultaneous labelling of more than 35 markers and detailed profiling of tumour-immune infiltrates at the single-cell level, as well as determining the cellular composition and spatial analysis of the entire tumour architecture. In this review, we describe emerging technologies that have contributed to the field of breast cancer diagnosis, and discuss how to interpret the vast data sets obtained in order to effectively translate them for clinically relevant use.
Collapse
Affiliation(s)
- Tracy Z Tien
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Justina N L W Lee
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jeffrey C T Lim
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiao-Yang Chen
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore, Singapore
| | - Joe P S Yeong
- Integrative Biology for Theranostics, Institute of Molecular Cell Biology, Agency of Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
35
|
Thike AA, Chen X, Koh VCY, Binte Md Nasir ND, Yeong JPS, Bay BH, Tan PH. Higher densities of tumour-infiltrating lymphocytes and CD4 + T cells predict recurrence and progression of ductal carcinoma in situ of the breast. Histopathology 2021; 76:852-864. [PMID: 31883279 DOI: 10.1111/his.14055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/14/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
AIMS Host immunity influences cancer progression and therapeutic response. We investigated the potential of tumour-infiltrating lymphocytes (TILs) around ductal carcinoma in situ (DCIS) in predicting recurrence and progression. METHODS AND RESULTS CD4, CD8, programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression in DCIS from 198 patients was determined by immunohistochemistry. We correlated disease-free survival (DFS), clinicopathological parameters and biomarker expression with TIL density and CD4/CD8 ratio. High TIL density was associated with high nuclear grade (P < 0.001), DCIS PD-L1 expression (P = 0.008), TIL PD-L1 expression (P < 0.001), oestrogen (ER) negativity (P < 0.001), progesterone (PR) negativity (P < 0.001), human epidermal growth factor receptor 2 (HER2) positivity (P = 0.002) and triple negativity (P = 0.001). TIL PD-L1 expression was associated with triple-negative DCIS (P = 0.028). TIL density was associated with molecular subtypes (P < 0.001). High CD4+ T cell density was associated with high nuclear grade (P = 0.001), microinvasion (P = 0.037), ER negativity (P < 0.001), PR negativity (P = 0.001), HER2 positivity (P = 0.004), triple negativity (P = 0.023) and PD-L1 expression in TILs (P < 0.011). High CD4/CD8 ratio was associated with PD-L1 expression in DCIS (P = 0.035) and TILs (P < 0.001). DCIS with higher TIL density disclosed worse DFS (P = 0.012) and was affirmed with multivariate analysis [95% confidence interval (CI) = 1.109-2.554, hazard ratio (HR) = 1.683, P = 0.014]. Poorer DFS for ipsilateral invasive recurrence was found for DCIS with higher CD4+ T cell density (P = 0.006) or CD4/CD8 ratio (P = 0.02), confirmed by multivariate analysis for the former (95% CI = 1.369-10.196, HR = 3.736, P = 0.01) and latter (95% CI = 1.311-7.935, HR = 3.225, P = 0.011). CONCLUSION DCIS with higher TIL density was associated with poorer prognostic parameters and predicted recurrence, while both CD4+ T cell density and CD4/CD8 ratio were associated with both recurrence and ipsilateral invasive recurrence.
Collapse
Affiliation(s)
- Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore
| | - Xiaoyang Chen
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | - Joe P S Yeong
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore.,Duke-NUS Medical School, Singapore.,Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Pathology, Singapore General Hospital, Singapore
| |
Collapse
|
36
|
Tsai YF, Huang CC, Lin YS, Hsu CY, Huang CP, Liu CY, Chiu JH, Tseng LM. Interleukin 17A promotes cell migration, enhances anoikis resistance, and creates a microenvironment suitable for triple negative breast cancer tumor metastasis. Cancer Immunol Immunother 2021; 70:2339-2351. [PMID: 33512556 DOI: 10.1007/s00262-021-02867-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to investigate the role of IL-17A in the cancer microenvironment and the recurrence of triple negative breast cancer (TNBC). METHODS Using human TNBC cell lines, the role of IL17-A was investigated by knocked down of IL-17A (ΔIL-17A) and by administration of IL-17A into the culture medium. Cell proliferation assays, migration assays, as well as Western blot analysis and real-time PCR, were used to evaluate IL-17A-related signaling. Three types of 4T1 cells were implanted into BALB/c mice, namely wild type (WT), ΔIL-17A, and WT + neutralizing IL-17 antibody (WT + Ab) cells. Tumor weight, necrosis area, and the number of circulating tumor cells (CTCs) were measured. Immunohistochemistry and Western blotting were used to analyze expression of CD34, CD8, and TGF-β1 as well as anoikis resistance. The Kaplan-Meier's method was used to correlate IL-17A expression and patient outcome, including disease-free survival (DFS) and overall survival (OS). RESULTS Our results demonstrated that IL-17A was able to stimulate the migratory activity, but not the growth rate, of MDA-MB-231/468 cells. In vivo, for the ΔIL-17A group, there was an increase in necrosis area, a decrease in tumor CD34 expression and a reduction in the number of CTCs. Furthermore, in WT + Ab group, there was a decreased in tumor expression of CD34, fewer CD8 ( +) cells, and fewer CTCs, but an increase in expression of TGF-β1 expression. Both of the above were compared to the WT group. Knockdown of IL-17A also decreased anoikis resistance in human TNBC and the murine 4T1 cell lines. Kaplan-Meier analysis disclosed a negative correlation between tumor expression of IL-17A and OS in TNBC patients. CONCLUSION We conclude that IL-17A promotes migratory and angiogenic activity in tumors, enhances anoikis resistance, and modulates the immune landscape of the tumor microenvironment such changes favor cancer metastasis.
