1
|
Zhang W, Perry AM, Hamnvåg HM, Kitahara SK, Ondrejka SL, Kovach AE, Yuan J, Chew K, Davidson J, Bedell V, Stokke JL, Song JY. Genomic landscape of testicular follicular lymphoma is characterized by frequent 1p36/TNFRSF14 alterations. Blood Adv 2025; 9:814-817. [PMID: 39602674 PMCID: PMC11869950 DOI: 10.1182/bloodadvances.2024014002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Affiliation(s)
- Weiwei Zhang
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE
| | | | | | - Sumire K. Kitahara
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Sarah L. Ondrejka
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
| | - Alexandra E. Kovach
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Ji Yuan
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL
| | - Krystie Chew
- Department of Pathology, City of Hope, Duarte, CA
| | | | | | - Jamie L. Stokke
- Division of Hematology-Oncology, Children’s Hospital Los Angeles, Los Angeles, CA
- Division of Hematology-Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Joo Y. Song
- Department of Pathology, City of Hope, Duarte, CA
| |
Collapse
|
2
|
Bosch-Schips J, Parisi X, Climent F, Vega F. Bridging clinicopathologic features and genetics in follicular lymphoma: Towards enhanced diagnostic accuracy and subtype differentiation. Hum Pathol 2025; 156:105676. [PMID: 39490765 DOI: 10.1016/j.humpath.2024.105676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Follicular lymphoma (FL) is a neoplasm that originates from germinal center B cells and typically forms at least a partial follicular pattern. Approximately 85% of FL cases harbor the t(14;18)(q32;q21)/IGH::BCL2 which leads to the overexpression of BCL2. These cases are referred to as classic FL in the current World Health Organization classification [1]. These neoplasms often exhibit hallmark epigenetic deregulation due to recurrent mutations in genes such as KMT2D, CREBBP, and EZH2, with KMT2D and CREBBP considered founding events in FL lymphomagenesis. In contrast, about 15% of FL cases are negative for the t(14;18), which could present diagnostic challenges. These cases may lack the typical genetic markers and require careful pathological and molecular analysis for accurate diagnosis. This review aims to provide an up-to-date pathology resource on FL, focusing on the pathological and molecular characteristics of these neoplasms. We will detail the diagnostic criteria for FL and emphasize the importance of genetic and mutational analyses in accurately characterizing and distinguishing FL subtypes. Furthermore, we will propose methodologies and best practices for the diagnostic work-up of FL to enhance diagnostic accuracy.
Collapse
Affiliation(s)
- Jan Bosch-Schips
- Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Xenia Parisi
- Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Francisco Vega
- Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Nguyen AJ, King RL, Viswanatha DS, Peterson JF, Rahimi N, Artymiuk CJ, McPhail ED. A rare case of primary testicular follicular lymphoma in a pediatric patient. J Hematop 2025; 18:3. [PMID: 39862366 DOI: 10.1007/s12308-025-00619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Testicular follicular lymphoma (TFL) is an exceedingly rare lymphoma that typically occurs in young male patients and is now recognized as a distinct diagnostic entity in the International Consensus Classification. TFL shows some clinicopathologic and genetic overlap with pediatric-type follicular lymphoma (PTFL). We report a case of TFL occurring in an otherwise healthy 4-year-old boy who presented with painless scrotal swelling. Orchiectomy revealed a 1.5-cm left testicular mass. Histologic sections showed a dense lymphoid infiltrate with nodular/follicular architecture growing between the seminiferous tubules. The infiltrate was composed of CD20/PAX5-positive B-cells that coexpressed germinal center markers (CD10, BCL6, MEF2B); they were negative for BCL2. No BCL2 or BCL6 rearrangements and no TNFRSF14 deletion were detected by FISH. Chromosomal microarray analysis detected copy-neutral loss of heterozygosity (CN-LOH) at 1p36.33-p36.32 (region of TNFRSF14). Next-generation sequencing detected variants in GNA13, RHOA, and TNFRSF14. In conclusion, this case shows the classic clinical, pathologic, and genetic features of TFL and highlights the similarities to PTFL and the importance of distinguishing this entity from other subtypes of FL. Patients with TFL typically respond favorably to orchiectomy and chemotherapy and have excellent clinical outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Nina Rahimi
- Long Beach Memorial Medical Center, Long Beach, CA, USA
| | | | | |
Collapse
|
4
|
Laurent C, Cook JR. Diagnosis and Classification of Follicular Lymphoma and Related Entities. Adv Anat Pathol 2025:00125480-990000000-00136. [PMID: 39895407 DOI: 10.1097/pap.0000000000000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Follicular lymphoma (FL) is a mature B cell neoplasm classically characterized by B cells harboring the t(14;18) IGH::BCL2 leading to the overexpression of BCL2 in most cases. Conventional FL occurs in lymph nodes and typically shows a follicular B-cell proliferation expressing at least one germinal center marker. Two early lesions closely related to conventional FL are recognized as variants, namely in situ follicular neoplasia (ISFN), and duodenal-type follicular lymphoma (DTFL). FL lacking BCL2 rearrangement (BCL2-R negative) accounts for around 10% to 15% of FLs and constitutes a heterogeneous group of FLs. Most of these alternative forms of FL are considered as distinct entities separate from conventional FL in the 2022 International Consensus Classification. This review aims to summarize the key pathologic and diagnostic features of FL conventional and its alternative forms as well as further emphasize the increasing role of molecular studies in the diagnostic work-up.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, INSERM, France
| | - James R Cook
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
5
|
Choi JK, Quintanilla-Martinez L. Pediatric lymphomas: overview and diagnostic challenges. Virchows Arch 2025; 486:81-100. [PMID: 39707053 PMCID: PMC11782321 DOI: 10.1007/s00428-024-03980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/23/2024]
Abstract
Only 10% of new lymphoma diagnoses in the USA occur in children < 15 years. Although the same diagnostic criteria apply to both adult and pediatric lymphomas, there are important differences in some lymphoma subtypes. These differences are recognized by the World Health Organization (WHO) with the recent 2022 classification of pediatric tumors including pediatric hematopoietic tumors. Here, we review the WHO classification scheme for pediatric lymphomas and summarize the diagnostic criteria, recent genetic findings, and differences from their adult counterparts for some subtypes including those yet to be included as a definitive subtype. In general, there are differences in relatively frequency, genetic mutation, and prognosis with the pediatric counterpart often having better prognosis. Emerging B-cell lymphomas with recurrent gene alterations such as IRF4 rearrangement and 11q gain/loss chromosomal alterations will be reviewed. The overlapping pathological, clinical, and molecular features between pediatric-type follicular lymphoma (PTFL) and pediatric nodal marginal zone lymphoma (PNMZL) suggesting one disease with broad morphological spectrum will be discussed. The pathogenetic role of EBV in subclassifying Burkitt lymphoma is highlighted. The revised classification of the EBV-positive lymphoproliferative disorders in children is discussed. This review will focus on novel findings, areas of special interest, and diagnostic challenges in pediatric lymphomas.
Collapse
Affiliation(s)
- John Kim Choi
- Department of Pathology, The University of Alabama at Birmingham, WP P30N, 619 19Th Street South, Birmingham, AL, 35249-7331, USA.
