1
|
Lebacle C, Pooli A, Shuch B, Rao N, Chamie K, Kroeger N, Faiena I, Liu S, Wood EL, Belldegrun A, Drakaki A, Pantuck AJ. Gain of Chromosome 5q Predicts a Favorable Prognosis in Localized Renal Cell Carcinoma. Cancer Invest 2024; 42:97-103. [PMID: 38314786 DOI: 10.1080/07357907.2024.2308172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Approximately 65% of renal cell carcinomas (RCC) are diagnosed at a localized stage. We investigated the chromosome 5q gain impact on disease-free survival (DFS) in RCC patients. Overall, 676 patients with stages 1-2 RCC and having cytogenetic analysis were included. Gain of 5q was observed in 108 patients, more frequently in clear cell (ccRCC) than non-clear cell tumors. Gain of 5q is likely an independent prognostic factor since the concerned patients had a decreased recurrence risk in stages 1-2 RCC, confirmed in multivariable analysis. Detecting 5q gain could enhance recurrence risk assessment, allowing tailored post-surgery surveillance, and reducing unnecessary treatments.
Collapse
Affiliation(s)
- Cedric Lebacle
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Urology, University Hospital Bicetre, APHP, University Paris-Saclay, Le Kremlin Bicetre, France
| | - Aydin Pooli
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Brian Shuch
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nagesh Rao
- Department of Pathology and Lab Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Karim Chamie
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nils Kroeger
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Izak Faiena
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sandy Liu
- Department of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Erika L Wood
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arie Belldegrun
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Alexandra Drakaki
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Allan J Pantuck
- Department of Urology, Institute of Urologic Oncology (IUO), David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Pan XW, Chen WJ, Xu D, Guan WB, Li L, Chen JX, Chen WJ, Dong KQ, Ye JQ, Gan SS, Zhou W, Cui XG. Molecular subtyping and characterization of clear cell renal cell carcinoma by tumor differentiation trajectories. iScience 2023; 26:108370. [PMID: 38034348 PMCID: PMC10682269 DOI: 10.1016/j.isci.2023.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/03/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Previous bulk RNA sequencing or whole genome sequencing on clear cell renal cell carcinoma (ccRCC) subtyping mainly focused on ccRCC cell origin or the complex tumor microenvironment (TME). Based on the single-cell RNA sequencing (scRNA-seq) data of 11 primary ccRCC specimens, cancer stem-cell-like subsets could be differentiated into five trajectories, whereby we further classified ccRCC cells into three groups with diverse molecular features. These three ccRCC subgroups showed significantly different outcomes and potential targets to tyrosine kinase inhibitors (TKIs) or immune checkpoint inhibitors (ICIs). Tumor cells in three differentiation directions exhibited distinct interactions with other subsets in the ccRCC niches. The subtyping model was examined through immunohistochemistry staining in our ccRCC cohort and validated the same classification effect as the public patients. All these findings help gain a deeper understanding about the pathogenesis of ccRCC and provide useful clues for optimizing therapeutic schemes based on the molecular subtype analysis.
Collapse
Affiliation(s)
- Xiu-wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wen-jin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Da Xu
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Wen-bin Guan
- Department of Pathology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Jia-xin Chen
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Wei-jie Chen
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Ke-qin Dong
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Jian-qing Ye
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Si-shun Gan
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, 700 Moyu North Road, Shanghai 201805, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| | - Xin-gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai 200092, China
| |
Collapse
|
3
|
Yang L, Liu S, He W, Xiong Z, Xia L. Characterisation of tumor microenvironment and prevalence of CD274/PD-L1 genetic alterations difference in colorectal Cancer. BMC Cancer 2023; 23:221. [PMID: 36894899 PMCID: PMC9996909 DOI: 10.1186/s12885-023-10610-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Large-scale genomic alterations, especially CD274/PD-L1 gene amplification, have great impact on anti-PD-1 efficacy on cancers such as Hodgkin's lymphoma. However, the prevalence of PD-L1 genetic alterations in colorectal cancer (CRC) and its correlation with the tumor immune microenvironment and clinical implications remain unknown. MATERIALS AND METHODS PD-L1 genetic alterations were evaluated in 324 patients with newly diagnosed CRC including 160 mismatch repair-deficient (dMMR) patients and 164 mismatch repair-proficient (pMMR) patients using fluorescence in situ hybridization (FISH) method. The correlation between PD-L1 and the expression of the common immune markers was analyzed. RESULTS Totally 33 (10.2%) patients were identified with aberrant PD-L1 genetic alternations including deletion (2.2%), polysomy (4.9%), and amplification (3.1%); They had more aggressive features such as advanced stage (P = 0.02), shorter overall survival (OS) (P < 0.001) than patients with disomy. The aberrations correlated with positive lymph node (PLN) (p = 0.001), PD-L1 expression by immunohistochemistry (IHC) in tumor cells (TCs) or tumor-infiltrated immunocytes (ICs) (both p < 0.001), and pMMR (p = 0.029). When dMMR and pMMR were analyzed independently, the correlations of aberrant PD-L1 genetic alterations with PD-1 expression (p = 0.016), CD4 + T cells (p = 0.032), CD8 T + cells (p = 0.032) and CD68 + cells (p = 0.04) were only found in dMMR cohort. CONCLUSIONS The prevalence of PD-L1 genetic alterations was relatively low in CRC, but the aberrations usually correlate with aggressive nature. The correlation between PD-L1 genetic alterations and tumor immune features was only observed in dMMR CRC.
Collapse
Affiliation(s)
- Lin Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 Baiyun Avenue North, Guangzhou, 510515, China
| | - Shousheng Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China
| | - Zhenchong Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China. .,Department of Breast Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.
| | - Liangping Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China. .,Department of General Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road east, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Katzendorn O, Peters I, Dubrowinskaja N, Moog JM, Reese C, Tezval H, Faraj Tabrizi P, Hennenlotter J, Lafos M, Kuczyk MA, Serth J. DNA Methylation in INA, NHLH2, and THBS4 Is Associated with Metastatic Disease in Renal Cell Carcinoma. Cancers (Basel) 2021; 14:cancers14010039. [PMID: 35008203 PMCID: PMC8750163 DOI: 10.3390/cancers14010039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The detection of DNA methylation in primary tumor tissues could be relevant for early stratification of aggressive renal cell carcinomas (RCCs) as a basis for future personalized adjuvant therapy. Methylated TCGA KIRC based candidate CpG loci in INA, NHLH2, and THBS4 that are possibly associated with RCC metastasis were evaluated by pyrosequencing in 154 paired normal adjacent and primary tumor tissues, as well as in 202 metastatic tissues. Statistical analysis was carried out by bivariate logistic regression for group comparisons, log rank survival analysis, and unsupervised and supervised analysis for the classification of tumors. Increased methylation of INA, NHLH2, and THBS4 loci were significantly associated with distant metastasis in primary tumors (p < 0.05), tissue-specific hypermethylation in metastatic (p = 7.88 × 10-8, 5.57 × 10-10, 2.06 × 10-7) and tumor tissues (p = 3.72 × 10-24, 3.17 × 10-13, 1.58 × 10-19), and shortened progression free survival in patients (p = 0.03). Combined use of CpG site-specific methylation permits the discrimination of tissues with metastatic disease and reveals a significant contribution of CpG sites in all genes to the statistical classification model. Thus, metastasis in RCC is significantly associated with methylation alterations in INA, NHLH2, and THBS4 loci, providing independent information for the potential early detection of aggressive renal cancers as a rationale for stratifying patients to adjuvant therapies.
Collapse
Affiliation(s)
- Olga Katzendorn
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Inga Peters
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Natalia Dubrowinskaja
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Joana M. Moog
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Christel Reese
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Hossein Tezval
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Pouriya Faraj Tabrizi
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Jörg Hennenlotter
- Department of Urology, Eberhard Karls University of Tuebingen, 72076 Tuebingen, Germany;
| | - Marcel Lafos
- Department of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Markus A. Kuczyk
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
| | - Jürgen Serth
- Department of Urology and Urologic Oncology, Hannover Medical School, 30625 Hannover, Germany; (O.K.); (I.P.); (N.D.); (J.M.M.); (C.R.); (H.T.); (P.F.T.); (M.A.K.)
- Correspondence: ; Tel.: +49-511-532-6673
| |
Collapse
|
5
|
Zheng X, Wezel F, Azoitei A, Meessen S, Wang W, Najjar G, Wang X, Kraus JM, Kestler HA, John A, Zengerling F, Bolenz C, Günes C. Shorter Leukocyte Telomere Length Is Associated with Worse Survival of Patients with Bladder Cancer and Renal Cell Carcinoma. Cancers (Basel) 2021; 13:3774. [PMID: 34359672 PMCID: PMC8345040 DOI: 10.3390/cancers13153774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Telomeres are protein-DNA complexes at the tips of linear chromosomes. They protect the DNA from end-to-end fusion and exonucleolytic degradation. Shortening of telomeric DNA during aging can generate dysfunctional telomeres, promoting tumorigenesis. More recent data indicate that both short and long telomeres of peripheral blood leukocyte (PBL) cells can serve as prognostic biomarkers for cancer risk and may be associated with survival of patients with solid cancers. Telomere length in PBL cells could also be a potential prognostic biomarker for survival in bladder cancer (BC) or renal cell carcinoma (RCC). METHODS The relative telomere length (RTL) of PBL cells was assessed in patients with BC (n = 144) and RCC (n = 144) by using qPCR. A control population of patients without malignant disease (NC, n = 73) was included for comparison. The correlation and association of RTL with histopathological parameters and overall survival (OS) were evaluated. RESULTS Patients with BC and RCC had significantly shorter telomeres compared to patients without malignant disease. Within the cancer cohorts, multivariate analysis revealed that short RTL is an independent predictor of worse survival in BC (p = 0.039) and RCC (p = 0.041). CONCLUSION Patients with BC and RCC had significantly shorter telomeres compared to the normal population. Shorter RTL in BC and RCC was an independent predictor of reduced survival.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Sabine Meessen
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Wenya Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Gregoire Najjar
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Xue Wang
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany; (J.M.K.); (H.A.K.)
| | - Axel John
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (X.Z.); (F.W.); (A.A.); (S.M.); (W.W.); (G.N.); (X.W.); (A.J.); (F.Z.); (C.B.)
| |
Collapse
|
6
|
Zoumpourlis P, Genovese G, Tannir NM, Msaouel P. Systemic Therapies for the Management of Non-Clear Cell Renal Cell Carcinoma: What Works, What Doesn't, and What the Future Holds. Clin Genitourin Cancer 2021; 19:103-116. [PMID: 33358151 PMCID: PMC8169717 DOI: 10.1016/j.clgc.2020.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Non-clear cell renal cell carcinoma (nccRCC) is a broad term that refers to a diverse group of tumors, each with its own distinct biologic and therapeutic profile. The management of nccRCCs is often based on extrapolating data from clinical trials in the more common clear cell renal cell carcinoma, but our emerging prospective and retrospective clinical experience in nccRCC allows us to make more precise recommendations tailored to each histology. The systemic therapy options for metastatic nccRCC include targeted therapies such as tyrosine kinase inhibitors, immune checkpoint inhibitors, and, for specific rare subtypes, cytotoxic chemotherapy. Each nccRCC histology may respond differently to these regimens, which makes accurate pathologic diagnosis imperative. In the present review, we discuss the available clinical and biological data that can help guide systemic therapy recommendations for specific nccRCC subtypes.