Collapse
Affiliation(s)
- Yi-Fang Tsai
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chi-Cheng Huang
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Shu Lin
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.,School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Ching-Po Huang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Chun-Yu Liu
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC. .,Department of Surgery, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC. .,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center & Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. II, Shipai Rd, Taipei, 112, Taiwan, ROC.,Department of Surgery, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
37
|
Wang Z, Liu L, Li Y, Song Z, Jing Y, Fan Z, Zhang S. Analysis of CK5/6 and EGFR and Its Effect on Prognosis of Triple Negative Breast Cancer. Front Oncol 2021; 10:575317. [PMID: 33552956 PMCID: PMC7855982 DOI: 10.3389/fonc.2020.575317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is considered to be higher grade, more aggressive and have a poorer prognosis than other types of breast cancer. Discover biomarkers in TNBC for risk stratification and treatments that improve prognosis are in dire need. Methods Clinical data of 195 patients with triple negative breast cancer confirmed by pathological examination and received neoadjuvant chemotherapy (NAC) were collected. The expression levels of EGFR and CK5/6 were measured before and after NAC, and the relationship between EGFR and CK5/6 expression and its effect on prognosis of chemotherapy was analyzed. Results The overall response rate (ORR) was 86.2% and the pathological complete remission rate (pCR) was 29.2%. Univariate and multivariate logistic regression analysis showed that cT (clinical Tumor stages) stage was an independent factor affecting chemotherapy outcome. Multivariate Cox regression analysis showed pCR, chemotherapy effect, ypT, ypN, histological grades, and post- NAC expression of CK5/6 significantly affected prognosis. The prognosis of CK5/6-positive patients after NAC was worse than that of CK5/6-negative patients (p=0.036). Changes in CK5/6 and EGFR expression did not significantly affect the effect of chemotherapy, but changes from positive to negative expression of these two markers are associated with a tendency to improve prognosis. Conclusion For late-stage triple negative breast cancer patients receiving NAC, patients who achieved pCR had a better prognosis than those with non- pCR. Patients with the change in expression of EGFR and CK5/6 from positive to negative after neoadjuvant chemotherapy predicted a better prognosis than the change from negative to positive group.