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tuebingen and Comprehensive Cancer Center, University Hospital Tuebingen, Liebermeisterstr. 8, 72076, Tuebingen, Germany.
| |
Collapse
|
6
|
Albaldawy MJ, Ebaied T, Bin Harmal Al Shamsi HO, Nadaf A, Faruk Abbu RU. Adult-Onset Pediatric-Type Follicular Lymphoma of the Parotid Gland. Cureus 2024; 16:e76161. [PMID: 39840177 PMCID: PMC11747981 DOI: 10.7759/cureus.76161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2024] [Indexed: 01/23/2025] Open
Abstract
Pediatric-type follicular lymphoma (PTFL) is an extremely rare B-cell lymphoma that primarily affects children and young adults, typically in individuals under 25 years old, with a median age of 15 years. Here, we report a rare case of PTFL in a 27-year-old adult male who presented with a slow-growing mass near his left ear. Initial CT scans of the neck revealed two oval-shaped, smooth, well-defined, homogeneously enhancing soft tissue density lesions in the superficial lobe of the left parotid gland. A complete surgical excision was performed, and a postoperative ultrasound of the neck confirmed complete removal, with only hypoechoic changes observed in the parotid gland. Comprehensive immunohistochemical analysis showed CD20-positive B cells co-expressing germinal center markers CD10 and BCL6 but negative for BCL2 and cyclin D1. The Ki-67 proliferation index was notably elevated, indicating high cellular activity. Additional findings included MEF2B positivity, confirming the lymphoma diagnosis, and an immunoglobulin gene rearrangement, which demonstrated a monoclonal B-cell population consistent with a neoplastic process. CD21 staining further revealed distorted follicular dendritic cell networks and attenuated IgD-positive mantle. Fluorescence in situ hybridization (FISH) analysis showed no rearrangements in BCL2, IRF4, or BCL6, and any deletion in the 1p36 region (TNFRSF14 gene), ruling out other lymphoma types. Histologically, the nodules showed distorted secondary follicles with obscured germinal centers, confirming PTFL. At the three-month follow-up, the patient demonstrated satisfactory healing with no signs of recurrence. This case underscores the importance for oncologists to perform a thorough differential diagnosis of head and neck masses, as PTFL can present with characteristics similar to classical follicular lymphoma, IRF4-rearranged large B-cell lymphoma, pediatric nodal marginal zone lymphoma, and reactive follicular hyperplasia. A comprehensive diagnostic approach, including clinical, pathological, and immunohistochemical analyses, is essential for developing an accurate diagnosis and management plan for PTFL, especially in atypical adult presentations.
Collapse
Affiliation(s)
| | - Tamer Ebaied
- Department of ENT (Ear, Nose and Throat), Al Dhannah Hospital, Al Dhannah, ARE
| | | | - Ashraf Nadaf
- Department of Radiology, Al Dhannah Hospital, Al Dhannah, ARE
| | | |
Collapse
|
7
|
Li HG, Jiang XN, Xue T, Xin BB, Chen L, Li GX, Wang Q, Hou QQ, Cai X, Zhou XY, Li XQ. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma: additional evidence to support they are a single disease with variation in the histologic spectrum. Virchows Arch 2024; 485:889-900. [PMID: 39379519 PMCID: PMC11564197 DOI: 10.1007/s00428-024-03941-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Pediatric-type follicular lymphoma (PTFL) and pediatric nodal marginal zone lymphoma (PNMZL) are two rare indolent B-cell lymphomas with overlapping features. Recently, cases showing hybridizing features of PTFL and PNMZL have been reported. Herein, we retrospectively analyzed the clinicopathologic features of 59 patients, including 39 with PTFL, 5 with PNMZL, and 15 with mixed-type tumors (MTT). And next-generation sequencing analysis was performed on 3 PTFL, 2 PNMZL, and 2 MTT cases. In addition, previously published mutational data of 96 PTFLs, 25 PNMZLs, and 46 MTTs were also analyzed. There were 52 male and 7 female patients, with a median age of 17 years. Most patients (96.6%) had lymph node involvement in the head and neck region and were diagnosed with stage I disease. Among the 50 patients (85%) with telephone follow-up, 44 (88%) adopted a watch-and-wait strategy after surgical resection of the lesions. Only one PTFL patient experienced a relapse 6 months after diagnosis. Microscopically, not only the MTT cases showed a composite form of enlarged follicles and interfollicular lymphocytic proliferation producing a progressively transformed germinal center (PTGC) pattern, but also focal follicles with a PTGC-like pattern were observed in PTFL cases. Genetically, the most frequently mutated genes were TNFRSF14 (in 3 PTFLs and 2 MTTs), MAP2K1 (in 2 PTFLs, 1 PNMZL and 1 MTT), and IRF8 (in 2 MTTs and 1 PNMZL). Based on the similar or overlapping clinical, pathologic, and genetic features, PTFL and PNMZL are likely to represent two different histologic patterns of the same disease.
Collapse
Affiliation(s)
- Huan-Ge Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiang-Nan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Tian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Bei-Bei Xin
- Shanghai Rightongene Biotechnology Co., Ltd., Shanghai, 201403, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Gui-Xin Li
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qian Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Qin-Qin Hou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xu Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiao-Yan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Institute of Pathology, Fudan University, Shanghai, 200032, China
| | - Xiao-Qiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Wang H, Ye M, Jin X. Role of angiomotin family members in human diseases (Review). Exp Ther Med 2024; 27:258. [PMID: 38766307 PMCID: PMC11099588 DOI: 10.3892/etm.2024.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/23/2023] [Indexed: 05/22/2024] Open
Abstract
Angiomotin (Amot) family members, including Amot, Amot-like protein 1 (Amotl1) and Amot-like protein 2 (Amotl2), have been found to interact with angiostatins. In addition, Amot family members are involved in various physiological and pathological functions such as embryonic development, angiogenesis and tumorigenesis. Some studies have also demonstrated its regulation in signaling pathways such as the Hippo signaling pathway, AMPK signaling pathway and mTOR signaling pathways. Amot family members play an important role in neural stem cell differentiation, dendritic formation and synaptic maturation. In addition, an increasing number of studies have focused on their function in promoting and/or suppressing cancer, but the underlying mechanisms remain to be elucidated. The present review integrated relevant studies on upstream regulation and downstream signals of Amot family members, as well as the latest progress in physiological and pathological functions and clinical applications, hoping to offer important ideas for further research.
Collapse
Affiliation(s)
- Haoyun Wang
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Meng Ye
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
- Department of Radiotherapy, The First Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
9
|
Steidl C, Kridel R, Binkley M, Morton LM, Chadburn A. The pathobiology of select adolescent young adult lymphomas. EJHAEM 2023; 4:892-901. [PMID: 38024596 PMCID: PMC10660115 DOI: 10.1002/jha2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 12/01/2023]
Abstract
Lymphoid cancers are among the most frequent cancers diagnosed in adolescents and young adults (AYA), ranging from approximately 30%-35% of cancer diagnoses in adolescent patients (age 10-19) to approximately 10% in patients aged 30-39 years. Moreover, the specific distribution of lymphoid cancer types varies by age with substantial shifts in the subtype distributions between pediatric, AYA, adult, and older adult patients. Currently, biology studies specific to AYA lymphomas are rare and therefore insight into age-related pathogenesis is incomplete. This review focuses on the paradigmatic epidemiology and pathogenesis of select lymphomas, occurring in the AYA patient population. With the example of posttransplant lymphoproliferative disorders, nodular lymphocyte-predominant Hodgkin lymphoma, follicular lymphoma (incl. pediatric-type follicular lymphoma), and mediastinal lymphomas (incl. classic Hodgkin lymphoma, primary mediastinal large B cell lymphoma and mediastinal gray zone lymphoma), we here illustrate the current state-of-the-art in lymphoma classification, recent molecular insights including genomics, and translational opportunities. To improve outcome and quality of life, international collaboration in consortia dedicated to AYA lymphoma is needed to overcome challenges related to siloed biospecimens and data collections as well as to develop studies designed specifically for this unique population.
Collapse
Affiliation(s)
- Christian Steidl
- Centre for Lymphoid CancerBC CancerVancouverBritish ColumbiaCanada
| | - Robert Kridel
- Princess Margaret Cancer Centre ‐ University Health NetworkTorontoOntarioCanada
| | - Michael Binkley
- Department of Radiation OncologyStanford UniversityStanfordCaliforniaUSA
| | - Lindsay M. Morton
- Radiation Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Amy Chadburn
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
10
|
Salaverria I, Weigert O, Quintanilla-Martinez L. The clinical and molecular taxonomy of t(14;18)-negative follicular lymphomas. Blood Adv 2023; 7:5258-5271. [PMID: 37561599 PMCID: PMC10500559 DOI: 10.1182/bloodadvances.2022009456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
Follicular lymphoma (FL) is a neoplasm derived from germinal center B cells, composed of centrocytes and centroblasts, with at least a focal follicular growth pattern. The t(14;18) translocation together with epigenetic deregulation through recurrent genetic alterations are now recognized as the hallmark of FL. Nevertheless, FL is a heterogeneous disease, clinically, morphologically, and biologically. The existence of FL lacking the t(14;18) chromosomal alteration highlights the complex pathogenesis of FL, and indicates that there are alternative pathogenetic mechanisms that can induce a neoplasm with follicular center B-cell phenotype. Based on their clinical presentation, t(14;18)-negative FLs can be divided into 3 broad groups: nodal presentation, extranodal presentation, and those affecting predominantly children and young adults. Recent studies have shed some light into the genetic alterations of t(14;18)-negative FL. Within the group of t(14;18)-negative FL with nodal presentation, cases with STAT6 mutations are increasingly recognized as a distinctive molecular subgroup, often cooccurring with CREBBP and/or TNFRSF14 mutations. FL with BCL6 rearrangement shows clinicopathological similarities to its t(14;18)-positive counterpart. In contrast, t(14;18)-negative FL in extranodal sites is characterized mainly by TNFRSF14 mutations in the absence of chromatin modifying gene mutations. FL in children have a unique molecular landscape when compared with those in adults. Pediatric-type FL (PTFL) is characterized by MAP2K1, TNFRSF14, and/or IRF8 mutations, whereas large B-cell lymphoma with IRF4 rearrangement is now recognized as a distinct entity, different from PTFL. Ultimately, a better understanding of FL biology and heterogeneity should help to understand the clinical differences and help guide patient management and treatment decisions.
