1
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
2
|
Wang J, Seo JW, Kare AJ, Schneider M, Tumbale SK, Wu B, Raie MN, Pandrala M, Iagaru A, Brunsing RL, Charville GW, Park WG, Ferrara KW. Spatial transcriptomic analysis drives PET imaging of tight junction protein expression in pancreatic cancer theranostics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574209. [PMID: 38249519 PMCID: PMC10798647 DOI: 10.1101/2024.01.07.574209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
We apply spatial transcriptomics and proteomics to select pancreatic cancer surface receptor targets for molecular imaging and theranostics using an approach that can be applied to many cancers. Selected cancer surfaceome epithelial markers were spatially correlated and provided specific cancer localization, whereas the spatial correlation between cancer markers and immune- cell or fibroblast markers was low. While molecular imaging of cancer-associated fibroblasts and integrins has been proposed for pancreatic cancer, our data point to the tight junction protein claudin-4 as a theranostic target. Claudin-4 expression increased ∼16 fold in cancer as compared with normal pancreas, and the tight junction localization conferred low background for imaging in normal tissue. We developed a peptide-based molecular imaging agent targeted to claudin-4 with accumulation to ∼25% injected activity per cc (IA/cc) in metastases and ∼18% IA/cc in tumors. Our work motivates a new approach for data-driven selection of molecular targets.
Collapse
|
3
|
Ouban A, Arabi TZ. Expression of Claudins in Preneoplastic Conditions of the Gastrointestinal Tract: A Review. Cancers (Basel) 2023; 15:4095. [PMID: 37627123 PMCID: PMC10452390 DOI: 10.3390/cancers15164095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Premalignant lesions of the gastrointestinal tract are a group of disorders which act as the harbinger of malignant tumors. They are the ground-zero of neoplastic transformation, and their identification and management offer patients the best opportunity of blocking the progress of cancer. However, diagnoses of some of these conditions are hard to make, and their clinical importance is difficult to assess. Recent reports indicated that several claudin proteins have altered expressions in many cancers, including esophageal, gastric, colon, liver, and pancreatic cancers. The early identification of the aberrant expression of these proteins could lead to the early diagnosis and management of gastrointestinal tumors. Specifically, claudins -1, -2, -3, -4, and -18 are frequently overexpressed in gastrointestinal preneoplastic lesions. These altered expressions have shown clinical value in several tumors, providing diagnostic and prognostic information. In this article, we review the literature on the aberrant expression of claudins in preneoplastic lesions of the gastrointestinal tract. Additionally, we summarize their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Tarek Ziad Arabi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
4
|
Sans M, Makino Y, Min J, Rajapakshe KI, Yip-Schneider M, Schmidt CM, Hurd MW, Burks JK, Gomez JA, Thege FI, Fahrmann JF, Wolff RA, Kim MP, Guerrero PA, Maitra A. Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms of the Pancreas Identifies NKX6-2 as a Driver of Gastric Differentiation and Indolent Biological Potential. Cancer Discov 2023; 13:1844-1861. [PMID: 37285225 PMCID: PMC10880589 DOI: 10.1158/2159-8290.cd-22-1200] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are bona fide precursor lesions of pancreatic ductal adenocarcinoma (PDAC). The most common subtype of IPMNs harbors a gastric foveolar-type epithelium, and these low-grade mucinous neoplasms are harbingers of IPMNs with high-grade dysplasia and cancer. The molecular underpinning of gastric differentiation in IPMNs is unknown, although identifying drivers of this indolent phenotype might enable opportunities for intercepting progression to high-grade IPMN and cancer. We conducted spatial transcriptomics on a cohort of IPMNs, followed by orthogonal and cross-species validation studies, which established the transcription factor NKX6-2 as a key determinant of gastric cell identity in low-grade IPMNs. Loss of NKX6-2 expression is a consistent feature of IPMN progression, while reexpression of Nkx6-2 in murine IPMN lines recapitulates the aforementioned gastric transcriptional program and glandular morphology. Our study identifies NKX6-2 as a previously unknown transcription factor driving indolent gastric differentiation in IPMN pathogenesis. SIGNIFICANCE Identification of the molecular features driving IPMN development and differentiation is critical to prevent cancer progression and enhance risk stratification. We used spatial profiling to characterize the epithelium and microenvironment of IPMN, which revealed a previously unknown link between NKX6-2 and gastric differentiation, the latter associated with indolent biological potential. See related commentary by Ben-Shmuel and Scherz-Shouval, p. 1768. This article is highlighted in the In This Issue feature, p. 1749.