Collapse
Affiliation(s)
- Zhen Wang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Liu
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ying Li
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zi'an Song
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yi Jing
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ziyu Fan
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Sheng Zhang
- The Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
38
|
Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, Grigorescu C, Stefanescu C, Volovat CC, Augustin I. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front Oncol 2020; 10:526850. [PMID: 33330019 PMCID: PMC7716774 DOI: 10.3389/fonc.2020.526850] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Noncoding RNAs (ncRNAs) include a diverse range of RNA species, including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs, ncRNAs of approximately 19-25 nucleotides in length, are involved in gene expression regulation either via degradation or silencing of the messenger RNAs (mRNAs) and have roles in multiple biological processes, including cell proliferation, differentiation, migration, angiogenesis, and apoptosis. LncRNAs, which are longer than 200 nucleotides, comprise one of the largest and most heterogeneous RNA families. LncRNAs can activate or repress gene expression through various mechanisms, acting alone or in combination with miRNAs and other molecules as part of various pathways. Until recently, most research has focused on individual lncRNA and miRNA functions as regulators, and there is limited available data on ncRNA interactions relating to the tumor growth, metastasis, and therapy of cancer, acting either on mRNA alone or as competing endogenous RNA (ceRNA) networks. Triple-negative breast cancer (TNBC) represents approximately 10%-20% of all breast cancers (BCs) and is highly heterogenous and more aggressive than other types of BC, for which current targeted treatment options include hormonotherapy, PARP inhibitors, and immunotherapy; however, no targeted therapies for TNBC are available, partly because of a lack of predictive biomarkers. With advances in proteomics, new evidence has emerged demonstrating the implications of dysregulation of ncRNAs in TNBC etiology. Here, we review the roles of lncRNAs and miRNAs implicated in TNBC, including their interactions and regulatory networks. Our synthesis provides insight into the mechanisms involved in TNBC progression and has potential to aid the discovery of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania.,Center of Oncology Euroclinic, Iași, Romania
| | | | | | | | | | - Cristian Lungulescu
- Department of Medical Oncology, University of Medicine and Pharmacy, Craiova, Romania
| | | | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | - Cristina Grigorescu
- Department of Surgery, Grigore T Popa University of Medicine and Pharmacy, Iași, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, University of Medicine and Pharmacy Gr. T. Popa Iasi, Iași, Romania
| | | | | |
Collapse
|
39
|
Yam C, Rauch GM, Rahman T, Karuturi M, Ravenberg E, White J, Clayborn A, McCarthy P, Abouharb S, Lim B, Litton JK, Ramirez DL, Saleem S, Stec J, Symmans WF, Huo L, Damodaran S, Sun R, Moulder SL. A phase II study of Mirvetuximab Soravtansine in triple-negative breast cancer. Invest New Drugs 2020; 39:509-515. [PMID: 32984932 DOI: 10.1007/s10637-020-00995-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022]
Abstract
Folate receptor alpha (FRα) has been reported to be expressed in up to 80% of triple-negative breast cancers (TNBC) with limited expression in normal tissues, making it a promising therapeutic target. Mirvetuximab soravtansine (mirvetuximab-s) is an antibody drug conjugate which has shown promise in the treatment of FRα-positive solid tumors in early phase clinical trials. Herein, are the results of the first prospective phase II trial evaluating mirvetuximab-s in metastatic TNBC. Patients with advanced, FRα-positive TNBC were enrolled on this study. Mirvetuximab-s was administered at a dose of 6.0 mg/kg every 3 weeks. 96 patients with advanced TNBC consented for screening. FRα staining was performed on tumor tissue obtained from 80 patients. The rate of FRα positivity by immunohistochemistry was 10.0% (8/80). Two patients were treated on study, with best overall responses of stable disease in one and progressive disease in the other. Adverse events were consistent with earlier studies. The study was terminated early due to the low rate of FRα positivity in the screened patient population and lack of disease response in the two patients treated. The observed rate of FRα positivity was considerably lower than previously reported and none of the patients had a partial or complete response. Treatment with mirvetuximab-s should only be further explored in TNBC if an alternate biomarker strategy is developed for patient selection on the basis of additional preclinical data.
Collapse
Affiliation(s)
- Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Gaiane M Rauch
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tanbin Rahman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Meghan Karuturi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Elizabeth Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Alyson Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Pamela McCarthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Sausan Abouharb
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Bora Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - David L Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Sadia Saleem
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | | | - W Fraser Symmans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthil Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Dan L. Duncan Building CPB5.3542, 1515 Holcombe Blvd. Unit 1354, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Van Bockstal MR, Noel F, Guiot Y, Duhoux FP, Mazzeo F, Van Marcke C, Fellah L, Ledoux B, Berlière M, Galant C. Predictive markers for pathological complete response after neo-adjuvant chemotherapy in triple-negative breast cancer. Ann Diagn Pathol 2020; 49:151634. [PMID: 32987254 DOI: 10.1016/j.anndiagpath.2020.151634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022]
Abstract
A combination of Sox10 and GATA3 was previously identified as a marker for metastatic triple-negative breast cancer (TNBC), but it is uncertain whether their expression is associated with pathological complete response (pCR) after neoadjuvant chemotherapy (NAC). This study investigates the predictive value of clinicopathological characteristics, as well as protein expression of Sox10, GATA3, p53 and p63, in a consecutive series of TNBC patients treated with NAC. Archived hematoxylin & eosin stained slides of core biopsies and resection specimens from 35 TNBC patients were reviewed. The following clinicopathological characteristics were determined at the biopsy level: age at diagnosis, cancer type, Nottingham grade, lympho-vascular invasion, syncytial growth, necrosis, clear cell differentiation, myxoid peritumor stroma, stromal tumor-infiltrating lymphocytes (sTILs) and presence of an in situ component. The MD Anderson residual cancer burden (RCB) score and corresponding RCB class were determined. Immunohistochemistry for Sox10, p53, GATA3 and p63 was performed at the biopsy level. sTILs, either as a continuous or as a dichotomous variable, were the only parameter that was significantly associated with pCR in univariable and multivariable analyses. Assessment of sTILs showed moderate to good interobserver agreement. High sTILs (≥40%) were significantly associated with increased pCR rates, and this association was observer-independent. This retrospective study of a consecutive community-based cohort of TNBC patients confirms that sTILs are a robust, observer-independent predictor for therapeutic response after NAC. The combination of Sox10, GATA3 and p53 immunoreactivity is unlikely to harbor any predictive value for pCR in TNBC.