Collapse
Affiliation(s)
- Itziar Salaverria
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
| | - Oliver Weigert
- Laboratory for Experimental Leukemia and Lymphoma Research, Ludwig-Maximilians-University Hospital, Munich, Germany
- Department of Medicine III, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology and Comprehensive Cancer Center Tübingen, University Hospital Tübingen, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT “Image-guided and functionally Instructed Tumor therapies,” Eberhard-Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Zamò A, van den Brand M, Climent F, de Leval L, Dirnhofer S, Leoncini L, Ng SB, Ondrejka SL, Quintanilla-Martinez L, Soma L, Wotherspoon A. The many faces of nodal and splenic marginal zone lymphomas. A report of the 2022 EA4HP/SH lymphoma workshop. Virchows Arch 2023; 483:317-331. [PMID: 37656249 PMCID: PMC10542713 DOI: 10.1007/s00428-023-03633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Session 3 of the lymphoma workshop of the XXI joint meeting of the European Association for Haematopathology and the Society for Hematopathology took place in Florence, Italy, on September 22, 2022. The topics of this session were splenic and nodal marginal zone lymphomas, transformation in marginal zone lymphomas, and pediatric nodal marginal zone lymphomas and their differential diagnosis as well as related entities. Forty-two cases in these categories were submitted to the workshop, including splenic lymphomas (marginal zone and diffuse red pulp lymphomas), transformed marginal zone lymphomas (splenic and nodal), nodal marginal zone lymphomas with increased TFH-cells, and pediatric nodal marginal zone lymphomas. The case review highlighted some of the principal problems in the diagnosis of marginal zone lymphomas, including the difficulties in the distinction between splenic marginal zone lymphoma, splenic diffuse red pulp lymphoma, and hairy cell leukemia variant/splenic B-cell lymphoma with prominent nucleoli which requires integration of clinical features, immunophenotype, and morphology in blood, bone marrow, and spleen; cases of marginal zone lymphoma with markedly increased TFH-cells, simulating a T-cell lymphoma, where molecular studies (clonality and mutation detection) can help to establish the final diagnosis; the criteria for transformation of marginal zone lymphomas, which are still unclear and might require the integration of morphological and molecular data; the concept of an overlapping spectrum between pediatric nodal marginal zone lymphoma and pediatric-type follicular lymphoma; and the distinction between pediatric nodal marginal zone lymphoma and "atypical" marginal zone hyperplasia, where molecular studies are mandatory to correctly classify cases.
Collapse
Affiliation(s)
- Alberto Zamò
- Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany.
| | - Michiel van den Brand
- Pathology-DNA, Location Rijnstate Hospital, Wagnerlaan 55, 6815AD, Arnhem, The Netherlands.
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Fina Climent
- Department of Pathology, Hospital Universitari de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, Section of Pathology, University of Siena, Siena, Italy
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sarah L Ondrejka
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Lorinda Soma
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | | |
Collapse
|
12
|
Ren B, Chen Y, Bai X, Zheng J, Chang J, Jiang X, Xia Q, Zhang H. Case report: Clinicopathological and molecular characteristics of pediatric-type follicular lymphoma. Front Pediatr 2023; 11:1205384. [PMID: 37539011 PMCID: PMC10394512 DOI: 10.3389/fped.2023.1205384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Pediatric-type follicular lymphoma (PTFL) is a rare pediatric-type indolent B-cell lymphoma that clinicopathologically differs from adult lymphoma. Accurate diagnosis of PTFL, which is often challenging, is essential to avoid missed diagnosis, misdiagnosis, and overtreatment. To improve our understanding of PTFL, clinicopathological features, differential diagnosis, and molecular mutation characteristics of four patients of PTFL were analyzed using hematoxylin and eosin staining, immunohistochemistry, polymerase chain reaction, fluorescence in situ hybridization (FISH), and next-generation sequencing (NGS). A relevant literature review was also performed. All four PTFL patients were male, with ages of 6, 18, 13, and 15 years, and had St. Jude stage I or III. Microscopic results showed that the structure of the lymph nodes was destroyed; the tumor follicles were enlarged and irregular; medium-large blastoid cells with a consistent shape were visible in tumor follicles, and the nucleus was round or oval; and the "starry sky" pattern was easily observed. Tumor cells expressed CD20, PAX-5, BCL6, and CD10. None of the tumor cells expressed BCL2, CD3, CD5, MUM1, and CyclinD1. CD21 showed dilated growth of a follicular dendritic cell network in tumor follicles. EBER genes were negative in all cases. FISH testing also showed negative BCL2 gene breaks and IRF4 gene breaks in all cases. NGS detected 12 related mutant genes, including KMT2D, CD79B, GNA13, MYD88, PCLO, TCF3, IRF8, MAP2K1, FOXO1, POLE, INPP5D, and FAT4. Two of the four patients had an IRF8 gene mutation, and one patient had a dual mutation of the MAP2K1 gene. Our study revealed the unique clinicopathological features and molecular mutational characteristics of PTFL, consolidated our understanding of PTFL, and identified other rare mutant genes, which may further contribute to the study of the molecular mechanism and differential diagnosis of PTFL.
Collapse
Affiliation(s)
- Beibei Ren
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Pathological Diagnostic Antibody Engineering Research Center of Henan Province, Zhengzhou, China
| | - Yu Chen
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Pathological Diagnostic Antibody Engineering Research Center of Henan Province, Zhengzhou, China
| | - Xuanye Bai
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Pathological Diagnostic Antibody Engineering Research Center of Henan Province, Zhengzhou, China
| | - Jiawen Zheng
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Chang
- Medical Service Office, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangnan Jiang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Pathological Diagnostic Antibody Engineering Research Center of Henan Province, Zhengzhou, China
| | - He Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou, China
- Pathological Diagnostic Antibody Engineering Research Center of Henan Province, Zhengzhou, China
| |
Collapse
|
13
|
Louissaint A. Navigating the Heterogeneity of Follicular Lymphoma and its Many Variants: An Updated Approach to Diagnosis and Classification. Surg Pathol Clin 2023; 16:233-247. [PMID: 37149358 DOI: 10.1016/j.path.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Follicular lymphoma (FL) is a lymphoid neoplasm composed of follicle center (germinal center) B cells, with varying proportions of centrocytes and centroblasts, that usually has a predominantly follicular architectural pattern. Over the past decade, our understanding of FL has evolved significantly, with new recognition of several recently defined FL variants characterized by distinct clinical presentations, behaviors, genetic alterations, and biology. This manuscript aims to review the heterogeneity of FL and its variants, to provide an updated guide on their diagnosis and classification, and to describe how approaches to the histologic subclassification of classic FL have evolved in current classification schemes.
Collapse
Affiliation(s)
- Abner Louissaint
- Department of Pathology, Massachusetts General Hospital, 149 13th St, Charlestown, MA 02114, USA.
| |
Collapse
|
14
|
Xavier AC, Suzuki R, Attarbaschi A. Diagnosis and management of rare paediatric Non-Hodgkin lymphoma. Best Pract Res Clin Haematol 2023; 36:101440. [PMID: 36907633 DOI: 10.1016/j.beha.2023.101440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Mature B-cell lymphomas, (B- or T-cell) lymphoblastic lymphomas (LBL), and anaplastic large cell lymphoma (ALCL) correspond to about 90% of all non-Hodgkin lymphoma (NHL) cases occurring in children and adolescents. The remaining 10% encompass a complex group of entities characterized by low/very low incidences, paucity of knowledge in terms of underlying biology in comparison to their adult counterparts, and consequent lack of standardization of care, information on clinical therapeutic efficacy and long-term survival. At the Seventh International Symposium on Childhood, Adolescent and Young Adult NHL, organized on October 20-23, 2022, in New York City, New York, US, we had the opportunity to discuss clinical, pathogenetic, diagnostic, and treatment aspects of certain subtypes of rare B- or T-cell NHL and they will be the topic of this review.