Collapse
Affiliation(s)
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
7
|
Fernandes FG, Silveira HCS, Júnior JNA, da Silveira RA, Zucca LE, Cárcano FM, Sanches AON, Neder L, Scapulatempo-Neto C, Serrano SV, Jonasch E, Reis RM, Evangelista AF. Somatic Copy Number Alterations and Associated Genes in Clear-Cell Renal-Cell Carcinoma in Brazilian Patients. Int J Mol Sci 2021; 22:2265. [PMID: 33668731 PMCID: PMC7956176 DOI: 10.3390/ijms22052265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
Somatic copy number aberrations (CNAs) have been associated with clear-cell renal carcinoma (ccRCC) pathogenesis and are a potential source of new diagnostic, prognostic and therapeutic biomarkers. Recurrent CNAs include loss of chromosome arms 3p, 14q, 9p, and gains of 5q and 8q. Some of these regional CNAs are suspected of altering gene expression and could influence clinical outcomes. Despite many studies of CNAs in RCC, there are currently no descriptions of genomic copy number alterations in a Brazilian ccRCC cohort. This study was designed to evaluate the chromosomal profile of CNAs in Brazilian ccRCC tumors and explore clinical associations. A total of 92 ccRCC Brazilian patients that underwent nephrectomy at Barretos Cancer Hospital were analyzed for CNAs by array comparative genomic hybridization. Most patients in the cohort had early-stage localized disease. The most significant alterations were loss of 3p (87.3%), 14q (35.8%), 6q (29.3%), 9p (28.6%) and 10q (25.0%), and gains of 5q (59.7%), 7p (29.3%) and 16q (20.6%). Bioinformatics analysis revealed 19 genes mapping to CNA significant regions, including SETD2, BAP1, FLT4, PTEN, FGFR4 and NSD1. Moreover, gain of 5q34-q35.3 (FLT4 and NSD1) and loss of 6q23.2-q23.3 (MYB) and 9p21.3 (MLLT3) had gene expression levels that correlated with TCGA data and was also associated with advanced disease features, such as larger tumors, Fuhrman 3, metastasis at diagnosis and death. The loss of region 14q22.1 which encompasses the NIN gene was associated with poor overall survival. Overall, this study provides the first CNA landscape of Brazilian patients and pinpoints genomic regions and specific genes worthy of more detailed investigations. Our results highlight important genes that are associated with copy number changes involving large chromosomal regions that are potentially related to ccRCC tumorigenesis and disease biology for future clinical investigations.
Collapse
Affiliation(s)
- Flávia Gonçalves Fernandes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| | | | - João Neif Antonio Júnior
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Rosana Antunes da Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| | - Luis Eduardo Zucca
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Flavio Mavignier Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
- Barretos School of Health Sciences Dr Paulo Prata-FACISB, Barretos 14785-002, Brazil
| | - André Octavio Nicolau Sanches
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Luciano Neder
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (L.N.); (C.S.-N.)
| | | | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
- Barretos School of Health Sciences Dr Paulo Prata-FACISB, Barretos 14785-002, Brazil
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
- Life and Health Sci Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| |
Collapse
|
8
|
Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, Song X, Ye JQ, Zhou W, Cui XG. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 2020; 16:3149-3162. [PMID: 33162821 PMCID: PMC7645996 DOI: 10.7150/ijbs.46645] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Cancer stem cells (CSCs) are biologically characterized by self-renewal, multi-directional differentiation and infinite proliferation, inducing anti-tumor drug resistance and metastasis. In the present study, we attempted to depict the baseline landscape of CSC-mediated biological properties, knowing that it is vital for tumor evolution, anti-tumor drug selection and drug resistance against fatal malignancy. Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis in 15208 cells from a pair of primary and metastatic sites of collecting duct renal cell carcinoma (CDRCC). Cell subpopulations were identified and characterized by t-SNE, RNA velocity, monocle and other computational methods. Statistical analysis of all single-cell sequencing data was performed in R and Python. Results: A CSC population of 1068 cells was identified and characterized, showing excellent differentiation and self-renewal properties. These CSCs positioned as a center of the differentiation process and transformed into CDRCC primary and metastatic cells in spatial and temporal order, and played a pivotal role in promoting the bone destruction process with a positive feedback loop in the bone metastasis microenvironment. In addition, CSC-specific marker genes BIRC5, PTTG1, CENPF and CDKN3 were observed to be correlated with poor prognosis of CDRCC. Finally, we pinpointed that PARP, PIGF, HDAC2, and FGFR inhibitors for effectively targeting CSCs may be the potential therapeutic strategies for CDRCC. Conclusion: The results of the present study may shed new light on the identification of CSCs, and help further understand the mechanism underlying drug resistance, differentiation and metastasis in human CDRCC.
Collapse
Affiliation(s)
- Xiu-Wu Pan
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China.,Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Hao Zhang
- Department of Bone Tumor Surgery, The Changzheng Hospital of Second Military Medical University, Shanghai 200003, China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Jia-Xin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Wen-Jin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Si-Shun Gan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Fa-Jun Qu
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China
| | - Chuan-Min Chu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Jian-Wei Cao
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xu Song
- Department of Urology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jian-Qing Ye
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Wang Zhou
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China.,Department of Bone Tumor Surgery, The Changzheng Hospital of Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China.,Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| |
Collapse
|
9
|
Marcon J, DiNatale RG, Sanchez A, Kotecha RR, Gupta S, Kuo F, Makarov V, Sandhu A, Mano R, Silagy AW, Blum KA, Nassau DE, Benfante NE, Ortiz MV, Carlo MI, Chan TA, Motzer RJ, Voss MH, Coleman J, Russo P, Reuter V, Hakimi AA, Reznik E. Comprehensive Genomic Analysis of Translocation Renal Cell Carcinoma Reveals Copy-Number Variations as Drivers of Disease Progression. Clin Cancer Res 2020; 26:3629-3640. [PMID: 32220885 PMCID: PMC7367714 DOI: 10.1158/1078-0432.ccr-19-3283] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/02/2020] [Accepted: 03/24/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Translocation renal cell carcinoma (tRCC) is a rare, aggressive renal cell carcinoma (RCC) subtype. There is currently limited understanding on the role of molecular alterations in the pathogenesis and progression of these tumors. We investigated the association between somatic alterations and clinical outcomes in two independent cohorts profiled using DNA sequencing. EXPERIMENTAL DESIGN Twenty-two tRCCs underwent targeted sequencing [Memorial Sloan Kettering Cancer Center (MSK)-IMPACT]; a subset was profiled using exome-sequencing and combined with exome data from The Cancer Genome Atlas (TCGA) for analysis. The prognostic value of specific somatic aberrations, tumor mutation burden (TMB), and fraction of copy-number-altered genome (FCNAg) was explored. In TCGA cases, neoantigen prediction and immune cell deconvolution were performed using RNA-sequencing and exome data. Overall survival estimates were computed using the Kaplan-Meier method; time-on-treatment was calculated for 14 MSK-IMPACT patients who underwent systemic therapy. Associations between molecular features and outcomes were evaluated using nonparametric testing. RESULTS Copy-number aberrant tRCCs were associated with poor overall survival (P = 0.03). Pediatric patients had tumors with lower FCNAg (P = 0.01). In one adult case with two chronologically distinct tumor samples sequenced, we confirmed that copy-number events occurred early during evolution. TERT promoter mutations were found exclusively in high-stage tumors. We found that tRCCs displayed distinct angiogenesis and PD-L1 gene expression profiles compared with other RCC subtypes. CONCLUSIONS Tumors molecularly defined by increased copy-number variations were associated with aggressive disease in tRCC. A higher burden of genomic events in adults compared with pediatric cases likely reflects a more aggressive clinical course. The unique immunophenotypic characteristics of tRCC merit further exploration.
Collapse
Affiliation(s)
- Julian Marcon
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Renzo G DiNatale
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alejandro Sanchez
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sounak Gupta
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fengshen Kuo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vladimir Makarov
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Amar Sandhu
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Mano
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew W Silagy
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyle A Blum
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel E Nassau
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole E Benfante
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria I Carlo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Victor Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Ed Reznik
- Computational Oncology Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York.
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
10
|
A Meta-Analysis Evaluating Clinical Outcomes of Patients with Renal Cell Carcinoma Harboring Chromosome 9P Loss. Mol Diagn Ther 2020; 23:569-577. [PMID: 31332726 DOI: 10.1007/s40291-019-00414-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONTEXT 9p loss appears a reliable and promising marker able to differentiate specific categories of patients with renal cell carcinoma associated with a worse prognosis. OBJECTIVE The aim was to systematically evaluate relative risk of death, cancer-specific survival (CSS) and disease-free survival (DFS) among patients harboring 9p loss. EVIDENCE SYNTHESIS We found a total of 92 potentially relevant articles focused on the detection of 9p loss in patients with renal cell carcinoma and clinical outcomes of this population. Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were employed to carry out this work. Fourteen studies resulted to be eligible for this analysis; 11 of these reported data on 5-year overall survival, six on CSS and four on DFS. An increased risk of death has been observed in patients harboring 9p loss (pooled relative risk of 3.965; 95% confidence interval [CI] 2.647-5.940, p < 0.001). Similarly, worse CSS (hazard ratio [HR] 6.776; 95% CI 3.824-12.009; p < 0.001) and DFS (HR 2.914; 95% CI 1.245-6.819; p = 0.014) have been observed in this population. Heterogeneity was significant in survival analysis, while no significant heterogeneity was observed in the CSS and DFS analyses. CONCLUSIONS Patients harboring chromosome 9p loss have worse clinical outcomes in terms of overall survival, CSS and DFS.