Collapse
Affiliation(s)
- Mieke R Van Bockstal
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Fanchon Noel
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Yves Guiot
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Francois P Duhoux
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Filomena Mazzeo
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Cédric Van Marcke
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Department of Medical Oncology, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Latifa Fellah
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Department of Radiology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Benjamin Ledoux
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Department of Oncologic Radiotherapy, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Martine Berlière
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Christine Galant
- Department of Pathology, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium; Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium; Breast Clinic, King Albert II Cancer Institute, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| |
Collapse
|
41
|
Gupta I, Rizeq B, Vranic S, Moustafa AEA, Al Farsi H. Circulating miRNAs in HER2-Positive and Triple Negative Breast Cancers: Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2020; 21:E6750. [PMID: 32942528 PMCID: PMC7554858 DOI: 10.3390/ijms21186750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most prevalent diseases among women worldwide and is highly associated with cancer-related mortality. Of the four major molecular subtypes, HER2-positive and triple-negative breast cancer (TNBC) comprise more than 30% of all breast cancers. While the HER2-positive subtype lacks estrogen and progesterone receptors and overexpresses HER2, the TNBC subtype lacks estrogen, progesterone and HER2 receptors. Although advances in molecular biology and genetics have substantially ameliorated breast cancer disease management, targeted therapies for the treatment of estrogen-receptor negative breast cancer patients are still restricted, particularly for TNBC. On the other hand, it has been demonstrated that microRNAs, miRNAs or small non-coding RNAs that regulate gene expression are involved in diverse biological processes, including carcinogenesis. Moreover, circulating miRNAs in serum/plasma are among the most promising diagnostic/therapeutic tools as they are stable and relatively easy to quantify. Various circulating miRNAs have been identified in several human cancers including specific breast cancer subtypes. This review aims to discuss the role of circulating miRNAs as potential diagnostic and prognostic biomarkers as well as therapeutic targets for estrogen-receptor negative breast cancers, HER2+ and triple negative.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Centre, Qatar University, Doha P.O. Box 2713, Qatar
| | - Halema Al Farsi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (I.G.); (B.R.); (S.V.)
| |
Collapse
|
42
|
Watanabe R, Miyata M, Oneyama C. Rictor promotes tumor progression of rapamycin-insensitive triple-negative breast cancer cells. Biochem Biophys Res Commun 2020; 531:636-642. [PMID: 32819718 DOI: 10.1016/j.bbrc.2020.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC), characterized by decreased expression of hormone receptors and human epidermal growth factor type 2 receptor, has poor prognosis and lacks effective therapeutics. Recently, the mTOR inhibitor rapamycin and its analogs have attracted growing interests and evaluated as therapeutic agents against TNBC, in which the PI3K/AKT/mTOR pathway is often activated. However, some TNBCs are less sensitive to these drugs. In this study, we found that the sensitivity of TNBC cells to rapamycin was highly dependent on the expression level of rapamycin-insensitive companion of mTOR (Rictor), a key component of the mTOR complex 2. Repression of the Rictor expression strongly suppressed the growth of rapamycin-insensitive tumor cells. Furthermore, we showed that the suppression of Rictor expression was also effective in rapamycin-insensitive cells that had acquired resistance to mTOR kinase inhibitors. These findings indicate that Rictor can be a predictive marker for the use of rapamycin analogs in TNBC and highlight the need to develop therapeutics targeting Rictor in the treatment of TNBC.