Collapse
Affiliation(s)
- Ana C Xavier
- Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, 1600 7(th) Avenue South, Lowder 512 Birmingham, AL, 35233, USA.
| | - Ritsuro Suzuki
- Department of Hematology and Oncology, Shimane University, 89-1 En-ya Cho, Izumo, 693-8501, Japan.
| | - Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria; St. Anna Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.
| |
Collapse
|
15
|
Lee J, Han JH, Lee CH, Park HS, Min SK, Lee H, Cho U, Yoon SE, Kim SJ, Kim WS, Cho J. Comparison of histological and molecular features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma. Virchows Arch 2023; 482:849-858. [PMID: 36656392 DOI: 10.1007/s00428-023-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are pediatric B cell lymphomas with similar clinical characteristics but distinct histological features. We investigated the differences between pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma by comparing their histological and molecular characteristics. A total of 5 pediatric-type follicular lymphoma and 11 pediatric nodal marginal zone lymphoma patients were included in the study. In the histological review, 5 of the 16 cases showed overlapping morphological features of pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma; hence, they were reclassified as "mixed type." In molecular analysis, using panel-based massively parallel sequencing, MAP2K1, TNFRSF14, and IRF8 mutations were found in 6, 3, and 2 of the 11 pediatric nodal marginal zone lymphoma patients, respectively, and IRF8 mutation was found in one of the five pediatric-type follicular lymphoma patients. There were no significant differences in genetic alterations established from the histologically reclassified diagnosis as well as the initial diagnosis. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma showed morphological overlap in some cases, and no difference between the two was found upon molecular analysis. These findings suggest the possibility that pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are single entity pediatric B-cell lymphoma with broad morphological spectrum.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Pathology, Korea University Guro Hospital, Seoul, Korea.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea
| | - Jae-Ho Han
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Chang Hun Lee
- Department of Pathology, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Ho-Sung Park
- Department of Pathology, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju, Korea
| | - Soo Kee Min
- Department of Pathology, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Hojung Lee
- Department of Pathology, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Uiju Cho
- Department of Pathology, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, #81, Irwon-ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
16
|
Laurent C, Cook JR, Yoshino T, Quintanilla-Martinez L, Jaffe ES. Follicular lymphoma and marginal zone lymphoma: how many diseases? Virchows Arch 2023; 482:149-162. [PMID: 36394631 PMCID: PMC9852150 DOI: 10.1007/s00428-022-03432-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022]
Abstract
Follicular lymphoma (FL) and marginal zone lymphoma (MZL) are indolent mature B-cell neoplasms with variable clinical presentation and distinct histopathologic features. Recent advances in the biology and molecular characteristics of these lymphomas have further expanded our understanding of the heterogeneous nature of these lymphomas, with increasing recognition of specific disease entities within the broader categories of FL and MZL. Here, we discuss the conclusions of the 2022 International Consensus Classification of Mature Lymphoid Neoplasms (2022 ICC) dealing with FL, and review differences with the proposed WHO 5th Edition classification. We review issues related to grading and alternative forms of FL especially those lacking the genetic hallmark of FL, the t(14;18) chromosomal alteration. Among them, t(14;18)-negative CD23+ follicle center lymphoma has been proposed by the 2022 ICC as a provisional entity. Other follicle center-derived lymphomas such as pediatric-type follicular lymphoma, testicular follicular lymphoma, primary cutaneous follicle center lymphoma, and large B-cell lymphoma with IRF4 rearrangement are considered distinct entities separate from conventional FL. Importantly, large B-cell lymphoma with IRF4 rearrangement introduced as a provisional entity in the WHO 2017 is upgraded to a definite entity in the 2022 ICC. We also discuss diagnostic strategies for recognition of MZLs including splenic MZL, extranodal MZL (MALT lymphoma), and primary nodal MZL. The importance of molecular studies in the distinction among marginal zone lymphoma subtypes is emphasized, as well as their value in the differential diagnosis with other B-cell lymphomas.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Pathology, Toulouse University Hospital Center, Cancer Institute University of Toulouse-Oncopole, Toulouse, France
| | - James R. Cook
- Department of Laboratory Medicine, Robert J. Tomsich Institute of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH USA
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls Univesity of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tuebingen, Germany
| | - Elaine S. Jaffe
- National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
17
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Alnughmush A, Fakih RE, Mohammed S, Aljurf M. Pediatric-type follicular lymphoma: a short review. Int J Hematol Oncol 2022; 11:IJH41. [PMID: 36514787 PMCID: PMC9732916 DOI: 10.2217/ijh-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
Pediatric-type follicular lymphoma is an uncommon and newly recognized entity of lymphoid neoplasm commonly encountered in the young population. Despite its indolent clinical course and localized nodal involvement, it has been characterized by its high-grade histopathological features. The overlapping features between this disease and several entities have made approaching this unique entity significantly challenging, with all such features being reflected in the strict diagnostic criteria highlighted by the WHO 2016 lymphoid malignancy classification. Despite its characteristic high-grade histology, its cure rates have remained high, with relapse and transformation rarely occurring. Interestingly, several cases have achieved remission following nodal disease resection, possibly eliminating the need for chemotherapy and radiation and preventing long-term morbidities from later approaches in disease survivors.
Collapse
Affiliation(s)
- Ahmed Alnughmush
- Section of Hematology & Bone Marrow Transplant, King Faisal Specialist Hospital & Research Center, Riyadh, Kingdom of Saudi Arabia,Author for correspondence:
| | - Riad El Fakih
- Section of Hematology & Bone Marrow Transplant, King Faisal Specialist Hospital & Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shamayel Mohammed
- Department of Pathology, King Faisal Specialist Hospital & Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Mahmoud Aljurf
- Section of Hematology & Bone Marrow Transplant, King Faisal Specialist Hospital & Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Abstract
Pediatric-type follicular lymphoma (PTFL) and pediatric nodal marginal zone lymphoma (PNMZL) are rare pediatric-type indolent B-cell lymphomas (PedIBCL) that differ clinicopathologically from their adult counterparts. Accurate diagnosis is important to avoid overtreatment but is often challenging. The mutational landscape of PTFL is known and may aid diagnosis, but the genetic features of PNMZL are not well understood. We analyzed 21 cases of PedIBCL according to their clinicopathologic findings and classified them into PTFL (n=11), PNMZL (n=2), and "mixed type" tumors (n=8) showing ambiguous histology. We also analyzed 2 cases of adult B-cell lymphomas showing features of PedIBCL. Targeted sequencing of 121 lymphoma-related genes was performed. The median age of PedIBCL patients was 16 years (range: 3 to 47), and all but 1 PTFL patient were male. All patients presented with limited-stage disease, and only 1 relapsed. There were no significant differences in clinical features among the 3 PedIBCL groups. The most frequently mutated genes were MAP2K1 , TNFRSF14 , KMT2C , IRF8 , and NOTCH2 . The genetic features of all groups were similar to the established mutational landscape of PTFL. The 2 adult B-cell lymphomas cases also had MAP2K1 , TNFRSF14 , and IRF8 mutations, but the clinical features were not typical of PedIBCL. In summary, this study demonstrated that PTFL and PNMZL are similar diseases with overlapping clinical, pathologic, and genetic features; mixed type tumors can also occur. Atypical adult cases with similar histologic features were also observed. Therefore, the disease spectrum of PedIBCL may be much broader than is currently believed.