Collapse
Affiliation(s)
- Marta Sans
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuki Makino
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jimin Min
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kimal I. Rajapakshe
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michele Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark W. Hurd
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jared K. Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Javier A. Gomez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fredrik I. Thege
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael P. Kim
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paola A. Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Differential Expression of Claudin 1 and 4 in Basal Cell Carcinoma of the Skin. Dermatol Res Pract 2023; 2023:9936551. [PMID: 36714681 PMCID: PMC9883106 DOI: 10.1155/2023/9936551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common human malignancy. The biological behavior of this entity is remarkably indolent. Claudin plays an important role in tight junctions, regulating paracellular passage of variable substance including growth factors and maintaining the polarity of epithelia. Up- or downregulated claudin expression has been reported in many cancers. Nevertheless, claudin expression in BCC of the skin remains unclear. We therefore examined the status of claudin 1 and 4 expressions in BCC and adjacent normal skin by immunohistochemistry (IHC). Our IHC results demonstrated high claudin 1 expression and low claudin 4 expression in 33 of 34 lower-grade BCCs. In lower-grade BCC, claudin 1 was increased and claudin 4 was decreased compared with the normal skin. Claudin 1 was inclined to be highly expressed in the membrane and cytoplasm of tumour cells in the periphery of tumour nest. Conversely, almost all lower-grade BCCs (33/34) and one of two higher-grade BCC lacked or showed focal positivity for claudin 4. These results imply that the expression pattern is characteristics of lower-risk BCC. Interestingly, one of the two higher-grade BCCs demonstrated the converse expression patterns of claudins, with decreased claudin 1 and increased claudin 4. The combination of immunohistochemical claudin 1 and 4 expression may offer a useful ancillary tool for the pathological diagnosis of BCC. Furthermore, membranous and intracellular claudins may present future therapeutic targets for uncontrollable BCC.
Collapse
|
6
|
Chang YR, Park T, Park SH, Kim YK, Lee KB, Kim SW, Jang JY. Prognostic significance of E-cadherin and ZEB1 expression in intraductal papillary mucinous neoplasm. Oncotarget 2017; 9:306-320. [PMID: 29416615 PMCID: PMC5787467 DOI: 10.18632/oncotarget.23012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
There is an urgent need to investigate the genetic changes that occur in intraductal papillary mucinous neoplasm (IPMN), which is a well-known precursor of pancreatic cancer. In this study, gene expression profiling was performed by removing unwanted variation to determine the differentially expressed genes (DEGs) associated with malignant progression of IPMN. Among the identified DEGs, zinc finger E-box binding homeobox 1 (ZEB1) and E-cadherin, a crucial regulator of epithelial-to-mesenchymal transition (EMT), was validated among identified DEGs. A total of 76 fresh-frozen tissues were used for gene expression profiling and formalin-fixed, paraffin-embedded blocks from 87 patients were obtained for immunohistochemical analysis. Loss of E-cadherin expression (p = 0.023, odd ratio [OR] = 4.923) and expression of ZEB1 in stromal cells (stromal ZEB1, p < 0.001, OR = 26.800) were significantly correlated with degree of dysplasia. The hazard of death was significantly increased in patients with loss of E-cadherin expression (hazard ratio [HR] = 13.718, p = 0.004), expression of epithelial ZEB1 (HR = 19.117, p = 0.001), and stromal ZEB1 (HR = 6.373, p = 0.043). Based on the results of this study, loss of E-cadherin and expression of stromal ZEB1 are associated with increased risk of malignant progression. Epithelial and stromal ZEB1, as well as E-cadherin may be strong predictors of survival in patients with IPMN. Our finding suggests that these EMT markers may be utilized as potential prognosticators and may be used to improve and personalize treatment of IPMN.
Collapse
Affiliation(s)
- Ye Rim Chang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Sung Hyo Park
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yong Kang Kim
- Department of Statistics, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyoung Bun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sun-Whe Kim
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Immunohistochemical Antibody Panel for the Differential Diagnosis of Pancreatic Ductal Carcinoma From Gastrointestinal Contamination and Benign Pancreatic Duct Epithelium in Endoscopic Ultrasound-Guided Fine-Needle Aspiration. Pancreas 2017; 46:531-538. [PMID: 28099249 DOI: 10.1097/mpa.0000000000000774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The diagnosis of pancreatic ductal adenocarcinoma (PDAC) by endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) can be challenging to distinguish tumor cells from benign epithelium (BE). The aim of the present study was to set a minimal antibody panel to differentiate PDAC from contaminated BE in EUS-FNA specimens. METHODS Immunohistochemistry using claudin 4, EZH2, Ki-67, maspin, p53, and S100P was performed on tissue microarray sections containing 53 PDACs and 33 BE as well as cell blocks of EUS-FNA including 53 PDACs and 22 BE. The positive rate was scored as 0 to 4+. The receiver operating characteristic curve was applied to determine a cutoff point, and the Classification And Regression Trees method was used to obtain a classification tree of the best panel. RESULTS The cutoff point was 1+ for claudin 4, EZH2, Ki-67, p53, and S100P and 2+ for maspin. All BE scored 0 for p53. The classification tree revealed using p53, S100P, and claudin 4 was the most powerful. The sensitivity and specificity of the tree were 96.2% and 100% in tissue microarrays and 100% and 95.5% in EUS-FNA, respectively. CONCLUSIONS The classification tree using p53, S100P, and claudin 4 seems to successfully distinguish PDAC from the accompanying BE.