Collapse
Affiliation(s)
- Risayo Watanabe
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi, Japan
| | - Mamiko Miyata
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Aichi, Japan; Department of Target and Drug Discovery, Nagoya University, Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan; Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Mizuho-ku, Nagoya, Aichi, Japan; JST, PRESTO, Nagoya, Aichi, Japan.
| |
Collapse
|
43
|
Tiofack ATZ, Simo G, Ofon EA, bell ED, Kamla CM, Ananga SN, Roger T, Nana TN, Nguefack CT, Fewou A, Takongmo S, Lueong S. The TP63 Gene Polymorphism rs17506395 is Associated with Early Breast Cancer in Cameroon. Asian Pac J Cancer Prev 2020; 21:2199-2208. [PMID: 32856845 PMCID: PMC7771916 DOI: 10.31557/apjcp.2020.21.8.2199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is a leading female cancer worldwide and cause of cancer-related death, especially in developing countries. Genetic predispositions to BC development in African population is poorly studied, and meanwhile the SNP rs17506395 in TP63 gene locus has been associated with the development of breast cancer in Asian women, no investigation has been undertaken within African population. We investigated the impact of this polymorphism in a representative African population. METHODS We undertook a case-control study including 335 women, of which 111 were breast cancer patients and 224 controls. Using blood-derived germline DNA, PCR-RFLP was used to investigate the polymorphism of TP63 gene at rs17506395 locus. Unconditional logistic regression was used to study the association between the TP63 gene polymorphism and risk of BC development. After stratification into different age and ethno-linguistic groups as well as menopausal status, the Cochran-Mantel-Haenszel test was used to measure significance of the associations. RESULTS Comparing cases with controls, no significant associations between genotype and disease development was observed. Similarly, when cases were stratified according to menopausal status and ethno-linguistic groups, no significant association was observed between genotype and disease development. However, in women of 40 years and below, TT and TG genotypes were associated with breast cancer development. The minor G allele seems to protective against early breast cancer onset OR of 0.5 (95%CI = 0.26-0.94, p = 0.03). CONCLUSION Our data revealed an association between rs15706395 and the risk of early breast cancer onset. The GG genotype seems to reduce the risk of early breast cancer. Larger studies are needed to confirm the potential of this SNP as biomarker for breast cancer prognostic. .
Collapse
Affiliation(s)
- Arnol T Z Tiofack
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroun.
| | - Gustave Simo
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroun.
| | - Elvis A Ofon
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroun.
| | - Ester Dina bell
- Medical Oncology, Direction of the Bonassama District Hospital, Douala, Cameroon.
| | - Chancelin M Kamla
- Faculty of Medicine and Pharmaceutical Science, University of Douala, Douala, Cameroon.
| | - Sidonie N Ananga
- Service of AnatomocytoPathotogy, General Hospital of Douala, Douala, Cameroon.
| | | | - Theophile N Nana
- Service of Obstetrics and Gynecology, General Hospital of Douala and Faculty of Medicine, University of Buea.
| | - Charlotte T Nguefack
- Service of Obstetrics and Gynecology, General Hospital of Douala and Faculty of Medicine, University of Buea.
| | - Adamou Fewou
- Service of AnatomocytoPathotogy, General Hospital of Douala, Douala, Cameroon.
- Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon.
| | - Samuel Takongmo
- Faculty of Medicine and Biomedical Sciences, University of Yaounde, Yaounde, Cameroon.
- Medico-surgical center of Yaounde-Nsimeyong Hospital, Yaounde, Cameroon.
| | - Smiths Lueong
- Molecular Parasitology & Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroun.
- German Cancer Research Center, Essen, Germany.
| |
Collapse
|
44
|
Yang X, Zhao L, Pei J, Wang Z, Zhang J, Wang B. CELF6 modulates triple-negative breast cancer progression by regulating the stability of FBP1 mRNA. Breast Cancer Res Treat 2020; 183:71-82. [PMID: 32601971 DOI: 10.1007/s10549-020-05753-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) remains a great challenge in clinical treatment due to a shortage of effective therapeutic targets and acquired chemoresistance. Here, we identified the role of an RNA-binding protein, CUG-BP Elav-like family member 6 (CELF6), in the TNBC development and paclitaxel (PTX) chemoresistance. METHODS Stable CELF6-overexpressing cell lines were established in BT549 and MDA-MB-231 cells. Cell proliferation was determined using cell counting, two-dimensional colony formation, and MTT assay. Meanwhile, cell migration and cell invasion were detected by Transwell assay. Furthermore, the downstream target gene of CELF6 was identified and the direct interaction was further determined by luciferase reporter assay, immunoprecipitation, and RNA pull-down. Additionally, the PTX resistant cell line was established to determine the role of CELF6 in PTX resistance. RESULTS CELF6 overexpression suppressed cell proliferation, cell migration, and cell invasion. Mechanistically, Fructose-Bisphosphatase 1 (FBP1) was identified as the target gene of CELF6 and stabilized by CELF6 via binding 3'UTR. CELF6 overexpression mediated inhibition in TNBC development was dependent on FBP1. Moreover, CELF6 overexpression increased the sensitivity to PTX treatment. CONCLUSION CELF6 functions as a tumor suppressor by upregulating FBP 1 expression via stabilizing its mRNA, and thereby inhibits TNBC progression.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China.