Collapse
|
11
|
Liu YJ, Houldsworth J, Emmadi R, Dyer L, Wolff DJ. Assessing Genomic Copy Number Alterations as Best Practice for Renal Cell Neoplasia: An Evidence-Based Review from the Cancer Genomics Consortium Workgroup. Cancer Genet 2020; 244:40-54. [PMID: 32434132 DOI: 10.1016/j.cancergen.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Renal cell neoplasia are heterogeneous with diverse histology, genetic alterations, and clinical behavior that are diagnosed mostly on morphologic features. The Renal Cell Neoplasia Workgroup of the Cancer Genomics Consortium systematically evaluated peer-reviewed literature on genomic studies of renal cell carcinoma (RCC), including clear cell RCC, papillary RCC, chromophobe RCC, and the translocation RCC involving TFE3, TFEB and MITF rearrangements, as well as benign oncocytoma, which together comprise about 95% of all renal cell neoplasia. The Workgroup curated recurrent copy number alterations (CNAs), copy-neutral loss-of-heterozygosity (cnLOH), rearrangements, and mutations, found in each subtype and assigned clinical relevance according to established criteria. In clear cell RCC, loss of 3p has a disease-initiating role and most likely also in progression with mutations detected in VHL and other genes mapped to this arm, and loss of 9p and/or 14q has well-substantiated prognostic utility. Gain of chromosomes 7 and 17 are hallmark CNAs of papillary RCC, but patterns of other CNAs as detected by chromosomal microarray analysis (CMA) afford sub-classification into Type 1 and 2 with prognostic value, and for further sub-stratification of Type 2. Inherent chromosome loss in chromophobe RCC as detected by CMA is useful for distinguishing the eosinophilic variant from benign oncocytoma which in contrast exhibits few CNAs or rearranged CCND1, but share mitochondrial DNA mutations. In morphologically atypical RCCs, rearrangement of TFE3 and TFEB should be considered in the differential diagnosis, portending an aggressive RCC subtype. Overall, this evidence-based review provides a validated role for assessment of CNAs in renal cell neoplasia in the clinical setting to assist in renal cell neoplasm diagnosis and sub-classification within subtypes that is integral to the management of patients, from small incidentally found renal masses to larger surgically resected specimens, and simultaneously identify the presence of key alterations portending outcome in malignant RCC subtypes.
Collapse
Affiliation(s)
- Yajuan J Liu
- Departments of Pathology and Laboratory Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195.
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Health System, 1 Gustave Levy Place, New York, NY 10029.
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612
| | - Lisa Dyer
- Department of Pediatrics, Division of Human Genetics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4006, Cincinnati, OH 45229-3039
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, MSC 908, Charleston, SC 29425
| |
Collapse
|
12
|
Eichenauer T, Simmendinger L, Kluth M, Chirico V, Luebke AM, Höflmayer D, Hinsch A, Jacobsen F, Hube-Magg C, Möller-Koop C, Dahlem R, Fisch M, Rink M, Riechardt S, Tsourlakis MC, Büscheck F, Bernreuther C, Clauditz T, Lebok P, Simon R, Sauter G, Wilczak W, Fraune C. Chromosomal deletion of 9p21 is linked to poor patient prognosis in papillary and clear cell kidney cancer. Urol Oncol 2020; 38:605.e1-605.e8. [PMID: 32241691 DOI: 10.1016/j.urolonc.2020.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/19/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND The ongoing approval of adjuvant systemic therapy in high-risk kidney tumor will increase the demand for prognostic assessment in these tumors. 9p21 deletion has been suggested as a possible prognostic feature in clear cell kidney cancer. MATERIAL AND METHODS To learn more on the prognostic relevance of 9p21 deletions in clear cell and other kidney tumors, 1,809 kidney tumor specimens were analyzed by dual-labeling fluorescence in situ hybridization (FISH) with probes for 9p21 and centromere 9 in a tissue microarray format. Results were compared to histologic tumor type, pT stage, grade, and patient outcome. RESULTS A total of 1,341 (74%) of tumor samples had interpretable FISH results. 9p21 deletion was found in 4.4% of 894 clear cell, 5.1% of 197 papillary, and 4.2% of 71 chromophobe carcinomas. 9p21 deletions were not found in 112 oncocytomas and in 21 clear cell tubulo-papillary cancers. In clear cell carcinomas, 9p deletions were associated with advanced stage (P = 0.009) and nodal metastasis (P = 0.0067), but not with ISUP grade (P = 0.1039) and distant metastasis (P = 0.4809). Also, in papillary carcinomas, 9p deletions were associated with advanced stage (P = 0.0008) and nodal metastasis (P = 0.0202) but not with ISUP grade (0.0904) and distant metastasis (P = 0.2022). Follow-up data were available for 789 clear cell and 177 papillary cancers. In both tumor entities, 9p21 deletions were associated with shortened overall survival, tumor-specific death, and progression-free survival in univariate analysis (P < 0.02 each). In a multivariate analysis, 9p21 deletion was an independent predictor of early tumor recurrence (P = 0.04). CONCLUSION 9p21 deletions, 9p21 deletions identify a small subset of aggressive renal carcinomas. 9p deletion assessment may be clinically useful to identify high-risk renal cell carcinomas.
Collapse
Affiliation(s)
- Till Eichenauer
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luca Simmendinger
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Roland Dahlem
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Silke Riechardt
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
13
|
Grimm J, Zeuschner P, Janssen M, Wagenpfeil S, Hartmann A, Stöhr C, Keck B, Kahlmeyer A, Stöckle M, Junker K. Metastatic risk stratification of clear cell renal cell carcinoma patients based on genomic aberrations. Genes Chromosomes Cancer 2019; 58:612-618. [PMID: 30851148 DOI: 10.1002/gcc.22749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 12/14/2022] Open
Abstract
Prognostic markers for the definition of the individual metastatic risk in renal cell carcinoma are still missing. The aim of our study was to establish a total number of specific aberrations (TNSA) genetic score as a new prognostic test for metastatic risk evaluation. Fluorescence in situ hybridization (FISH) was performed on isolated cell nuclei of 100 ccRCCs (50 M1/50 M0) and 100 FFPE sections (second cohort, 32 M1/68 M0). For each chromosomal region (1q21.3, 7q36.3, 9p21.3p24.1, 20q11.21q13.32) cut-off values were determined by receiver-operator curve (ROC)-curve analysis. TNSA was calculated based on the dichotomized specific CNVs. The prognostic significance of CNVs was proven by Cox and logistic regression. TNSA was the best predictor of metastasis and recurrence free survival in both cohorts. We derived an algorithm for risk stratification by combining TNSA and T-category, which increased the prognostic accuracy to 87% (specificity = 86%, sensitivity = 88%). This model divides patients into two risk groups with significantly different RFS, CSS, and OS (P = 3.8×10-5 , P = 5×10-6 and P = 3.57×10-8 respectively). The genetic risk model was superior to Leibovich score and was able to identify patients with metachronous metastatic spread which were incorrectly classified as "low" or "intermediate risk." We present a new tool for individual risk stratification by combining genetic alterations with clinico-pathologic parameters. Interphase FISH proves to be a dependable method for prognostic evaluation in primary tumor tissue on isolated cell nuclei as well as on FFPE sections. Especially in organ-confined tumors the genetic score seems to be an important tool to identify patients at high risk for metastatic disease.
Collapse
Affiliation(s)
- Julia Grimm
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Martin Janssen
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Stefan Wagenpfeil
- Institute of Medical Biometry, Epidemiology and Medical Informatics, Saarland University, Homburg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Bastian Keck
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Kahlmeyer
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| |
Collapse
|
14
|
Pulmonary Adenocarcinoma With Enteric Differentiation: Immunohistochemistry and Molecular Morphology. Appl Immunohistochem Mol Morphol 2018; 26:383-387. [DOI: 10.1097/pai.0000000000000440] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Kluzek K, Srebniak MI, Majer W, Ida A, Milecki T, Huminska K, van der Helm RM, Silesian A, Wrzesinski TM, Wojciechowicz J, Beverloo BH, Kwias Z, Bluyssen HAR, Wesoly J. Genetic characterization of Polish ccRCC patients: somatic mutation analysis of PBRM1, BAP1 and KDMC5, genomic SNP array analysis in tumor biopsy and preliminary results of chromosome aberrations analysis in plasma cell free DNA. Oncotarget 2018; 8:28558-28574. [PMID: 28212566 PMCID: PMC5438672 DOI: 10.18632/oncotarget.15331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mutation analysis and cytogenetic testing in clear cell renal cell carcinoma (ccRCC) is not yet implemented in a routine diagnostics of ccRCC. MATERIAL AND METHODS We characterized the chromosomal alterations in 83 ccRCC tumors from Polish patients using whole genome SNP genotyping assay. Moreover, the utility of next generation sequencing of cell free DNA (cfDNA) in patients plasma as a potential tool for non-invasive cytogenetic analysis was tested. Additionally, tumor specific somatic mutations in PBRM1, BAP1 and KDM5C were determined. RESULTS We confirmed a correlation between deletions at 9p and higher tumor size, and deletion of chromosome 20 and the survival time. In Fuhrman grade 1, only aberrations of 3p and 8p deletion, gain of 5q and 13q and gains of chromosome 7 and 16 were present. The number of aberrations increased with Fuhrman grade, all chromosomes displayed cytogenetic changes in G3 and G4. ccRCC specific chromosome aberrations were observed in cfDNA, although discrepancies were found between cfDNA and tumor samples. In total 12 common and 94 rare variants were detected in PBRM1, BAP1 and KDM5C, with four potentially pathogenic variants. We observed markedly lower mutation load in PBRM1. CONCLUSIONS Cytogenetic analysis of cfDNA may allow more accurate diagnosis of tumor aberrations and therefore the correlation between the chromosome aberrations in cfDNA and clinical outcome should be studied in larger cohorts. The functional studies on in BAP1, KDM5C, PBRM1 mutations in large, independent sample set would be necessary for the assessment of their prognostic and diagnostic potential.