Collapse
|
8
|
Abstract
To better understand pancreatic ductal adenocarcinoma (PDAC) and improve its prognosis, it is essential to understand its origins. This article describes the pathology of the 3 well-established pancreatic cancer precursor lesions: pancreatic intraepithelial neoplasia, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm. Each of these precursor lesions has unique clinical findings, gross and microscopic features, and molecular aberrations. This article focuses on histopathologic diagnostic criteria and reporting guidelines. The genetics of these lesions are briefly discussed. Early detection and adequate treatment of pancreatic cancer precursor lesions has the potential to prevent pancreatic cancer and improve the prognosis of PDAC.
Collapse
Affiliation(s)
- Michaël Noë
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lodewijk A A Brosens
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
9
|
Intraductal Papillary Mucinous Neoplasms Often Contain Epithelium From Multiple Subtypes and/or Are Unclassifiable. Am J Surg Pathol 2016; 40:44-50. [PMID: 26469398 DOI: 10.1097/pas.0000000000000528] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) are subclassified into gastric, intestinal, pancreatobiliary, and oncocytic subtypes based on histologic features. The WHO classification scheme suggests use of immunohistochemical stains to help subtype IPMNs with ambiguous histology. Seventy-two pancreatic IPMN resections between 2008 and 2014 were retrospectively evaluated. Immunohistochemistry for CDX2, MUC2, and MUC5AC was performed on cases where the histologic subtype could not be determined on routine hematoxylin and eosin (H&E) sections. There were 41 gastric (57%), 8 intestinal (11%), 4 pancreatobiliary (6%), and 1 oncocytic (1%) IPMNs. Eighteen (25%) IPMNs were either unclassifiable due ambiguous morphology or contained distinct epithelium from >1 subtype (i.e., "mixed"). Two IPMNs initially unclassifiable strictly by H&E morphology were definitively classified as intestinal after positive immunohistochemical staining with CDX2, MUC2, and MUC5AC. Immunohistochemistry for another 7 IPMNs unclassifiable by H&E did not indicate a clear subtype and often contained discordant results (e.g., discordant CDX2 and MUC2 staining). In our experience, a considerable number of IPMNs are either unclassifiable or contain epithelium from >1 subtype. Furthermore, among those IPMNs initially unclassifiable by H&E morphology, application of immunohistochemical stains to aid in subtyping allow for definite classification in only a small subset of cases. These data, when taken in context with the significant ranges in the reported prevalence of specific histologic subtypes, suggest that accurate IPMN subtyping is poorly reproducible in up to 25% of cases, and in these problematic cases, immunohistochemistry adds little value.
Collapse
|
10
|
|
11
|
Elevated expression level of microRNA-196a is predictive of intestinal-type intraductal papillary mucinous neoplasm of the pancreas. Pancreas 2014; 43:361-6. [PMID: 24622064 DOI: 10.1097/mpa.0000000000000042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Aberrant expression of several microRNAs (miRs) has been reported in various neoplasms including intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. MicroRNA-196a (miR-196a) is up-regulated in Barrett esophagus (characterized by intestinal metaplasia) and in colorectal cancer; this relationship between intestinal characteristics and miR-196a might also be applicable to intestinal-type IPMNs. The aim of this study was to evaluate whether intestinal-type IPMNs can be discriminated from non-intestinal-type IPMNs by the expression level of miR-196a in tissue and pancreatic juice samples. METHODS Thirty-seven formalin-fixed paraffin-embedded tissue samples (including 3 of normal pancreatic ducts) and 36 pancreatic juice samples were obtained. The expression level of miR-196a measured by quantitative reverse transcription-polymerase chain reaction assays was compared between intestinal-type and non-intestinal-type IPMNs. RESULTS MicroRNA-196a expression in intestinal-type IPMN tissue samples (n = 18) was significantly higher than that of non-intestinal-type IPMNs (n = 16) (P < 0.001). Similarly, miR-196a expression in pancreatic juice samples of intestinal-type IPMNs (n = 6) was significantly higher than that of non-intestinal-type IPMNs (n = 30) (P = 0.008), and the sensitivity and specificity for prediction of intestinal-type IPMNs using pancreatic juice samples were both 83%. CONCLUSIONS Elevated expression of miR-196a in pancreatic juice samples is predictive of intestinal-type IPMNs.