| | - Lu Zhao
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, No. 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Jing Pei
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
| | - Zhaorui Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
| | - Jingjie Zhang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
| | - Benzhong Wang
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
| |
Collapse
|
45
|
Yoon EC, Wilson P, Zuo T, Pinto M, Cole K, Harigopal M. High frequency of p16 and SOX10 coexpression but not androgen receptor expression in triple-negative breast cancers. Hum Pathol 2020; 102:13-22. [PMID: 32565323 DOI: 10.1016/j.humpath.2020.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancers (TNBCs) represent approximately 12-17% of all breast cancers and have distinctively aggressive clinical courses. Because routine biomarkers for breast cancer do not apply for TNBCs, it is essential to find novel prognostic markers and potential targets for therapeutic agents. p16 and SOX10 are emerging biomarkers with relatively unexplored expressions in TNBCs. We present an analysis of the expression of p16 and SOX10 in combination with that of androgen receptor (AR) and cytokeratin (CK) 5/6 in TNBCs. In addition, we used tissue microarrays (TMAs) to compare frequencies of p16 and SOX10 between TNBCs and non-TNBCs. Fifty-six TNBC samples with clinical data were stained immunohistochemically with p16, SOX10, AR, and CK5/6. Fifty-four cases (96.4%) were invasive ductal carcinoma, not otherwise specified, and 46 cases (82.1%) were Nottingham histologic grade 3. The majority of TNBC cases were positive for p16 (n = 44; 78.6%) and SOX10 (n = 48; 85.7%). AR was positive in 15 cases (26.8%). CK5/6 was positive in 24 cases (42.9%), which were classified as basal-like breast cancer (BLBC) subtype. The frequencies of p16 and SOX10 expression in BLBC and non-BLBC subtypes did not reveal significant statistical difference in a separate analysis. Using archived TNBC and non-TNBC TMAs, we observed that 56% of TNBC cases were positive for p16 compared with 16% of non-TNBC cases (p-value <0.0001). SOX10 was positive in 80% of TNBC cases compared with 35% of non-TNBC cases (p-value <0.0001). A significant correlation was observed between p16 and SOX10 coexpression in TNBC cases (n = 56/80, p = 0.02) but not in non-TNBC cases (n = 23/348; p = 0.626). In conclusion, p16 and SOX10 are frequently expressed in TNBC, regardless of CK5/6 expression. Furthermore, p16 and SOX10 are often coexpressed in TNBCs compared with non-TNBCs.
Collapse
Affiliation(s)
- Esther C Yoon
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Parker Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Marguerite Pinto
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Kimberly Cole
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| | - Malini Harigopal
- Department of Pathology, Yale University School of Medicine New Haven, New Haven, CT, USA
| |
Collapse
|
46
|
MEGF11 is related to tumour recurrence in triple negative breast cancer via chemokine upregulation. Sci Rep 2020; 10:8060. [PMID: 32415115 PMCID: PMC7229019 DOI: 10.1038/s41598-020-64950-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/23/2019] [Indexed: 01/10/2023] Open
Abstract
Our previous study demonstrated that upregulation of multiple epidermal growth factor-like domains 11 (MEGF11) gene expression is involved in the mechanism by which recurrence of Triple Negative Breast Cancer (TNBC) occurs. Our aim was to elucidate the role of MEGF11 expression in TNBC cells, both in vitro and in vivo, and in human tissue. Following MEGF11 gene knockdown (∆MEGF11) or over-expression in MDA-MB-231 and MB-468 cells, cell growth and chemokine gene expression were evaluated. In vivo, tumour growth of implanted human TNBC cells and the number of circulating 4T1 mouse tumour cells were measured. There was a significant decrease in cell growth via inhibition of AKT, NF-kB, CREB and AP-1 activation in ∆MEGF11 MDA-MB-231 and 468 cells. This also resulted, in vivo, in a suppression of tumour growth and a decrease in the number of mouse circulating 4T1 breast cancer cells. Surprisingly, overexpression of MEGF11 upregulated the expression of various chemokines and proinflammatory cytokines via AKT activation, but there was no increase in cell proliferation. MEGF11 was found to cross-talk positively with IL-17A signalling. Patients with tumours that over-expressed MEGF11 had a poorer prognosis. We conclude that MEGF11 plays an important role in tumour survival and that overexpression of MEGF11 induces both a cytokine and a chemokine cascade, which will favour the tumour microenvironment in terms of distant metastasis. MEGF11 might be a potential therapeutic target for preventing TNBC recurrence.