Collapse
Affiliation(s)
- Katarzyna Kluzek
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Weronika Majer
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Agnieszka Ida
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Tomasz Milecki
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Kinga Huminska
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland.,Genomic Laboratory, DNA Research Center, 61-612 Poznan, Poland
| | - Robert M van der Helm
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Adrian Silesian
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Tomasz M Wrzesinski
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | | | - Berna H Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
16
|
El-Mokadem I, Kidd T, Pratt N, Fleming S, Nabi G. Tumour suppressor gene (CDKNA2) status on chromosome 9p in resected renal tissue improves prognosis of localised kidney cancer. Oncotarget 2018; 7:73045-73054. [PMID: 27682877 PMCID: PMC5341962 DOI: 10.18632/oncotarget.12196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023] Open
Abstract
Background Genetic alterations on chromosome 9p, including inactivation of the tumour suppressor gene, CDKN2A, result in cellular proliferation and growth of tumours. Our aim was to use microsatellite analysis and fluorescence in situ hybridization (FISH) to characterise the architecture of this region. Results Seventy-five out of 77 clear cell renal cell cancers (tumour/normal pairs) were interpretable for LOH analysis on chromosome 9p (two tumours were excluded, as all five primers were uninformative). Twenty out of 75 (26.6%) tumours showed LOH in at least one of the five primers employed. Most allelic deletions were detected, telomeric to the CDKN2A region at D9S916, with 11 out of 52 informative tumours (21%) displaying LOH. The LOH in the coding region of CDKN2A, at D9S974 and D9S942, was associated with a higher pT-stage (p = 0.004) and metastasis (p = 0.006, both markers). The rate of chromosome 9p deletion in ccRCC was 44% (35/80 cases) according to FISH. Somatic copy number loss of chromosome 9p was associated with a larger tumour size (p = 0.002), higher pathological tumour stage (p = 0.021), presence of tumour necrosis (p = 0.019) and microvascular invasion (p = 0.032). The cases with copy number loss, loss of heterozygosity and copy number neutral (n = 42) were at a higher risk of cancer-specific death when compared to tumours in category D (n = 32) (Log-rank: p = 0.001). Seventeen patients with localised ccRCC developed recurrence, and fourteen of those showed either LOH or somatic copy number loss at CDKN2A (Log-rank: p = 0.005). Multivariate analysis showed that LOH or copy number loss at CDKN2A retained its independent prognostic effect, improving the predictive accuracy of stage and SSIGN score by concordance Index C from 0.823 to 0.878 (p = 0.001). Materials and Methods Cytogenetics data, microsatellite analysis and FISH were acquired for a cohort of patients undergoing resection for clinically localised renal cancer between January 2001 and December 2005. Five microsatellite markers (D9S916, D9S1814, D9S974, D9S942 and D9S171) assessed loss of heterogeneity (LOH) using DNA samples and in the same cohort FISH analysis was accomplished on tissue microarray slides. The FISH data were scored by two observers blinded to the histological data of the patients. Cytogenetic aberrations were correlated with histological and clinical outcomes by univariate and multivariate analyses using different prognostic models. Disease specific and recurrence free survival based on cytogenetic changes were assessed by Kaplan Meier methods. Conclusions A comprehensive cytogenetic analysis using microsatellite analysis and FISH of the CDKN2A region on chromosome 9p improves the predictive accuracy of known prognostic factors in clinically localised renal cell carcinoma undergoing surgical resection.
Collapse
Affiliation(s)
- Ismail El-Mokadem
- Academic Section of Urology, Division of Cancer Research, University of Dundee, Ninewells Hospital, DD1 9SY, Dundee, Scotland
| | - Thomas Kidd
- Department of Pathology, University of Dundee, Ninewells Hospital, DD1 9SY, Dundee, Scotland
| | - Norman Pratt
- Department of Cytogenetic, University of Dundee, Ninewells Hospital, DD1 9SY, Dundee, Scotland
| | - Stewart Fleming
- Department of Pathology, University of Dundee, Ninewells Hospital, DD1 9SY, Dundee, Scotland
| | - Ghulam Nabi
- Academic Section of Urology, Division of Cancer Research, University of Dundee, Ninewells Hospital, DD1 9SY, Dundee, Scotland
| |
Collapse
|
17
|
Clinical Relevance of Gene Copy Number Variation in Metastatic Clear Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2018; 16:e795-e805. [PMID: 29548613 DOI: 10.1016/j.clgc.2018.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/11/2018] [Accepted: 02/18/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Gene copy number variations (CNVs) have been reported to be frequent in renal cell carcinoma (RCC), with potential prognostic value for some. However, their clinical utility, especially to guide treatment of metastatic disease remains to be established. Our objectives were to assess CNVs on a panel of selected genes and determine their clinical relevance in patients who underwent treatment of metastatic RCC. PATIENTS AND METHODS The genetic assessment was performed on frozen tissue samples of clear cell metastatic RCC using quantitative multiplex polymerase chain reaction of short fluorescent fragment method to detect CNVs on a panel of 14 genes of interest. The comparison of the electropherogram obtained from both tumor and normal renal adjacent tissue allowed for CNV identification. The clinical, biologic, and survival characteristics were assessed for their associations with the most frequent CNVs. RESULTS Fifty patients with clear cell metastatic RCC were included. The CNV rate was 21.4%. The loss of CDKN2A and PLG was associated with a higher tumor stage (P < .05). The loss of PLG and ALDOB was associated with a higher Fuhrman grade (P < .05). The loss of ALDOB was also associated with a worse Heng prognostic score (95% vs. 66%; P = .029) and lower 24-month survival rate (18% vs. 58%; P = .012). The loss of both ALDOB and PLG was frequent (32%) and was associated with a higher tumor stage and grade (P < .05). CONCLUSION As expected, we showed that several CNVs were associated with clinical relevance, especially those located on CDKN2A, PLG, and ALDOB, in a homogeneous cohort of patients with clear cell metastatic RCC.
Collapse
|
18
|
Abstract
Objective: To review hot issues and future direction of renal tumor biopsy (RTB) technique. Data Sources: The literature concerning or including RTB technique in English was collected from PubMed published from 1990 to 2015. Study Selection: We included all the relevant articles on RTB technique in English, with no limitation of study design. Results: Computed tomography and ultrasound were usually used for guiding RTB with respective advantages. Core biopsy is more preferred over fine needle aspiration because of superior accuracy. A minimum of two good-quality cores for a single renal tumor is generally accepted. The use of coaxial guide is recommended. For biopsy location, sampling different regions including central and peripheral biopsies are recommended. Conclusion: In spite of some limitations, RTB technique is relatively mature to help optimize the treatment of renal tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Xue-Song Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| | - Li-Qun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
19
|
Xia QY, Zhan XM, Fan XS, Ye SB, Shi SS, Li R, Wei X, Wang X, Ma HH, Lu ZF, Zhou XJ, Rao Q. BRM/SMARCA2-negative clear cell renal cell carcinoma is associated with a high percentage of BRM somatic mutations, deletions and promoter methylation. Histopathology 2017; 70:711-721. [PMID: 28070921 DOI: 10.1111/his.13120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this study was to investigate potential molecular mechanisms associated with loss of BRM expression in poorly differentiated clear cell renal cell carcinoma (ccRCC). METHODS AND RESULTS Nineteen previously selected BRM-negative RCC tissues were examined by DNA sequencing, fluorescence in-situ hybridization (FISH) and methylation-specific polymerase chain reaction (PCR) of the BRM gene. BRM mutation was identified in 78.9% (15 of 19) cases, chromosome 9 monosomy or BRM deletion in 43.8% (seven of 16) and BRM promoter region cytosine-phosphate-guanine (CpG) methylation in 42.8% (six of 14). These results indicated that 89.5% (17 of 19) of the cases harboured at least one type of BRM genetic alteration, with two or more types of alteration in 47.4% (nine of 19). Such alterations were found rarely in adjacent non-neoplastic tissues and low-grade areas of composite tumours. CONCLUSIONS BRM gene mutation, chromosome 9 monosomy or BRM deletion and CpG methylation contribute collectively to the loss of BRM expression in ccRCC. This work focusing on composite tumours indicated that BRM abnormality occurred during tumour progression.
Collapse
Affiliation(s)
- Qiu-Yuan Xia
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xue-Mei Zhan
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Xiang-Shan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing City, Nanjing, China
| | - Sheng-Bing Ye
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shan-Shan Shi
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Rui Li
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xue Wei
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xuan Wang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Heng-Hui Ma
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhen-Feng Lu
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiao-Jun Zhou
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
20
|
Reprofiling Metastatic Samples for Chromosome 9p and 14q Aberrations as a Strategy to Overcome Tumor Heterogeneity in Clear-cell Renal Cell Carcinoma. Appl Immunohistochem Mol Morphol 2017; 25:39-43. [DOI: 10.1097/pai.0000000000000257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Hirsch MS, Signoretti S, Dal Cin P. Adult Renal Cell Carcinoma: A Review of Established Entities from Morphology to Molecular Genetics. Surg Pathol Clin 2016; 8:587-621. [PMID: 26612217 DOI: 10.1016/j.path.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
According to the current World Health Organization (WHO), renal cell carcinomas (RCCs) that primarily affect adults are classified into 8 major subtypes. Additional emerging entities in renal neoplasia have also been recently recognized and these are discussed in further detail by Mehra et al (Emerging Entities in Renal Neoplasia, Surgical Pathology Clinics, 2015, Volume 8, Issue 4). In most cases, the diagnosis of a RCC subtype can be based on morphologic criteria, but in some circumstances the use of ancillary studies can aid in the diagnosis. This review discusses the morphologic, genetic, and molecular findings in RCCs previously recognized by the WHO, and provides clues to distinction from each other and some of the newer subtypes of RCC. As prognosis and therapeutic options vary for the different subtypes of RCC, accurate pathologic distinction is critical for patient care.
Collapse
Affiliation(s)
- Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
22
|
Tsili AC, Argyropoulou MI. Advances of multidetector computed tomography in the characterization and staging of renal cell carcinoma. World J Radiol 2015; 7:110-127. [PMID: 26120380 PMCID: PMC4473304 DOI: 10.4329/wjr.v7.i6.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/18/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) accounts for approximately 90%-95% of kidney tumors. With the widespread use of cross-sectional imaging modalities, more than half of RCCs are detected incidentally, often diagnosed at an early stage. This may allow the planning of more conservative treatment strategies. Computed tomography (CT) is considered the examination of choice for the detection and staging of RCC. Multidetector CT (MDCT) with the improvement of spatial resolution and the ability to obtain multiphase imaging, multiplanar and three-dimensional reconstructions in any desired plane brought about further improvement in the evaluation of RCC. Differentiation of RCC from benign renal tumors based on MDCT features is improved. Tumor enhancement characteristics on MDCT have been found closely to correlate with the histologic subtype of RCC, the nuclear grade and the cytogenetic characteristics of clear cell RCC. Important information, including tumor size, localization, and organ involvement, presence and extent of venous thrombus, possible invasion of adjacent organs or lymph nodes, and presence of distant metastases are provided by MDCT examination. The preoperative evaluation of patients with RCC was improved by depicting the presence or absence of renal pseudocapsule and by assessing the possible neoplastic infiltration of the perirenal fat tissue and/or renal sinus fat compartment.