Collapse
|
20
|
Cytomorphologic features of pediatric-type follicular lymphoma on fine needle aspiration biopsy: case series and a review of the literature. J Am Soc Cytopathol 2022; 11:281-294. [PMID: 35843844 DOI: 10.1016/j.jasc.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Pediatric-type follicular lymphoma (PTFL) is a rare and recently recognized subtype of nodal follicular B-cell lymphoma. While significant recent progress has been made in understanding the morphologic, immunophenotypic, and molecular findings, there are only rare case reports describing the cytomorphologic features of PTFL. MATERIALS AND METHODS Four cases of PTFL initially evaluated on fine needle aspiration (FNA) biopsy were retrieved from our institutions' databases. The cytologic and subsequent surgical excision specimens were compared in terms of cytology, histology, immunophenotype, and molecular findings. RESULTS A constellation of cytologic features for PTFL are able to distinguish it from other cytomorphologic entities in the differential including: 1) the presence of large blastoid cells with fine chromatin and irregular nuclear membranes, 2) small/intermediate-sized lymphocytes with subtle nuclear membrane irregularities, 3) near complete absence of cytoplasmic vacuoles in lymphoid cells, 4) tingible body macrophages, 5) mitotic figures, 6) absence of a diffuse large cell component, 7) and no significant plasma cell population. CONCLUSIONS We present four cases of PTFL initially evaluated on FNA biopsy and define the cytomorphologic features of PTFL. FNA biopsy is presented as a practical tool for initial evaluation of this rare entity as part of a multimodal diagnostic approach, for which increased awareness among cytopathologists can ensure the appropriate triage of specimen studies necessary for the diagnosis. Additionally, we comprehensively review the current literature on PTFL and discuss the differential diagnosis on cytology, including potential pitfalls.
Collapse
|
21
|
PNMZL and PTFL: morphological variants with a common molecular profile - a unifying hypothesis. Blood Adv 2022; 6:4661-4674. [PMID: 35609565 PMCID: PMC9631662 DOI: 10.1182/bloodadvances.2022007322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
PNMZL has a molecular landscape characterized by low genomic complexity and frequent MAP2K1, TNFRSF14, and IRF8 alterations. The histologic and molecular features of PNMZL and PTFL suggest that they represent a morphologic spectrum of the same biologic entity.
Pediatric nodal marginal zone lymphoma (PNMZL) is an uncommon B-cell neoplasm affecting mainly male children and young adults. This indolent lymphoma has distinct characteristics that differ from those of conventional nodal marginal zone lymphoma (NMZL). Clinically, it exhibits overlapping features with pediatric-type follicular lymphoma (PTFL). To explore the differences between PNMZL and adult NMZL and its relationship to PTFL, a series of 45 PNMZL cases were characterized morphologically and genetically by using an integrated approach; this approach included whole-exome sequencing in a subset of cases, targeted next-generation sequencing, and copy number and DNA methylation arrays. Fourteen cases (31%) were diagnosed as PNMZL, and 31 cases (69%) showed overlapping histologic features between PNMZL and PTFL, including a minor component of residual serpiginous germinal centers reminiscent of PTFL and a dominant interfollicular B-cell component characteristic of PNMZL. All cases displayed low genomic complexity (1.2 alterations per case) with recurrent 1p36/TNFRSF14 copy number–neutral loss of heterozygosity alterations and copy number loss (11%). Similar to PTFL, the most frequently mutated genes in PNMZL were MAP2K1 (42%), TNFRSF14 (36%), and IRF8 (34%). DNA methylation analysis revealed no major differences between PTFL and PNMZL. Genetic alterations typically seen in conventional NMZL were absent in PNMZL. In summary, overlapping clinical, morphologic, and molecular findings (including low genetic complexity; recurrent alterations in MAP2K1, TNFRSF14, and IRF8; and similar methylation profiles) indicate that PNMZL and PTFL are likely part of a single disease with variation in the histologic spectrum. The term “pediatric-type follicular lymphoma with and without marginal zone differentiation” is suggested.
Collapse
|
22
|
Mason EF, Kovach AE. Update on Pediatric and Young Adult Mature Lymphomas. Clin Lab Med 2021; 41:359-387. [PMID: 34304770 DOI: 10.1016/j.cll.2021.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
After acute leukemia and brain and central nervous system tumors, mature lymphomas represent the third most common cancer in pediatric patients. Non-Hodgkin lymphoma accounts for approximately 60% of lymphoma diagnoses in children, with the remainder representing Hodgkin lymphoma. Among non-Hodgkin lymphomas in pediatric patients, aggressive lymphomas, such as Burkitt lymphoma, diffuse large B-cell lymphoma, and anaplastic large cell lymphoma, predominate. This article summarizes the epidemiologic, histopathologic, and molecular features of selected mature systemic B-cell and T-cell lymphomas encountered in this age group.
Collapse
Affiliation(s)
- Emily F Mason
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, 4603A TVC, Nashville, TN 37232-5310, USA.
| | - Alexandra E Kovach
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, 4650 Sunset Boulevard, Mailstop #32, Los Angeles, CA 90027, USA
| |
Collapse
|
23
|
Point Mutation Specific Antibodies in B-Cell and T-Cell Lymphomas and Leukemias: Targeting IDH2, KRAS, BRAF and Other Biomarkers RHOA, IRF8, MYD88, ID3, NRAS, SF3B1 and EZH2. Diagnostics (Basel) 2021; 11:diagnostics11040600. [PMID: 33801781 PMCID: PMC8065453 DOI: 10.3390/diagnostics11040600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022] Open
Abstract
B-cell and T-cell lymphomas and leukemias often have distinct genetic mutations that are diagnostically defining or prognostically significant. A subset of these mutations consists of specific point mutations, which can be evaluated using genetic sequencing approaches or point mutation specific antibodies. Here, we describe genes harboring point mutations relevant to B-cell and T-cell malignancies and discuss the current availability of these targeted point mutation specific antibodies. We also evaluate the possibility of generating novel antibodies against known point mutations by computationally assessing for chemical and structural features as well as epitope antigenicity of these targets. Our results not only summarize several genetic mutations and identify existing point mutation specific antibodies relevant to hematologic malignancies, but also reveal potential underdeveloped targets which merit further study.
Collapse
|
24
|
Johann PD. Invited Review: Dysregulation of chromatin remodellers in paediatric brain tumours - SMARCB1 and beyond. Neuropathol Appl Neurobiol 2021; 46:57-72. [PMID: 32307752 DOI: 10.1111/nan.12616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022]
Abstract
Mutations in chromatin remodelling genes occur in approximately 25% of all human tumours (Kadoch et al. Nat Genet 45: 592-601, 2013). The spectrum of alterations is broad and comprises single nucleotide variants, insertion/deletions and more complex structural variations. The single most often affected remodelling complex is the SWI/SNF complex (SWItch/sucrose non-fermentable). In the field of paediatric neuro-oncology, the spectrum of affected genes implicated in epigenetic remodelling is narrower with SMARCB1 and SMARCA4 being the most frequent. The low mutation frequencies in many of the SWI/SNF mutant entities underline the fact that perturbed chromatin remodelling is the most salient factor in tumourigenesis and could thus be a potential therapeutic opportunity. Here, I review the genetic basis of aberrant chromatin remodelling in paediatric brain tumours and discuss their impact on the epigenome in the respective entities, mainly medulloblastomas and rhabdoid tumours.
Collapse
Affiliation(s)
- P D Johann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Research Consortium (DKTK), Heidelberg, Germany.,Department of Paediatric Haematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
25
|
Attarbaschi A, Abla O, Arias Padilla L, Beishuizen A, Burke GAA, Brugières L, Bruneau J, Burkhardt B, d'Amore ESG, Klapper W, Kontny U, Pillon M, Taj M, Turner SD, Uyttebroeck A, Woessmann W, Mellgren K. Rare non-Hodgkin lymphoma of childhood and adolescence: A consensus diagnostic and therapeutic approach to pediatric-type follicular lymphoma, marginal zone lymphoma, and nonanaplastic peripheral T-cell lymphoma. Pediatr Blood Cancer 2020; 67:e28416. [PMID: 32452165 DOI: 10.1002/pbc.28416] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Pediatric-type follicular (PTFL), marginal zone (MZL), and peripheral T-cell lymphoma (PTCL) account each for <2% of childhood non-Hodgkin lymphoma. We present clinical and histopathological features of PTFL, MZL, and few subtypes of PTCL and provide treatment recommendations. For localized PTFL and MZL, watchful waiting after complete resection is the therapy of choice. For PTCL, therapy is subtype-dependent and ranges from a block-like anaplastic large cell lymphoma (ALCL)-derived and, alternatively, leukemia-derived therapy in PTCL not otherwise specified and subcutaneous panniculitis-like T-cell lymphoma to a block-like mature B-NHL-derived or, preferentially, ALCL-derived treatment followed by hematopoietic stem cell transplantation in first remission in hepatosplenic and angioimmunoblastic T-cell lymphoma.