Collapse
|
47
|
Gole L, Yeong J, Lim JCT, Ong KH, Han H, Thike AA, Poh YC, Yee S, Iqbal J, Hong W, Lee B, Yu W, Tan PH. Quantitative stain-free imaging and digital profiling of collagen structure reveal diverse survival of triple negative breast cancer patients. Breast Cancer Res 2020; 22:42. [PMID: 32375854 PMCID: PMC7204022 DOI: 10.1186/s13058-020-01282-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
Background Stromal and collagen biology has a significant impact on tumorigenesis and metastasis. Collagen is a major structural extracellular matrix component in breast cancer, but its role in cancer progression is the subject of historical debate. Collagen may represent a protective layer that prevents cancer cell migration, while increased stromal collagen has been demonstrated to facilitate breast cancer metastasis. Methods Stromal remodeling is characterized by collagen fiber restructuring and realignment in stromal and tumoral areas. The patients in our study were diagnosed with triple-negative breast cancer in Singapore General Hospital from 2003 to 2015. We designed novel image processing and quantification pipelines to profile collagen structures using numerical imaging parameters. Our solution differentiated the collagen into two distinct modes: aggregated thick collagen (ATC) and dispersed thin collagen (DTC). Results Extracted parameters were significantly associated with bigger tumor size and DCIS association. Of numerical parameters, ATC collagen fiber density (CFD) and DTC collagen fiber length (CFL) were of significant prognostic value for disease-free survival and overall survival for the TNBC patient cohort. Using these two parameters, we built a predictive model to stratify the patients into four groups. Conclusions Our study provides a novel insight for the quantitation of collagen in the tumor microenvironment and will help predict clinical outcomes for TNBC patients. The identified collagen parameters, ATC CFD and DTC CFL, represent a new direction for clinical prognosis and precision medicine. We also compared our result with benign samples and DICS samples to get novel insight about the TNBC heterogeneity. The improved understanding of collagen compartment of TNBC may provide insights into novel targets for better patient stratification and treatment.
Collapse
Affiliation(s)
- Laurent Gole
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Joe Yeong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.,Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kok Haur Ong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore
| | - Hao Han
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.,Department of Pathology, National University Hospital, Singapore, Singapore
| | - Aye Aye Thike
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Yong Cheng Poh
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Sidney Yee
- Diagnostic Development Hub (DxD), A*STAR, Singapore, Singapore
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Bernett Lee
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, Biopolis, Singapore, 138648, Singapore.
| | - Weimiao Yu
- Institute of Molecule and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Building, Singapore, 138673, Singapore.
| | - Puay Hoon Tan
- Division of Pathology, Singapore General Hospital, 20 College Road, Academia, Level 7, Diagnostics Tower, Singapore, 169856, Singapore.
| |
Collapse
|
48
|
Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res 2020; 156:104806. [PMID: 32294525 DOI: 10.1016/j.phrs.2020.104806] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/04/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequently occurring cancer in women. Chemotherapy in combination with immunotherapy has been used to treat breast cancer. Atezolizumab targeting the protein programmed cell death-ligand (PD-L1) in combination with paclitaxel was recently approved by the Food and Drug Administration (FDA) for Triple-Negative Breast Cancer (TNBC), the most incurable type of breast cancer. However, the use of such drugs is restricted by genotype and is effective only for those TNBC patients expressing PD-L1. In addition, resistance to chemotherapy with drugs such as lapatinib, geftinib, and tamoxifen can develop. In this review, we address chemoresistance in breast cancer and discuss Akt as the master regulator of drug resistance and several oncogenic mechanisms in breast cancer. Akt not only directly interacts with the mitogen-activated protein (MAP) kinase signaling pathway to affect PD-L1 expression, but also has crosstalk with Notch and Wnt/β-catenin signaling pathways involved in cell migration and breast cancer stem cell integrity. In this review, we discuss the effects of tyrosine kinase inhibitors on Akt activation as well as the mechanism of Akt signaling in drug resistance. Akt also has a crucial role in mitochondrial metabolism and migrates into mitochondria to remodel breast cancer cell metabolism while also functioning in responses to hypoxic conditions. The Akt inhibitors ipatasertib, capivasertib, uprosertib, and MK-2206 not only suppress cancer cell proliferation and metastasis, but may also inhibit cytokine regulation and PD-L1 expression. Ipatasertib and uprosertib are undergoing clinical investigation to treat TNBC. Inhibition of Akt and its regulators can be used to control breast cancer progression and also immunosuppression, while discovery of additional compounds that target Akt and its modulators could provide solutions to resistance to chemotherapy and immunotherapy.