Collapse
|
23
|
Zhao Z, Liao G, Li Y, Zhou S, Zou H, Fernando S. Prognostic value of carbonic anhydrase IX immunohistochemical expression in renal cell carcinoma: a meta-analysis of the literature. PLoS One 2014; 9:e114096. [PMID: 25426861 PMCID: PMC4245260 DOI: 10.1371/journal.pone.0114096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/30/2014] [Indexed: 11/29/2022] Open
Abstract
Background Carbonic anhydrase IX (CAIX) protein has been correlated with progression and survival in patients with renal cell carcinoma (RCC). The prognostic value of CAIX in RCC however, remains inconclusive according to published works. This study aimed to analyze CAIX as a biological marker to predict RCC patient prognosis. Methods A literature search of the PubMed and Web of Knowledge databases was performed to retrieve original studies from their inception to December of 2013. Fifteen studies, collectively including a total of 2611 patients with renal cell carcinoma, were carefully reviewed. Standard meta-analysis methods were applied to evaluate the prognostic impact of CAIX expression on patient prognosis. The hazard ratio (HR) and its 95% confidence interval (CI) were recorded for the relationship between CAIX expression and survival, and the data were analyzed using Review Manager 5.2 software and Stata software 11.0. Results In patients with RCC, low CAIX expression was associated with poor disease-specific survival (HR = 1.89, 95% CI: 1.20–2.98, P = 0.006), unfavorable progression-free survival (HR = 2.62, 95% CI: 1.14–6.05, P = 0.02) and worse overall survival (HR = 2.03, 95% CI: 1.28–3.21, P = 0.002). Furthermore, low CAIX expression was significantly associated with the presence of lymph node metastases (odds ratio (OR) = 0.31, 95% CI = 0.15–0.62, P = 0.0009) and distant metastases (OR = 0.66, 95% CI = 0.46–0.96, P = 0.03) and predicted a higher tumor grade (OR = 0.41, 95% CI = 0.31–0.54, P<0.00001). Conclusions Low CAIX expression most likely indicates poor prognosis in RCC patients. Moreover, low CAIX expression was significantly associated with unfavorable clinicopathological factors. To strengthen our findings, further well-designed prospective studies should be conducted to investigate the role of CAIX expression in RCC.
Collapse
Affiliation(s)
- Zhihong Zhao
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guixiang Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqiang Li
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shulu Zhou
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hequn Zou
- Institution of Urology and Nephrology, The third Affiliated Hospital of Southern Medical University, Guangzhou, China
- * E-mail:
| | | |
Collapse
|
24
|
Tomaszewski JJ, Uzzo RG, Smaldone MC. Heterogeneity and renal mass biopsy: a review of its role and reliability. Cancer Biol Med 2014; 11:162-72. [PMID: 25364577 PMCID: PMC4197425 DOI: 10.7497/j.issn.2095-3941.2014.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
Increased abdominal imaging has led to an increase in the detection of the incidental small renal mass (SRM). With increasing recognition that the malignant potential of SRMs is heterogeneous, ranging from benign (15%-20%) to aggressive (20%), enthusiasm for more conservative management strategies in the elderly and infirmed, such as active surveillance (AS), have grown considerably. As the management of the SRM evolves to incorporate ablative techniques and AS for low risk disease, the role of renal mass biopsy (RMB) to help guide individualized therapy is evolving. Historically, the role of RMB was limited to the evaluation of suspected metastatic disease, renal abscess, or lymphoma. However, in the contemporary era, the role of biopsy has grown, most notably to identify patients who harbor benign lesions and for whom treatment, particularly the elderly or frail, may be avoided. When performing a RMB to guide initial clinical decision making for small, localized tumors, the most relevant questions are often relegated to proof of malignancy and documentation (if possible) of grade. However, significant intratumoral heterogeneity has been identified in clear cell renal cell carcinoma (ccRCC) that may lead to an underestimation of the genetic complexity of a tumor when single-biopsy procedures are used. Heterogeneous genomic landscapes and branched parallel evolution of ccRCCs with spatially separated subclones creates an illusion of clonal dominance when assessed by single biopsies and raises important questions regarding how tumors can be optimally sampled and whether future evolutionary tumor branches might be predictable and ultimately targetable. This work raises profound questions concerning the genetic landscape of cancer and how tumor heterogeneity may affect, and possibly confound, targeted diagnostic and therapeutic interventions. In this review, we discuss the current role of RMB, the implications of tumor heterogeneity on diagnostic accuracy, and highlight promising future directions.
Collapse
Affiliation(s)
- Jeffrey J Tomaszewski
- 1 Division of Urology, Department of Surgery, MD Anderson Cancer Center at Cooper, Rowan University School of Medicine, Camden, NJ, 08103, USA ; 2 Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Robert G Uzzo
- 1 Division of Urology, Department of Surgery, MD Anderson Cancer Center at Cooper, Rowan University School of Medicine, Camden, NJ, 08103, USA ; 2 Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Marc C Smaldone
- 1 Division of Urology, Department of Surgery, MD Anderson Cancer Center at Cooper, Rowan University School of Medicine, Camden, NJ, 08103, USA ; 2 Division of Urologic Oncology, Department of Surgical Oncology, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
25
|
Gulati S, Martinez P, Joshi T, Birkbak NJ, Santos CR, Rowan AJ, Pickering L, Gore M, Larkin J, Szallasi Z, Bates PA, Swanton C, Gerlinger M. Systematic evaluation of the prognostic impact and intratumour heterogeneity of clear cell renal cell carcinoma biomarkers. Eur Urol 2014; 66:936-48. [PMID: 25047176 PMCID: PMC4410302 DOI: 10.1016/j.eururo.2014.06.053] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/30/2014] [Indexed: 12/23/2022]
Abstract
BACKGROUND Candidate biomarkers have been identified for clear cell renal cell carcinoma (ccRCC) patients, but most have not been validated. OBJECTIVE To validate published ccRCC prognostic biomarkers in an independent patient cohort and to assess intratumour heterogeneity (ITH) of the most promising markers to guide biomarker optimisation. DESIGN, SETTING, AND PARTICIPANTS Cancer-specific survival (CSS) for each of 28 identified genetic or transcriptomic biomarkers was assessed in 350 ccRCC patients. ITH was interrogated in a multiregion biopsy data set of 10 ccRCCs. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Biomarker association with CSS was analysed by univariate and multivariate analyses. RESULTS AND LIMITATIONS A total of 17 of 28 biomarkers (TP53 mutations; amplifications of chromosomes 8q, 12, 20q11.21q13.32, and 20 and deletions of 4p, 9p, 9p21.3p24.1, and 22q; low EDNRB and TSPAN7 expression and six gene expression signatures) were validated as predictors of poor CSS in univariate analysis. Tumour stage and the ccB expression signature were the only independent predictors in multivariate analysis. ITH of the ccB signature was identified in 8 of 10 tumours. Several genetic alterations that were significant in univariate analysis were enriched, and chromosomal instability indices were increased in samples expressing the ccB signature. The study may be underpowered to validate low-prevalence biomarkers. CONCLUSIONS The ccB signature was the only independent prognostic biomarker. Enrichment of multiple poor prognosis genetic alterations in ccB samples indicated that several events may be required to establish this aggressive phenotype, catalysed in some tumours by chromosomal instability. Multiregion assessment may improve the precision of this biomarker. PATIENT SUMMARY We evaluated the ability of published biomarkers to predict the survival of patients with clear cell kidney cancer in an independent patient cohort. Only one molecular test adds prognostic information to routine clinical assessments. This marker showed good and poor prognosis results within most individual cancers. Future biomarkers need to consider variation within tumours to improve accuracy.
Collapse
Affiliation(s)
- Sakshi Gulati
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Pierre Martinez
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Tejal Joshi
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Nicolai Juul Birkbak
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Claudio R Santos
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Andrew J Rowan
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK
| | | | | | | | - Zoltan Szallasi
- Centre for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark; Children's Hospital Informatics Program at the Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, London, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK; UCL Cancer Institute, London, UK.
| | - Marco Gerlinger
- Translational Cancer Therapeutics Laboratory, Cancer Research UK London Research Institute, London, UK; Present address: Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| |
Collapse
|
26
|
Narimatsu T, Matsuura K, Nakada C, Tsukamoto Y, Hijiya N, Kai T, Inoue T, Uchida T, Nomura T, Sato F, Seto M, Takeuchi I, Mimata H, Moriyama M. Downregulation of NDUFB6 due to 9p24.1-p13.3 loss is implicated in metastatic clear cell renal cell carcinoma. Cancer Med 2014; 4:112-24. [PMID: 25315157 PMCID: PMC4312125 DOI: 10.1002/cam4.351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/24/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to clarify the genomic profiles of metastatic clear cell renal cell carcinomas (ccRCCs) and identify the genes responsible for development of metastasis. We analyzed the genomic profiles of 20 cases of primary ccRCC and their corresponding metastases using array-based comparative genomic hybridization, and identified 32 chromosomal regions in which gene copy number alterations were detected more frequently in metastases than in the primary tumors. Among these 32 regions, 9p24.1-p13.3 loss was the most statistically significant alteration. Furthermore, we found that patients with 9p24.1-p13.3 loss in primary tumors exhibited significantly lower rates of recurrence-free and cancer-specific survival, suggesting that 9p loss in the primary tumor is a potential biomarker predicting early recurrence of metastasis. Interestingly, the genomic profiles of primary tumors with 9p loss resembled those of their corresponding metastases, though 9p loss was accumulated in the metastases derived from the primary tumors without 9p loss. Comparison of the mRNA expression levels revealed that 2 of 58 genes located at 9p24.1-p13.3 were downregulated due to gene copy number loss in ccRCCs. An overexpression study of these two genes in ccRCC cell lines revealed that downregulation of NDUFB6 due to loss at 9p24.1-p13.3 may confer a growth advantage on metastatic ccRCC cells. These results were confirmed by analyzing the data of 405 cases of ccRCC obtained from The Cancer Genome Atlas (TCGA). On the basis of our present data, we propose that NDUFB6 is a possible tumor suppressor of metastatic ccRCCs.
Collapse
Affiliation(s)
- Takahiro Narimatsu
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Japan; Department of Urology, Faculty of Medicine, Oita University, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
El-Mokadem I, Fitzpatrick J, Bondad J, Rauchhaus P, Cunningham J, Pratt N, Fleming S, Nabi G. Chromosome 9p deletion in clear cell renal cell carcinoma predicts recurrence and survival following surgery. Br J Cancer 2014; 111:1381-90. [PMID: 25137021 PMCID: PMC4183850 DOI: 10.1038/bjc.2014.420] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background: Wider clinical applications of 9p status in clear cell renal cell carcinoma (ccRCC) are limited owing to the lack of validation and consensus for interphase fluorescent in situ hybridisation (I-FISH) scoring technique. The aim of this study was to analytically validate the applicability of I-FISH in assessing 9p deletion in ccRCC and to clinically assess its long-term prognostic impact following surgical excision of ccRCC. Methods: Tissue microarrays were constructed from 108 renal cell carcinoma (RCC) tumour paraffin blocks. Interphase fluorescent in situ hybridisation analysis was undertaken based on preset criteria by two independent observers to assess interobserver variability. 9p status in ccRCC tumours was determined and correlated to clinicopathological variables, recurrence-free survival and disease-specific survival. Results: There were 80 ccRCCs with valid 9p scoring and a median follow-up of 95 months. Kappa statistic for interobserver variability was 0.71 (good agreement). 9p deletion was detected in 44% of ccRCCs. 9p loss was associated with higher stage, larger tumours, necrosis, microvascular and renal vein invasion, and higher SSIGN (stage, size, grade and necrosis) score. Patients with 9p-deleted ccRCC were at a higher risk of recurrence (P=0.008) and RCC-specific mortality (P=0.001). On multivariate analysis, 9p deletion was an independent predictor of recurrence (hazard ratio 4.323; P=0.021) and RCC-specific mortality (hazard ratio 4.603; P=0.007). The predictive accuracy of SSIGN score improved from 87.7% to 93.1% by integrating 9p status to the model (P=0.001). Conclusions: Loss of 9p is associated with aggressive ccRCC and worse prognosis in patients following surgery. Our findings independently confirm the findings of previous reports relying on I-FISH to detect 9p (CDKN2A) deletion.