Collapse
Affiliation(s)
- Andishe Attarbaschi
- Department of Pediatric Hematology and Oncology, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Oussama Abla
- Division of Hematology and Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, Canada
| | - Laura Arias Padilla
- Department of Pediatric Hematology and Oncology, University of Münster, Münster, Germany
| | - Auke Beishuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - G A Amos Burke
- Department of Pediatric Hematology and Oncology, Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Laurence Brugières
- Department of Pediatric and Adolescent Oncology, Gustave-Roussy Cancer Center, Paris-Saclay University, Villejuif, France
| | - Julie Bruneau
- Department of Pathology, Necker Enfants Maladies Hospital, Paris, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University of Münster, Münster, Germany
| | | | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, University of Kiel, Kiel, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics and Adolescent Medicine, University Medical Center, Aachen, Germany
| | - Marta Pillon
- Department of Pediatric Hematology and Oncology, University of Padova, Padova, Italy
| | - Mary Taj
- Department of Pediatric Hematology and Oncology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, Cambridge, United Kingdom.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospital Leuven, Leuven, Belgium
| | - Wilhelm Woessmann
- Department of Pediatric Hematology and Oncology, University Hospital Hamburg, Eppendorf, Hamburg, Germany
| | - Karin Mellgren
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and Adolescents, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Patel RR, Ramkissoon SH, Ross J, Weintraub L. Tumor mutational burden and driver mutations: Characterizing the genomic landscape of pediatric brain tumors. Pediatr Blood Cancer 2020; 67:e28338. [PMID: 32386112 DOI: 10.1002/pbc.28338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tumor mutational burden (TMB) and driver mutations are potential biomarkers to guide targeted therapy selection. Malignant gliomas with high TMB in children may preferentially benefit from treatment with immune checkpoint inhibitors (ICPIs). Higher TMB may relate to lower incidence of driver mutations, but this relationship has not been studied in pediatric brain tumors. PROCEDURE Comprehensive genomic profiling was performed on 723 pediatric (≤21 years) brain tumor samples using DNA extracted from formalin-fixed paraffin-embedded tissue. TMB was calculated as mutations per megabase and categorized as low (0-6), intermediate (6-20), or high (>20). Analysis included 80 clinically relevant driver mutations; genomic alterations known to confer a selective growth advantage. RESULTS Of 723 brain tumors, TMB was low in 91.8%, intermediate in 6.1%, and high in 2.1%. In the high TMB cohort, 93% of tumors harbored a driver mutation; 70% and 63% in the intermediate and low TMB cohorts, respectively (P < 0.05). However, when excluding tumor suppressor genes, high TMB tumors had a decreased incidence of driver mutations (P < 0.001). BRAF alterations were not identified in high TMB tumors, but were enriched in low TMB tumors (P < 0.01). Conversely, there was an association between high TMB tumors and TP53 mutations (P < 10-13 ). Of the 15 tumors with high TMB, 14 were high-grade gliomas and 13 had alterations in TP53. Three homozygous mismatch repair deletions identified were associated with a higher TMB (P < 0.01). CONCLUSIONS Specific driver mutations appear to have a relationship with TMB. These represent populations in which ICPIs may be more or less effective.
Collapse
Affiliation(s)
- Roshal R Patel
- Department of Pediatric Hematology/Oncology, Albany Medical College, Albany Medical Center, Albany, New York
| | - Shakti H Ramkissoon
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Morrisville, North Carolina.,Department of Pathology, Wake Forest School of Medicine, Wake Forest Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Jeffrey Ross
- Pathology and Diagnostic Medicine, Foundation Medicine, Inc., Cambridge, Massachusetts
| | - Lauren Weintraub
- Department of Pediatric Hematology/Oncology, Albany Medical Center, Albany, New York
| |
Collapse
|
27
|
Scientific Advances and the Evolution of Diagnosis, Subclassification and Treatment of Lymphoma. Arch Med Res 2020; 51:749-764. [PMID: 32553461 DOI: 10.1016/j.arcmed.2020.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022]
Abstract
The diagnosis of lymphoma has evolved tremendously over time. Initially, diagnosis of lymphoma was largely based on morphology alone. Over time, immunophenotyping using flow cytometry and immunohistochemistry, and then in situ hybridization, have contributed dramatically to the pathologist's ability to recognize, diagnose and subclassify lymphomas more precisely. In recent years, cytogenetic and molecular genetic techniques have developed that allow evaluation of abnormalities in lymphomas, leading to an understanding of their pathogenesis and opening the door to targeted therapies that will lead to better outcomes for lymphoma patients.
Collapse
|
28
|
Novel IRF8 and PD-L1 molecular aberrations in systemic EBV-positive T-cell lymphoma of childhood. HUMAN PATHOLOGY: CASE REPORTS 2020. [DOI: 10.1016/j.ehpc.2020.200356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Shanmugam V, Kim AS. Lymphomas. Genomic Med 2020. [DOI: 10.1007/978-3-030-22922-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Randall C, Fedoriw Y. Pathology and diagnosis of follicular lymphoma and related entities. Pathology 2019; 52:30-39. [PMID: 31791624 DOI: 10.1016/j.pathol.2019.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Follicular lymphoma (FL) is an indolent, mature B-cell neoplasm classically characterised by the t(14;18)(q32;q21) with constitutive overexpression of the anti-apoptotic protein, BCL2. Most cases present in older adults with slowly progressive lymphadenopathy and follow an indolent clinical course. Typical morphology shows an expansile follicular proliferation with tumour expression of germinal centre markers, and bone marrow involvement at diagnosis is frequent. However, in the recent past, efforts to understand the biological and clinical heterogeneity of FL has effected significant change to the diagnostic approach. While morphological grade, assessed by enumerating large 'centroblasts' in the neoplastic follicles, generally correlates with outcome in systemic nodal FL, variants with high-grade morphology but indolent clinical behaviour have been identified. Given the clinical implications of these FL variants, knowledge of their clinical and histopathological defining features is of paramount importance to the pathologist. Furthermore, as with many areas of diagnostic oncology, precursors to FL have been identified and described with measurable rates of progression to bona fide lymphoma. Accurate diagnosis of these early lesions can often prevent unnecessary therapy and guide appropriate monitoring for disease progression. This review aims to summarise these key pathological and diagnostic features of FL. We further highlight the biological underpinnings of FL that will likely affect the classification, diagnosis, and treatment of patients with lymphoma.
Collapse
Affiliation(s)
- Cara Randall
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of North Carolina, NC Cancer Hospital, Chapel Hill, NC, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of North Carolina, NC Cancer Hospital, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
32
|
Agostinelli C, Akarca AU, Ramsay A, Rizvi H, Rodriguez-Justo M, Pomplun S, Proctor I, Sabattini E, Linch D, Daw S, Pittaluga S, Pileri SA, Jaffe ES, Quintanilla-Martinez L, Marafioti T. Novel markers in pediatric-type follicular lymphoma. Virchows Arch 2019; 475:771-779. [PMID: 31686194 PMCID: PMC6881426 DOI: 10.1007/s00428-019-02681-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to review the histopathological, phenotypic, and molecular characteristics of pediatric-type follicular lymphoma (PTFL) and to assess the diagnostic value of novel immunohistochemical markers in distinguishing PTFL from follicular hyperplasia (FH). A total of 13 nodal PTFLs were investigated using immunohistochemistry, fluorescence in situ hybridization (FISH), and PCR and were compared with a further 20 reactive lymph nodes showing FH. Morphologically, PTFL cases exhibited a follicular growth pattern with irregular lymphoid follicles in which the germinal centers were composed of numerous blastoid cells showing a starry-sky appearance. Immunohistochemistry highlighted preserved CD10 (13/13) and BCL6 (13/13) staining, CD20 (13/13) positivity, a K light chain predominance (7/13), and partial BCL2 expression in 6/13 cases (using antibodies 124, E17, and SP66). The germinal center (GC)–associated markers stathmin and LLT-1 were positive in most of the cases (12/13 and 12/13, respectively). Interestingly, FOXP-1 was uniformly positive in PTFL (12/13 cases) in contrast to reactive GCs in FH, where only a few isolated positive cells were observed. FISH revealed no evidence of BCL2, BCL6, or MYC rearrangements in the examined cases. By PCR, clonal immunoglobulin gene rearrangements were detected in 100% of the tested PTFL cases. Our study confirmed the unique morphological and immunophenotypic features of PTFL and suggests that FOXP-1 can represent a novel useful diagnostic marker in the differential diagnosis between PTFL and FH.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Ayse U Akarca
- Department of Pathology, University College London, London, UK
| | - Alan Ramsay
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Hasan Rizvi
- Department of Cellular Pathology, Barts Health NHS Trust, London, UK
| | - Manuel Rodriguez-Justo
- Department of Pathology, University College London, London, UK.,Department of Cellular Pathology, University College Hospital London, London, UK
| | - Sabine Pomplun
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Ian Proctor
- Department of Cellular Pathology, University College Hospital London, London, UK
| | - Elena Sabattini
- Haematopathology Unit, Department of Experimental Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - David Linch
- Department of Haematology, University College London Cancer Institute, London, UK
| | - Stephen Daw
- Children and Young People's Cancer Service, University College Hospital London, London, UK
| | - Stefania Pittaluga
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | - Stefano A Pileri
- Division of Haematopathology, European Institute of Oncology, University Hospital of Tübingen, Institute of Pathology, Tübingen, Germany
| | - Elaine S Jaffe
- Haematology section, Laboratory of Pathology, Center for Cancer Research National Cancer Institute, Bethesda, MD, USA
| | | | - Teresa Marafioti
- Department of Pathology, University College London, London, UK. .,Department of Cellular Pathology, University College Hospital London, London, UK.