Collapse
|
49
|
Seow DYB, Yeong JPS, Lim JX, Chia N, Lim JCT, Ong CCH, Tan PH, Iqbal J. Tertiary lymphoid structures and associated plasma cells play an important role in the biology of triple-negative breast cancers. Breast Cancer Res Treat 2020; 180:369-377. [PMID: 32034580 DOI: 10.1007/s10549-020-05548-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Triple-negative breast cancers (TNBC) are aggressive tumours that exhibit abundant lymphoid infiltrates which modulate tumour behaviour. Recent findings suggest that TNBC with higher densities of plasma cells are associated with a favourable prognosis, and tertiary lymphoid structures (TLS) have prognostic significance. Here, we studied the phenotype and function of plasma cells in TNBCs by assessing their association with IgG Kappa light chain expression, B cells, and TLS. METHODS A retrospective analysis of 269 TNBC cases was performed. Tumour-infiltrating CD38+ plasma cells, CD20+ B cells, and TLS were evaluated on conventional haematoxylin-eosin-stained and immunohistochemical-stained sections of TNBC. We then selected TNBC cases demonstrating the highest and lowest densities of plasma cells, and examined their association with TLS, B cells, as well as immunoglobulin expression using Opal-Vectra multiplex immunofluorescence (IF). RESULTS TNBC with high density of plasma cells showed significantly higher numbers of IgG Kappa+ CD38+ cells (p = 0.0089, p < 0.0001), and higher numbers of TLS (p < 0.0001), compared to TNBC with low density of plasma cells. TNBC with high density of plasma cells also showed higher numbers of CD20+ B cells in the tumour core (p < 0.0001), invasive margin (p < 0.0001), as well as stromal (p = 0.015) compartments. CONCLUSION TNBC with high density of plasma cells are associated with higher numbers of IgG Kappa+ CD38+ cells, CD20+ B cells, and TLS. Further studies to characterize the function of plasma cell infiltrates and how they may interact with other tumour-infiltrating lymphocytes and TLS in TNBC may help improve existing immunotherapy strategies.
Collapse
Affiliation(s)
- Dominique Yuan Bin Seow
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Joe Poh Sheng Yeong
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Johnathan Xiande Lim
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Noel Chia
- Department of Pathology, National University Hospital, 5, Lower Kent Ridge Road, 1 Main Building, Level 3, Singapore, 119074, Singapore
| | - Jeffrey Chun Tatt Lim
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Clara Chong Hui Ong
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Puay Hoon Tan
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore
| | - Jabed Iqbal
- Division of Pathology, Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Singapore, 169856, Singapore.
| |
Collapse
|
50
|
Amiri A, Hastert F, Stühn L, Dietz C. Structural analysis of healthy and cancerous epithelial-type breast cells by nanomechanical spectroscopy allows us to obtain peculiarities of the skeleton and junctions. NANOSCALE ADVANCES 2019; 1:4853-4862. [PMID: 36133137 PMCID: PMC9418382 DOI: 10.1039/c9na00021f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/24/2019] [Indexed: 06/16/2023]
Abstract
The transition of healthy epithelial cells to carcinoma is associated with an alteration in the structure and organization of the cytoskeleton of the cells. A comparison of the mechanical properties of cancerous and healthy cells indicated a higher deformability of the cancer cells based on averaging the mechanical properties of single cells. However, the exact reason for softening of the cancerous cells compared to their counterparts remains unclear. Here, we focused on nanomechanical spectroscopy of healthy and cancerous ductal epithelial-type breast cells by means of atomic force microscopy with high lateral and depth precision. As a result, based on atomic force microscopy measurements formation of significantly fewer microtubules in cancerous cells which was observed in our study is most likely one of the main causes for the overall change in mechanical properties without any phenotypic shift. Strikingly, in a confluent layer of invasive ductal carcinoma cells, we observed the formation of cell-cell junctions that have the potential for signal transduction among neighboring cells such as desmosomes and adherens junctions. This increases the possibility of cancerous cell collaboration in malignancy, infiltration or metastasis phenomena.
Collapse
Affiliation(s)
- Anahid Amiri
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Florian Hastert
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt 64287 Darmstadt Germany
| | - Lukas Stühn
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technische Universität Darmstadt Alarich-Weiss-Str. 2 64287 Darmstadt Germany
| |
Collapse
|