Collapse
Affiliation(s)
- I El-Mokadem
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Fitzpatrick
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Bondad
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - P Rauchhaus
- Division of Population Sciences, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - J Cunningham
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - N Pratt
- Department of Clinical Genetics, NHS Tayside Health Board, Dundee DD1 9SY, UK
| | - S Fleming
- Department of Pathology, Medical Research Institute, School of Medicine, Dundee DD1 9SY, UK
| | - G Nabi
- Academic section of Urology, Medical Research Institute, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
28
|
Hakimi AA, Mano R, Ciriello G, Gonen M, Mikkilineni N, Sfakianos JP, Kim PH, Motzer RJ, Russo P, Reuter VE, Hsieh JJ, Ostrovnaya I. Impact of recurrent copy number alterations and cancer gene mutations on the predictive accuracy of prognostic models in clear cell renal cell carcinoma. J Urol 2014; 192:24-9. [PMID: 24518768 PMCID: PMC4146751 DOI: 10.1016/j.juro.2014.01.088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 11/30/2022]
Abstract
PURPOSE Several recently reported recurrent genomic alterations in clear cell renal cell carcinoma are linked to pathological and clinical outcomes. We determined whether any recurrent cancer gene mutations or copy number alterations identified in the TCGA (The Cancer Genome Atlas) clear cell renal cell carcinoma data set could add to the predictive accuracy of current prognostic models. MATERIALS AND METHODS In 413 patients who underwent nephrectomy/partial nephrectomy we investigated whole exome, copy number array analyses and clinical variables. We identified 65 recurrent genomic alterations based on prevalence and combined them into 35 alterations, including 12 cancer gene mutations. Genomic markers were modeled using the elastic net algorithm with preoperative variables (tumor size plus patient age) and in the postoperative setting using the externally validated Mayo Clinic SSIGN (stage, size, grade and necrosis) prognostic scoring system. These models were subjected to internal validation using bootstrap. RESULTS Median followup in survivors was 45 months. Several markers correlated with adverse cancer specific survival and time to recurrence on univariate analysis. However, most of them lost significance when controlling for tumor size with or without age in the preoperative models or for SSIGN score in the postoperative setting. Adding multiple genomic markers selected by the elastic net algorithm failed to substantially add to the predictive accuracy of any preoperative or postoperative model for cancer specific survival or time to recurrence. CONCLUSIONS While recurrent copy number alterations and cancer gene mutations are biologically significant, they do not appear to improve the predictive accuracy of existing models of clinical cancer specific survival or time to recurrence for clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Roy Mano
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Giovanni Ciriello
- Department of Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Nina Mikkilineni
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - John P Sfakianos
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Philip H Kim
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - James J Hsieh
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York; Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
29
|
Gutenberg A, Nischwitz MD, Gunawan B, Enders C, Jung K, Bergmann M, Feiden W, Egensperger R, Keyvani K, Stolke D, Sure U, Schroeder HWS, Warzok R, Schober R, Meixensberger J, Paulus W, Wassmann H, Stummer W, Blumcke I, Buchfelder M, van Landeghem FKH, Vajkoczy P, Günther M, Bedke J, Giese A, Rohde V, Brück W, Füzesi L, Sander B. Predictive chromosomal clusters of synchronous and metachronous brain metastases in clear cell renal cell carcinoma. Cancer Genet 2014; 207:206-13. [PMID: 25027636 DOI: 10.1016/j.cancergen.2014.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/01/2014] [Accepted: 05/10/2014] [Indexed: 01/21/2023]
Abstract
Synchronous (early) and metachronous (late) brain metastasis (BM) events of sporadic clear cell renal cell carcinoma (ccRCC) (n = 148) were retrospectively analyzed using comparative genomic hybridization (CGH). Using oncogenetic tree models and cluster analyses, chromosomal imbalances related to recurrence-free survival until BM (RFS-BM) were analyzed. Losses at 9p and 9q appeared to be hallmarks of metachronous BM events, whereas an absence of detectable chromosomal changes at 3p was often associated with synchronous BM events. Correspondingly, k-means clustering showed that cluster 1 cases generally exhibited low copy number chromosomal changes that did not involve 3p. Cluster 2 cases had a high occurrence of -9p/-9q (94-98%) deletions, whereas cluster 3 cases had a higher frequency of copy number changes, including loss at chromosome 14 (80%). The higher number of synchronous cases in cluster 1 was also associated with a significantly shorter RFS-BM compared with clusters 2 and 3 (P = 0.02). Conversely, a significantly longer RFS-BM was observed for cluster 2 versus clusters 1 and 3 (P = 0.02). Taken together, these data suggest that metachronous BM events of ccRCC are characterized by loss of chromosome 9, whereas synchronous BM events may form independently of detectable genetic changes at chromosomes 9 and 3p.
Collapse
Affiliation(s)
- Angelika Gutenberg
- Department of Neurosurgery, Georg August University, Göttingen, Germany; Department of Neurosurgery, Johannes Gutenberg University, Mainz, Germany.
| | - Martin D Nischwitz
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Bastian Gunawan
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Christina Enders
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Klaus Jung
- Department of Medical Statistics, Georg August University, Göttingen, Germany
| | - Markus Bergmann
- Department of Neuropathology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Wolfgang Feiden
- Departments of Gastroenteropathology and Neuropathology, University of the Saarland, Homburg, Germany
| | - Rupert Egensperger
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University of Duisburg-Essen, Essen, Germany
| | - Dietmar Stolke
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery, University of Duisburg-Essen, Essen, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, Ernst Moritz Arndt University, Greifswald, Germany
| | - Rolf Warzok
- Department of Neuropathology, Ernst Moritz Arndt University, Greifswald, Germany
| | - Ralf Schober
- Department of Neuropathology, University of Leipzig, Leipzig, Germany
| | | | - Werner Paulus
- Department of Neuropathology, Westphalian Wilhelm University, Münster, Germany
| | - Hansdetlef Wassmann
- Department of Neurosurgery, Westphalian Wilhelm University, Münster, Germany
| | - Wolfgang Stummer
- Department of Neurosurgery, Westphalian Wilhelm University, Münster, Germany
| | - Ingmar Blumcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Frank K H van Landeghem
- Department of Neuropathology, Charité University Medicine, Berlin, Germany; Department of Neuropathology, University of Alberta, Edmonton, Canada
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Marlis Günther
- Department of Pathology, Health Care Center Brandenburg, Brandenburg, Germany
| | - Jens Bedke
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Alf Giese
- Department of Neurosurgery, Johannes Gutenberg University, Mainz, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg August University, Göttingen, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Georg August University, Göttingen, Germany
| | - Laszlo Füzesi
- Department of Gastroenteropathology, Georg August University, Göttingen, Germany
| | - Bjoern Sander
- Stereology and Electron Microscopy Laboratory, Department of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Renal cell carcinoma with smooth muscle stroma lacks chromosome 3p and VHL alterations. Mod Pathol 2014; 27:765-74. [PMID: 24201123 DOI: 10.1038/modpathol.2013.180] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/17/2013] [Accepted: 08/07/2013] [Indexed: 01/25/2023]
Abstract
Renal cell carcinoma with prominent smooth muscle stroma is a rare neoplasm composed of an admixture of epithelial cell with clear cytoplasm arranged in small nest and tubular structures and a stroma composed of smooth muscle. In the epithelial component, loss of chromosome 3p detected by fluorescence in situ hybridization (FISH) has been reported and on this basis these neoplasms have been viewed as variants of clear cell renal cell carcinoma. To test the validity of this classification, we have evaluated the chromosome 3 and VHL status of three of these tumors using FISH, array comparative genomic hybridization, gene sequencing, and methylation-specific multiplex ligation-dependent probe amplification analysis. None of the tumors showed deletion of chromosome 3p, VHL mutation, a significant VHL methylation, or changes in VHL copy number and all three tumors demonstrated a flat profile in the comparative genomic hybridization analysis. We conclude that renal cell carcinoma with smooth muscle stroma should be considered as an entity distinct from clear cell renal cell carcinoma.
Collapse
|
31
|
Significance of chromosome 9p status in renal cell carcinoma: a systematic review and quality of the reported studies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:521380. [PMID: 24877109 PMCID: PMC4022119 DOI: 10.1155/2014/521380] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/02/2014] [Indexed: 01/03/2023]
Abstract
Defining the prognosis of renal cell carcinoma (RCC) using genetic tests is an evolving area. The prognostic significance of 9p status in RCC, although described in the literature, remains underutilised in clinical practice. The study explored the causes of this translational gap. A systematic review on the significance of 9p status in RCC was performed to assess its clinical applicability and impact on clinical decision-making. Medline, Embase, and other electronic searches were made for studies reporting on 9p status in RCC. We collected data on: genetic techniques, pathological parameters, clinical outcomes, and completeness of follow-up assessment. Eleven studies reporting on 1,431 patients using different genetic techniques were included. The most commonly used genetic technique for the assessment of 9p status in RCC was fluorescence in situ hybridization. Combined genomic hybridisation (CGH), microsatellite analysis, karyotyping, and sequencing were other reported techniques. Various thresholds and cut-off values were used for the diagnosis of 9p deletion in different studies. Standardization, interobserver agreement, and consensus on the interpretation of test remained poor. The studies lacked validation and had high risk of bias and poor clinical applicability as assessed by two independent reviewers using a modified quality assessment tool. Further protocol driven studies with standardised methodology including use of appropriate positive and negative controls, assessment of interobserver variations, and evidenced based follow-up protocols are needed to clarify the role of 9p status in predicting oncological outcomes in renal cell cancer.