| |
Collapse
|
33
|
Abstract
RATIONALE Pediatric-type follicular lymphoma (PTFL) is a rare neoplasm with features that differ from those of adult-type follicular lymphoma. Compared to patients with adult-type follicular lymphoma, PTFL patients often show an excellent response. Preoperative diagnosis is challenging and, therefore, an accurate diagnosis is based on the findings of postoperative pathological examination and immunohistochemistry. PATIENT CONCERNS A 13-year-old boy presented with a slow-growing mass on the right side of his neck. DIAGNOSES The patient was diagnosed with PTFL based on the findings of histopathological examination and immunohistochemistry. INTERVENTION The mass was completely resected. OUTCOMES After 12 months of postoperative follow-up, the patient achieved good recovery without recurrence. LESSONS The optimal treatment for PTFL has not yet been defined. However, patients with PTFL always show satisfactory prognoses, regardless of treatment strategy (targeted radiotherapy, multiagent chemotherapy, or "watch and wait" strategy). Clinically, pathological and immunohistochemical analyses are necessary in the diagnoses of PTFL cases, especially for distinguishing PTFL from reactive follicular hyperplasia, to avoid unnecessary treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province
- Graduate Department, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Shuai Sun
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province
| | - Biru Zhang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province
- Graduate Department, Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province
- Graduate Department, Anhui Medical University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
34
|
Woessmann W, Quintanilla-Martinez L. Rare mature B-cell lymphomas in children and adolescents. Hematol Oncol 2019; 37 Suppl 1:53-61. [PMID: 31187530 DOI: 10.1002/hon.2585] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pediatric-type follicular lymphoma (PTFL), pediatric nodal marginal zone lymphoma (pnMZL), and large B-cell lymphoma (LBCL) with IRF4 rearrangement have been introduced into the current World Health Organization (WHO) classification. They account for 5% to 10% of mature B-cell lymphomas in children and adolescents. Both PTFL and pnMZL predominantly affect male adolescents and usually present with localized lymphadenopathy in the head and neck region. The cells within the follicles of PTFL typically show high-grade cytology, IGH monoclonality and lack the t(14;18) chromosomal alteration. In contrast, pnMZL is characterized by progressive transformation of germinal center (PTGC)-like features and interfollicular proliferation of the cells with expansion of the marginal zones with diffuse areas. Watch and wait after complete resection seems an adequate therapy with chemotherapy restricted to incompletely resected disease. All children with PTFL and pnMZL reported, so far, survived. B-cell lymphomas presenting in the Waldeyer's ring are characterized by the expression of IRF4/MUM1 and often associated with IRF4 rearrangements. Because of the frequent diffuse component, treatment often follows current protocols for mature B-NHL. The prognosis is excellent.
Collapse
Affiliation(s)
- Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
35
|
Du XY, Huang R, Cao L, Wu W, Wang Z, Zhu HY, Wang L, Fan L, Xu W, Li JY. [Clinical observation of five pediatric-type follicular lymphoma in adult]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:393-397. [PMID: 31207704 PMCID: PMC7342233 DOI: 10.3760/cma.j.issn.0253-2727.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/02/2022]
Abstract
Objective: To investigate the characteristics in pathological diagnosis, clinical features, treatment and prognosis of adult patients with pediatric-type follicular lymphoma (PTFL) . Methods: The clinical and pathological features, laboratory examination, diagnosis and treatment, follow-up results of 5 adult PTFL patients admitted in Jiangsu Province Hospital were retrospectively analyzed, and literature review was conducted in combination with related reports. Results: All 5 patients developed PTFL in their adulthood with a median age of 22 years old (15-33 years) . The initial inanifestation of the disease was local painless lymphadenopathy with no fever, night sweats, emaciation or other systemic B symptoms. Pathological characteristics including typical large follicular structures and high proliferation index were found. Meanwhile, additional clonal rearrangement of immunoglobulin heavy chain gene was observed. However, there was no BCL-2 expression in histochemistry as well as BCL-2 gene abnormality in fluorescence in situ hybridization among these PTFL patients. These adult PTFL patients were all in stage Ⅰ-Ⅱ of the disease. For treatment, they were only treated with local surgical excision after diagnosis while didn't receive subsequent local radiotherapy or systemic immunochemotherapy. During a median follow-up of 27 months, the 5 cases of PTFL kept in a state of sustained complete remission. Conclusion: Adult-onset PTFL is characterized by high pathological proliferation index, while no BCL-2 expression or BCL-2 gene abnormality. Besides, PTFL is clinically manifested as a localized disease that can achieve a quite good prognosis through local surgical intervention. The aforementioned attributes of PTFL are distinctly different from classic adult follicular lymphoma.
Collapse
Affiliation(s)
- X Y Du
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lovisa F, Binatti A, Coppe A, Primerano S, Carraro E, Pillon M, Pizzi M, Guzzardo V, Buffardi S, Porta F, Farruggia P, De Santis R, Bulian P, Basso G, Lazzari E, d'Amore ESG, Bortoluzzi S, Mussolin L. A high definition picture of key genes and pathways mutated in pediatric follicular lymphoma. Haematologica 2019; 104:e406-e409. [PMID: 30819919 DOI: 10.3324/haematol.2018.211631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Federica Lovisa
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova.,Istituto di Ricerca Pediatrica Città della Speranza, Padova
| | - Andrea Binatti
- Department of Molecular Medicine, University of Padova, Padova
| | - Alessandro Coppe
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova.,Department of Molecular Medicine, University of Padova, Padova
| | - Simona Primerano
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova.,Istituto di Ricerca Pediatrica Città della Speranza, Padova
| | - Elisa Carraro
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova
| | - Marta Pillon
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padova
| | - Vincenza Guzzardo
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padova
| | | | | | | | | | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, IRCCS Centro di Riferimento Oncologico, Aviano
| | - Giuseppe Basso
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova.,Istituto di Ricerca Pediatrica Città della Speranza, Padova
| | - Elena Lazzari
- Department of Pathological Anatomy, San Bortolo Hospital, Vicenza, Italy
| | | | | | - Lara Mussolin
- Clinic of Pediatric Onco-Hematology, Department of Women's and Children's Health, University of Padova, Padova .,Istituto di Ricerca Pediatrica Città della Speranza, Padova
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW We review the genetic foundations of different rare lymphomas to examine their shared origins. These data indicate the potential application of genomics to improve the diagnosis and treatment of these rare diseases. RECENT FINDINGS Next generation sequencing technologies have provided an important window into the genetic underpinnings of lymphomas. A growing body of evidence indicates that although some genetic alterations are specific to certain diseases, others are shared across different lymphomas. Many such genetic events have already demonstrated clinical utility, such as BRAF V600E that confers sensitivity to vemurafenib in patients with hairy cell leukemia. SUMMARY The rareness of many lymphoma subtypes makes the conduct of clinical trials and recruitment of significant numbers of patients impractical. However, a knowledge of the shared genetic origins of these rare lymphomas has the potential to inform 'basket' clinical trials in which multiple lymphoma subtypes are included. These trials would include patients based on the presence of alterations in targetable driver genes. Such approaches would be greatly strengthened by a systematic assessment of significant patient numbers from each subtype using next generation sequencing.