Collapse
|
12
|
Treatment strategy for main duct intraductal papillary mucinous neoplasms of the pancreas based on the assessment of recurrence in the remnant pancreas after resection: a retrospective review. Ann Surg 2014; 259:360-8. [PMID: 23989056 DOI: 10.1097/sla.0b013e3182a690ff] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To clarify the recurrence pattern after resection of main duct intraductal papillary mucinous neoplasms (MD-IPMNs) using molecular analyses and determine the most adequate treatment strategy. BACKGROUND The most appropriate resection line for MD-IPMNs remains an unresolved issue. METHODS Medical records of 56 patients with pancreatectomy were retrospectively reviewed. Histological subtypes and Kras/GNAS mutations were assessed in patients with recurrence in the remnant pancreas. RESULTS Forty-nine patients underwent partial pancreatectomy and 7 underwent total pancreatectomy. Thirty-six patients (64%) had malignant MD-IPMNs. Recurrence was observed in 7 of 49 patients (14%), including 6 with malignant IPMNs and 1 with pancreatic ductal adenocarcinoma, all of whom underwent remnant pancreatectomy. The cumulative disease-specific survival rate of patients with pancreatic recurrence was greater than that of patients with extrapancreatic recurrence (P < 0.001). Although the pancreatic margin status at the initial operation did not affect the pancreatic recurrence rate, all 4 recurrent IPMNs examined had histological subtypes and Kras/GNAS mutations identical to those of the initial lesions. Four patients experienced recurrence in the remnant pancreas or systemic recurrence after resection of high-grade dysplasia of MD-IPMN. Three of the 56 patients had concomitant pancreatic ductal adenocarcinomas and MD-IPMNs. CONCLUSIONS One-step total pancreatectomy can be avoided, and remnant total pancreatectomy would lead to favorable outcomes even in patients with pancreatic recurrence, some cases of which seem to involve residual lesions. Postoperative surveillance of high-grade dysplasia should be performed as if malignant, and close attention should be paid to the occurrence of concomitant pancreatic ductal adenocarcinomas in patients with MD-IPMNs.
Collapse
|
13
|
Ding L, Lu Z, Lu Q, Chen YH. The claudin family of proteins in human malignancy: a clinical perspective. Cancer Manag Res 2013; 5:367-75. [PMID: 24232410 PMCID: PMC3825674 DOI: 10.2147/cmar.s38294] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tight junctions, or zonula occludens, are the most apical component of the junctional complex and provide one form of cell-cell adhesion in epithelial and endothelial cells. Nearly 90% of malignant tumors are derived from the epithelium. Loss of cell-cell adhesion is one of the steps in the progression of cancer to metastasis. At least three main tight junction family proteins have been discovered: occludin, claudin, and junctional adhesion molecule (JAM). Claudins are the most important structural and functional components of tight junction integral membrane proteins, with at least 24 members in mammals. They are crucial for the paracellular flux of ions and small molecules. Overexpression or downregulation of claudins is frequently observed in epithelial-derived cancers. However, molecular mechanisms by which claudins affect tumorigenesis remain largely unknown. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies, including pancreatic, colonic, lung, ovarian, thyroid, prostate, esophageal, and breast cancers. In this review, we will give the readers an overall picture of the changes in claudin expression observed in various cancers and their mechanisms of regulation. Downregulation of claudins contributes to epithelial transformation by increasing the paracellular permeability of nutrients and growth factors to cancerous cells. In the cases of upregulation of claudin expression, the barrier function of the cancerous epithelia changes, as they often display a disorganized arrangement of tight junction strands with increased permeability to paracellular markers. Finally, we will summarize the literature suggesting that claudins may become useful biomarkers for cancer detection and diagnosis as well as possible therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Lei Ding
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China ; Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, USA
| | | | | | | |
Collapse
|
14
|
Regulation of Tight Junctions for Therapeutic Advantages. CANCER METASTASIS - BIOLOGY AND TREATMENT 2013. [DOI: 10.1007/978-94-007-6028-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Abstract
The alveolar epithelium of the lung constitutes a unique interface with the outside environment. This thin barrier must maintain a surface for gas transfer while being continuously exposed to potentially hazardous environmental stimuli. Small differences in alveolar epithelial barrier properties could therefore have a large impact on disease susceptibility or outcome. Moreover, recent work has focused attention on the alveolar epithelium as central to several lung diseases, including acute lung injury and idiopathic pulmonary fibrosis. Although relatively little is known about the function and regulation of claudin tight junction proteins in the lung, new evidence suggests that environmental stimuli can influence claudin expression and alveolar barrier function in human disease. This review considers recent advances in the understanding of the role of claudins in the breakdown of the alveolar epithelial barrier in disease and in epithelial repair.
Collapse
Affiliation(s)
- James A Frank
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, USA.
| |
Collapse
|