Collapse
|
32
|
de Oliveira D, Dall'Oglio MF, Reis ST, Zerati M, Souza IC, Leite KR, Srougi M. Chromosome 9p deletions are an independent predictor of tumor progression following nephrectomy in patients with localized clear cell renal cell carcinoma. Urol Oncol 2014; 32:601-6. [PMID: 24629495 DOI: 10.1016/j.urolonc.2013.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/24/2013] [Accepted: 12/19/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Chromosome 9p deletions have been observed in 14% to 36% of patients with clear cell renal cell carcinoma (ccRCC) and are associated with advanced-stage tumors. We evaluated whether chromosome 9p deletions are an independent predictor of worse outcomes in patients with localized ccRCC. MATERIALS AND METHODS In this retrospective study, tumor samples from 94 patients with ccRCC NX-0 M0 who underwent radical nephrectomy or conservative renal surgery were analyzed using a fluorescence in situ hybridization technique. RESULTS The median follow-up period was 11.7 years, and 9p deletions were identified in 15% of cases. The cancer-specific survival rate estimated at 5 and 10 years was 99% and 96%, respectively, for patients without such chromosomal losses and 71% and 57% in patients with a loss of 9p (P<0.001). Chromosome 9p deletions were an independent prognostic factor in a multivariate analysis, increasing the risk of death due to disease by 28-fold (95% CI: 5-155, P<0.001). In patients with a low risk of progression, i.e., a low Stage, Size, Grade, and Necrosis score (0-2), low risk according to the University of California at Los Angeles Integrated Staging System, and low risk according to the pathological triad used at University of Sao Paulo, tumors with 9p deletions were significantly associated with a poorer cancer-specific survival at 10 years: 70%, 67%, and 67% vs. 98%, 97%, and 98%, respectively, in patients without 9p deletions. CONCLUSION Chromosome 9p deletions independently establish a poorer prognosis for patients with localized ccRCC, providing further relevant clinical information that may improve the predictive ability of the main prognostic systems currently in use.
Collapse
Affiliation(s)
- Daniel de Oliveira
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil.
| | | | - Sabrina T Reis
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Marcelo Zerati
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Isida C Souza
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Katia R Leite
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Miguel Srougi
- Urology Division, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
33
|
Clear cell papillary renal cell carcinoma: micro-RNA expression profiling and comparison with clear cell renal cell carcinoma and papillary renal cell carcinoma. Hum Pathol 2014; 45:1130-8. [PMID: 24703100 DOI: 10.1016/j.humpath.2014.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/12/2014] [Accepted: 01/15/2014] [Indexed: 01/13/2023]
Abstract
Clear cell papillary renal cell carcinoma (CCPRCC) is a low-grade renal neoplasm with morphological characteristics mimicking both clear cell renal cell carcinoma (CCRCC) and papillary renal cell carcinoma (PRCC). However, despite some overlapping features, their morphological, immunohistochemical, and molecular profiles are distinct. Micro-RNAs (miRNAs) are small noncoding RNAs that play a crucial role in regulating gene expression and are involved in various biological processes, including cancer development. To better understand the biology of this tumor, we aimed to analyze the miRNA expression profile of a set of CCPRCC using microarray and quantitative reverse transcription-polymerase chain reaction. A total of 15 cases diagnosed as CCPRCC were used in this study. Among the most differentially expressed miRNA in CCPRCC, we found miR-210, miR-122, miR-34a, miR-21, miR-34b*, and miR-489 to be up-regulated, whereas miR-4284, miR-1202, miR-135a, miR-1973, and miR-204 were down-regulated compared with normal renal parenchyma. To identify consensus of differentially regulated miRNA between CCPRCC, CCRCC, and PRCC, we additionally determined differential miRNA expression using 2 publically available microarray data sets from the NCBI Gene Expression Omnibus database (GSE41282 and GSE3798). This comparison revealed that the miRNA expression profile of CCPRCC shows some overlapping characteristics between CCRCC and PRCC. Moreover, CCPRCC lacks dysregulation of important miRNAs typically associated with aggressive behavior. In summary, we describe the miRNA expression profile of a relatively infrequent type of renal cancer. Our results may help in understanding the molecular underpinning of this newly recognized entity.
Collapse
|
34
|
Xia QY, Rao Q, Cheng L, Shen Q, Shi SS, Li L, Liu B, Zhang J, Wang YF, Shi QL, Wang JD, Ma HH, Lu ZF, Yu B, Zhang RS, Zhou XJ. Loss of BRM expression is a frequently observed event in poorly differentiated clear cell renal cell carcinoma. Histopathology 2014; 64:847-62. [PMID: 24471421 DOI: 10.1111/his.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Qiu-yuan Xia
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qiu Rao
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Liang Cheng
- Department of Pathology and Laboratory; Indiana University School of Medicine; Indianapolis IN USA
| | - Qin Shen
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Shan-shan Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Li Li
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Biao Liu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Jin Zhang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Yan-fen Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qun-li Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Jian-dong Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Heng-hui Ma
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Zhen-feng Lu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Bo Yu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Ru-song Zhang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Xiao-jun Zhou
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| |
Collapse
|
35
|
Abstract
The International Society of Urological Pathology convened a consensus conference on renal cancer, preceded by an online survey, to address issues relating to the diagnosis and reporting of renal neoplasia. In this report, the role of biomarkers in the diagnosis and assessment of prognosis of renal tumors is addressed. In particular we focused upon the use of immunohistochemical markers and the approach to specific differential diagnostic scenarios. We enquired whether cytogenetic and molecular tools were applied in practice and asked for views on the perceived prognostic role of biomarkers. Both the survey and conference voting results demonstrated a high degree of consensus in participants' responses regarding prognostic/predictive markers and molecular techniques, whereas it was apparent that biomarkers for these purposes remained outside the diagnostic realm pending clinical validation. Although no individual antibody or panel of antibodies reached consensus for classifying renal tumors, or for confirming renal metastatic disease, it was noted from the online survey that 87% of respondents used immunohistochemistry to subtype renal tumors sometimes or occasionally, and a majority (87%) used immunohistochemical markers (Pax 2 or Pax 8, renal cell carcinoma [RCC] marker, panel of pan-CK, CK7, vimentin, and CD10) in confirming the diagnosis of metastatic RCC. There was consensus that immunohistochemistry should be used for histologic subtyping and applied before reaching a diagnosis of unclassified RCC. At the conference, there was consensus that TFE3 and TFEB analysis ought to be requested when RCC was diagnosed in a young patient or when histologic appearances were suggestive of the translocation subtype; whereas Pax 2 and/or Pax 8 were considered to be the most useful markers in the diagnosis of a renal primary.
Collapse
|
36
|
Zhang BY, Thompson RH, Lohse CM, Dronca RS, Cheville JC, Kwon ED, Leibovich BC. Carbonic anhydrase IX (CAIX) is not an independent predictor of outcome in patients with clear cell renal cell carcinoma (ccRCC) after long-term follow-up. BJU Int 2013; 111:1046-53. [DOI: 10.1111/bju.12075] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ben Y. Zhang
- Department of Internal Medicine; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | - R. Houston Thompson
- Department of Urology; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | - Christine M. Lohse
- Department of Health Sciences Research; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | - Roxana S. Dronca
- Department of Oncology; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | - John C. Cheville
- Department of Pathology; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | - Eugene D. Kwon
- Department of Urology; Mayo Clinic and Mayo Medical School; Rochester MN USA
| | | |
Collapse
|
37
|
Nichele I, Zamò A, Bertolaso A, Bifari F, Tinelli M, Franchini M, Stradoni R, Aprili F, Pizzolo G, Krampera M. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS One 2012; 7:e52811. [PMID: 23285191 PMCID: PMC3528718 DOI: 10.1371/journal.pone.0052811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 11/21/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND small B-cell neoplasms can show plasmacytic differentiation and may potentially progress to aggressive lymphoma (DLBCL). Epstein-Barr virus (EBV) infection may cause the transformation of malignant cells in vitro. DESIGN AND METHOD we established VR09 cell line with plasmacytic differentiation, obtained from a case of atypical, non-CLL B-cell chronic lymphoproliferative disease with plasmacytic features. We used flow cytometry, immunohistochemistry, polymerase chain reaction, cytogenetic analysis and florescence in situ hybridization in the attempt at thoroughly characterizing the cell line. We showed VR09 tumorigenic potential in vivo, leading to the development of activated DLBCL with plasmacytic features. RESULTS VR09 cells displayed plasmacytic appearance and grew as spherical tumors when inoculated subcutaneously into immunodeficient Rag2(-/-) γ-chain(-/-) mice. VR09 cell line and tumors displayed the phenotype of activated stage of B cell maturation, with secretory differentiation (CD19+ CD20+ CD79a+ CD79b+/- CD138+ cyclin D1- Ki67 80% IgM+ IgD+ MUM1+ MNDA+ CD10- CD22+ CD23+ CD43+ K+, λ- Bcl2+ Bcl6-) and they presented episomal EBV genome, chromosome 12 trisomy, lack of c-MYC rearrangement and Myd88 gene mutation, presence of somatic hypermutation in the VH region, and wild-type p53. CONCLUSION This new EBV-positive cell line may be useful to further characterize in vivo activated DLBCL with plasmacytic features.
Collapse
MESH Headings
- Aged
- Animals
- CARD Signaling Adaptor Proteins/genetics
- CD79 Antigens/genetics
- Cell Cycle
- Cell Line, Tumor
- Disease Models, Animal
- Guanylate Cyclase/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Variable Region/genetics
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Karyotype
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/virology
- Male
- Mice
- Mice, Knockout
- Mutation
- Myeloid Differentiation Factor 88/genetics
- Transplantation, Heterologous
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Ilaria Nichele
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alberto Zamò
- Section of Pathological Anatomy, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Anna Bertolaso
- Section of Pathological Anatomy, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Francesco Bifari
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Martina Tinelli
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Marta Franchini
- Section of Pathological Anatomy, Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Roberta Stradoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Fiorenza Aprili
- Laboratory of Cytogenetics, Department of Pathology and Diagnostics, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Giovanni Pizzolo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
38
|
True 3q chromosomal amplification in squamous cell lung carcinoma by FISH and aCGH molecular analysis: impact on targeted drugs. PLoS One 2012; 7:e49689. [PMID: 23236352 PMCID: PMC3516520 DOI: 10.1371/journal.pone.0049689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/11/2012] [Indexed: 01/15/2023] Open
Abstract
Squamous lung carcinoma lacks specific “ad hoc” therapies. Amplification of chromosome 3q is the most common genomic aberration and this region harbours genes having role as novel targets for therapeutics. There is no standard definition on how to score and report 3q amplification. False versus true 3q chromosomal amplification in squamous cell lung carcinoma may have tremendous impact on trials involving drugs which target DNA zones mapping on 3q. Forty squamous lung carcinomas were analyzed by FISH to assess chromosome 3q amplification. aCGH was performed as gold-standard to avoid false positive amplifications. Three clustered patterns of fluorescent signals were observed. Eight cases out of 40 (20%) showed ≥8 3q signals. Twenty out of 40 (50%) showed from 3 to 7 signals. The remaining showed two fluorescent signals (30%). When corrected by whole chromosome 3 signals, only cases with ≥8 signals maintained a LSI 3q/CEP3 ratio >2. Only the cases showing 3q amplification by aCGH (+3q25.3−3q27.3) showed ≥8 fluorescent signals at FISH evidencing a 3q/3 ratio >2. The remaining cases showed flat genomic portrait at aCGH on chromosome 3. We concluded that: 1) absolute copy number of 3q chromosomal region may harbour false positive interpretation of 3q amplification in squamous cell carcinoma; 2) a case results truly “amplified for chromosome 3q” when showing ≥8 fluorescent 3q signals; 3) trials involving drugs targeting loci on chromosome 3q in squamous lung carcinoma therapy have to consider false versus true 3q chromosomal amplification.