Collapse
|
38
|
Nagy A, Bhaduri A, Shahmarvand N, Shahryari J, Zehnder JL, Warnke RA, Mughal T, Ali S, Ohgami RS. Next-generation sequencing of idiopathic multicentric and unicentric Castleman disease and follicular dendritic cell sarcomas. Blood Adv 2018; 2:481-491. [PMID: 29496669 PMCID: PMC5851414 DOI: 10.1182/bloodadvances.2017009654] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Castleman disease (CD) is a rare lymphoproliferative disorder subclassified as unicentric CD (UCD) or multicentric CD (MCD) based on clinical features and the distribution of enlarged lymph nodes with characteristic histopathology. MCD can be further subtyped based on human herpes virus 8 (HHV8) infection into HHV8-associated MCD, HHV8-/idiopathic MCD (iMCD), and polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin change (POEMS)-associated MCD. In a subset of cases of UCD, an associated follicular dendritic cell sarcoma (FDCS) may be seen. Although numerous reports of the clinical and histologic features of UCD, MCD, and FDCS exist, an understanding of the genetic and epigenetic landscape of these rare diseases is lacking. Given this paucity of knowledge, we analyzed 15 cases of UCD and 3 cases of iMCD by targeted next-generation sequencing (NGS; 405 genes) and 3 cases of FDCS associated with UCD hyaline vascular variant (UCD-HVV) by whole-exome sequencing. Common amplifications of ETS1, PTPN6, and TGFBR2 were seen in 1 iMCD and 1 UCD case; the iMCD case also had a somatic DNMT3A L295Q mutation. This iMCD patient also showed clinicopathologic features consistent with a specific subtype known as Castleman-Kojima disease (thrombocytopenia, anasarca, fever, reticulin fibrosis, and organomegaly [TAFRO] clinical subtype). Additionally, 1 case of UCD-HVV showed amplification of the cluster of histone genes on chromosome 6p. FDCS associated with UCD-HVV showed mutations and copy number changes in known oncogenes, tumor suppressors, and chromatin structural-remodeling proteins.
Collapse
Affiliation(s)
- Alexandra Nagy
- Department of Pathology, Stanford University, Stanford, CA
| | - Aparna Bhaduri
- Department of Regeneration Medicine, University of California San Francisco, San Francisco, CA
| | | | | | | | - Roger A Warnke
- Department of Pathology, Stanford University, Stanford, CA
| | - Tariq Mughal
- Foundation Medicine Inc, Cambridge, MA; and
- Department of Medicine, Tufts University Medical Center, Boston, MA
| | - Siraj Ali
- Foundation Medicine Inc, Cambridge, MA; and
| | | |
Collapse
|
39
|
A pediatric-type follicular lymphoma with marginal zone and monotypic intracytoplasmic plasmacytic differentiation. HUMAN PATHOLOGY: CASE REPORTS 2018. [DOI: 10.1016/j.ehpc.2017.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
40
|
Pathogenesis of follicular lymphoma. Best Pract Res Clin Haematol 2017; 31:2-14. [PMID: 29452662 DOI: 10.1016/j.beha.2017.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022]
Abstract
Follicular lymphoma (FL) is presented as a germinal centre B cell lymphoma that is characterized by an indolent clinical course, but remains - paradoxically - largely incurable to date. The last years have seen significant progress in our understanding of FL lymphomagenesis, which is a multi-step process beginning in the bone marrow with the hallmark t(14;18)(q32;q21) translocation. The pathobiology of FL is complex and combines broad somatic changes at the level of both the genome and the epigenome, the latter evidenced by highly recurrent mutations in chromatin-modifying genes such as KMT2D and CREBBP. While the importance of the FL microenvironment has since long been well understood, it has become evident that somatic lesions within tumour cells re-educate normal immune and stromal cells to their advantage. Enhanced understanding of FL pathogenesis is currently leading to refined therapeutic targeting of perturbed biology, paving the way for precision medicine in this lymphoma subtype.
Collapse
|
41
|
Lv M, Shen Y, Yang J, Li S, Wang B, Chen Z, Li P, Liu P, Yang J. Angiomotin Family Members: Oncogenes or Tumor Suppressors? Int J Biol Sci 2017; 13:772-781. [PMID: 28656002 PMCID: PMC5485632 DOI: 10.7150/ijbs.19603] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022] Open
Abstract
Angiomotin (Amot) family contains three members: Amot (p80 and p130 isoforms), Amot-like protein 1 (Amotl1), and Amot-like protein 2 (Amotl2). Amot proteins play an important role in tube formation and migration of endothelial cells and the regulation of tight junctions, polarity, and epithelial-mesenchymal transition in epithelial cells. Moreover, these proteins regulate the proliferation and migration of cancer cells. In most cancers, Amot family members promote the proliferation and invasion of cancer cells, including breast cancer, osteosarcoma, colon cancer, prostate cancer, head and neck squamous cell carcinoma, cervical cancer, liver cancer, and renal cell cancer. However, in glioblastoma, ovarian cancer, and lung cancer, Amot inhibits the growth of cancer cells. In addition, there are controversies on the regulation of Yes-associated protein (YAP) by Amot. Amot promotes either the internalization of YAP into the nucleus or the retention of YAP in the cytoplasm of different cell types. Moreover, Amot regulates the AMPK, mTOR, Wnt, and MAPK signaling pathways. However, it is unclear whether Amot is an oncogene or a tumor suppressor gene in different cellular processes. This review focuses on the multifunctional roles of Amot in cancers.
Collapse
Affiliation(s)
- Meng Lv
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Yanwei Shen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Jiao Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Shuting Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Biyuan Wang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Zheling Chen
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Pan Li
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| | - Peijun Liu
- Center for Translational Medicine, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Yang
- Department of Oncology, the First Affiliated Hospital of Xian Jiaotong University, Xi'an, Shaanxi Province ,710061, P.R. China
| |
Collapse
|
42
|
Mutations of MAP2K1 are frequent in pediatric-type follicular lymphoma and result in ERK pathway activation. Blood 2017; 130:323-327. [PMID: 28533310 DOI: 10.1182/blood-2017-03-776278] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/13/2017] [Indexed: 12/16/2022] Open
Abstract
Pediatric-type follicular lymphoma (PTFL) is a B-cell lymphoma with distinctive clinicopathological features. Recently, recurrent genetic alterations of potential importance for its pathogenesis that disrupt pathways associated with the germinal center reaction (TNFRSF14, IRF8), immune escape (TNFRSF14), and anti-apoptosis (MAP2K1) have been described. In an attempt to shed more light onto the pathogenesis of PTFL, an integrative analysis of these mutations was undertaken in a large cohort of 43 cases previously characterized by targeted next-generation sequencing and copy number array. Mutations in MAP2K1 were found in 49% (20/41) of the cases, second in frequency to TNFRSF14 alterations (22/41; 54%), and all together were present in 81% of the cases. Immunohistochemical analysis of the MAP2K1 downstream target extracellular signal-regulated kinase demonstrated its phosphorylation in the evaluable cases and revealed a good correlation with the allelic frequency of the MAP2K1 mutation. The IRF8 p.K66R mutation was present in 15% (6/39) of the cases and was concomitant with TNFRSF14 mutations in 4 cases. This hot spot seems to be highly characteristic for PTFL. In conclusion, TNFRSF14 and MAP2K1 mutations are the most frequent genetic alterations found in PTFL and occur independently in most cases, suggesting that both mutations might play an important role in PTFL lymphomagenesis.
Collapse
|
43
|
Pediatric-type Follicular Lymphoma and Pediatric Nodal Marginal Zone Lymphoma: Recent Clinical, Morphologic, Immunophenotypic, and Genetic Insights. Adv Anat Pathol 2017; 24:128-135. [PMID: 28277421 DOI: 10.1097/pap.0000000000000144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma are 2 of the rarest B-cell lymphomas. Although they are both predominantly seen in children, they can manifest in the adult population as well. Our understanding of these lymphomas has advanced rapidly in recent years such that we not only have a firm grasp of the morphologic and immunophenotypic findings, but also have a deeper insight into critical genetic and molecular pathways of these diseases. This review will cover the clinical and pathologic characteristics, treatment, prognosis, and important differential diagnoses of these entities.
Collapse
|