Collapse
|
39
|
Volpe A, Finelli A, Gill IS, Jewett MA, Martignoni G, Polascik TJ, Remzi M, Uzzo RG. Rationale for Percutaneous Biopsy and Histologic Characterisation of Renal Tumours. Eur Urol 2012; 62:491-504. [DOI: 10.1016/j.eururo.2012.05.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/03/2012] [Indexed: 12/18/2022]
|
40
|
Jonasch E, Futreal A, Davis I, Bailey S, Kim WY, Brugarolas J, Giaccia A, Kurban G, Pause A, Frydman J, Zurita A, Rini BI, Sharma P, Atkins M, Walker C, Rathmell WK. State of the science: an update on renal cell carcinoma. Mol Cancer Res 2012; 10:859-80. [PMID: 22638109 PMCID: PMC3399969 DOI: 10.1158/1541-7786.mcr-12-0117] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Renal cell carcinomas (RCC) are emerging as a complex set of diseases that are having a major socioeconomic impact and showing a continued rise in incidence throughout the world. As the field of urologic oncology faces these trends, several major genomic and mechanistic discoveries are altering our core understanding of this multitude of cancers, including several new rare subtypes of renal cancers. In this review, these new findings are examined and placed in the context of the well-established association of clear cell RCC (ccRCC) with mutations in the von Hippel-Lindau (VHL) gene and resultant aberrant hypoxia inducible factor (HIF) signaling. The impact of novel ccRCC-associated genetic lesions on chromatin remodeling and epigenetic regulation is explored. The effects of VHL mutation on primary ciliary function, extracellular matrix homeostasis, and tumor metabolism are discussed. Studies of VHL proteostasis, with the goal of harnessing the proteostatic machinery to refunctionalize mutant VHL, are reviewed. Translational efforts using molecular tools to elucidate discriminating features of ccRCC tumors and develop improved prognostic and predictive algorithms are presented, and new therapeutics arising from the earliest molecular discoveries in ccRCC are summarized. By creating an integrated review of the key genomic and molecular biological disease characteristics of ccRCC and placing these data in the context of the evolving therapeutic landscape, we intend to facilitate interaction among basic, translational, and clinical researchers involved in the treatment of this devastating disease, and accelerate progress toward its ultimate eradication.
Collapse
Affiliation(s)
| | | | - Ian Davis
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - Sean Bailey
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - William Y. Kim
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | | | | | | | | | | | | | - Brian I. Rini
- Cleveland Clinic Taussig Cancer Center, Cleveland, OH
| | - Pam Sharma
- University of Texas-Houston Medical Center, Houston, TX
| | | | - Cheryl Walker
- University of Texas-Houston Medical Center, Houston, TX
| | | |
Collapse
|
41
|
Farber LJ, Furge K, Teh BT. Renal Cell Carcinoma Deep Sequencing: Recent Developments. Curr Oncol Rep 2012; 14:240-8. [DOI: 10.1007/s11912-012-0230-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Porta C, Bracarda S. 3rd Pavia international symposium on advanced kidney cancer. Expert Opin Pharmacother 2012; 13:445-53. [PMID: 22263875 DOI: 10.1517/14656566.2012.651461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kidney cancers' natural history has radically changed in the past few years, due to the development of novel targeted agents. Despite these improvements, several unanswered questions still remain on the table, regarding the best first-line treatment, the ideal sequence of treatments, the management of specific subgroups of patients (e.g., elderly patients or those with comorbidities) and the relevance of prognostic factors, among many others. To foster discussions among clinicians and investigators working in this field, and to exchange different viewpoints concerning the newest advances in kidney cancer pathogenesis and treatment, the 3rd Pavia International Symposium on Advanced Kidney cancer was held in Pavia (Italy) between 30 June and 1 July 2011. The aim of this report is to summarize the most significant advances in the different disciplines applied to advanced kidney cancer, which were presented and discussed during the meeting, and how these advances will be changing the perspective of patients with this disease.
Collapse
Affiliation(s)
- Camillo Porta
- I.R.C.C.S. San Matteo University Hospital Foundation, Medical Oncology , 27100 Pavia , Italy
| | | |
Collapse
|
43
|
Kuroda N, Yamashita M, Kakehi Y, Hes O, Michal M, Lee GH. Acquired cystic disease-associated renal cell carcinoma: an immunohistochemical and fluorescence in situ hybridization study. Med Mol Morphol 2011; 44:228-32. [DOI: 10.1007/s00795-010-0496-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/18/2010] [Indexed: 11/30/2022]
|
44
|
Chromosome 14q loss defines a molecular subtype of clear-cell renal cell carcinoma associated with poor prognosis. Mod Pathol 2011; 24:1470-9. [PMID: 21725288 PMCID: PMC4639322 DOI: 10.1038/modpathol.2011.107] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Loss of chromosome 14 has been associated with poor outcomes in clear-cell renal cell carcinoma. Expression of HIFα isoforms has been linked to distinct molecular phenotypes of clear-cell renal cell carcinoma. We hypothesized that chromosome 14 loss could lead to a decrease in HIF1α levels, as its gene (HIF1A) resides in this chromosome. We analyzed 112 archival clear-cell renal cell carcinoma tumor specimens with 250K SNP microarrays. We also evaluated expression of HIFα isoforms by qPCR and immunohistochemistry in a subset of 30 patients. Loss of chromosome 14q was associated with high stage (III-IV, P=0.001), high risk for recurrence (P=0.002, RR 2.78 (1.506-5.153)) and with decreased overall survival (P=0.030) in non-metastatic clear-cell renal cell carcinoma. HIF1α mRNA and protein expression was reduced in specimens with loss of 14q (P=0.014) whereas HIF2α was not. Gain of 8q was associated with decreased overall survival (P<0.0001). Our studies confirm an association between 14q loss and clinical outcome in non-metastatic clear-cell renal cell carcinoma patients and that 8q gain is a candidate prognostic marker for decreased overall survival and appears to further decrease survival in patients with 14q loss. We have also identified that differential expression of HIF1α is associated with 14q loss. Further exploration of 8q gain, 14q loss, MYC, HIF1A and EPAS1 (HIF2α) as molecular markers of tumor behavior and prognosis could aid in personalizing medicine for patients with clear-cell renal cell carcinoma.
Collapse
|
45
|
Sauk SC, Hsu MS, Margolis DJA, Lu DSK, Rao NP, Belldegrun AS, Pantuck AJ, Raman SS. Clear cell renal cell carcinoma: multiphasic multidetector CT imaging features help predict genetic karyotypes. Radiology 2011; 261:854-62. [PMID: 22025734 DOI: 10.1148/radiol.11101508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To determine whether imaging characteristics at multiphasic multidetector computed tomography (CT) correlate with common karyotypic abnormalities in patients with clear cell renal cell carcinomas (ccRCCs). MATERIALS AND METHODS Institutional review board approval was obtained, and informed consent was waived for this HIPAA-compliant retrospective study. From January 2000 through September 2007, the prenephrectomy multiphasic (corticomedullary, nephrographic, and excretory phases), multidetector helical CT images of 58 histologically proved and karyotyped ccRCCs were reviewed by two readers with experience in abdominal imaging. Imaging features assessed included degree of attenuation, contour, and presence of calcifications and neovascularity. These features were independently correlated with specific karyotypic abnormalities on the resected specimens. Degree of attenuation data were analyzed with logistic regression for significance (P < .05), and morphologic characteristics were analyzed with odds ratios for assessing their diagnostic power. RESULTS On unenhanced scans, 7% (two of 28) of ccRCCs with the loss of chromosome 3p were calcified, whereas 37% (11 of 30) of lesions without this anomaly were calcified (odds ratio, 0.13). During the corticomedullary phase, ccRCCs with the loss of chromosome Y enhanced more than those without this anomaly (130.0 vs 102.5 HU, P = .04), and ccRCCs with trisomy 7 enhanced less than those without this anomaly (105.8 vs 139.3 HU, P = .04). During the excretory phase, ccRCCs with trisomy 5 enhanced more than those without this anomaly (115.5 vs 83.4 HU, P = .03). CONCLUSION The genetic makeup of ccRCCs affects their imaging features at multidetector CT examinations. Multidetector CT imaging characteristics may help suggest differences at the cytogenetic level among ccRCCs.
Collapse
Affiliation(s)
- Steven C Sauk
- Department of Radiology, David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, 757 Westwood Blvd, Los Angeles, CA 90095-1721, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sanjmyatav J, Junker K, Matthes S, Muehr M, Sava D, Sternal M, Wessendorf S, Kreuz M, Gajda M, Wunderlich H, Schwaenen C. Identification of genomic alterations associated with metastasis and cancer specific survival in clear cell renal cell carcinoma. J Urol 2011; 186:2078-83. [PMID: 21944119 DOI: 10.1016/j.juro.2011.06.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Indexed: 01/17/2023]
Abstract
PURPOSE We identified regions of DNA copy number changes that are significantly associated with metastasis and clinical outcome in patients with clear cell renal cell carcinoma. MATERIALS AND METHODS We analyzed 53 primary clear cell renal cell carcinomas, including 31 metastasized and 22 nonmetastasized tumors, by array comparative genomic hybridization with a median resolution of 1 to 1.5 Mbp. To validate copy number aberrations with potential prognostic value we performed fluorescence in situ hybridization analysis using commercially available fluorescent probes. RESULTS We identified 5 recurrent chromosomal aberrations that were significantly associated with metastasis, including gains of 1q21.3, 12q13.12, 12q13.3q14.1 and 20q11.21q13.2, and loss of 9p21.3p24.1. The most prominent of them with the highest OR for metastatic risk were loss of 9p21.3p24.1, and gains of 1q21.3 and 20q11.21q13.32. Eight alterations involving chromosomes 7, 9, 12, 16 and 20 significantly correlated with shortened cancer specific survival. The lowest p values on Kaplan-Meier analysis showed losses of 9p21.3p24.1 and 9q32q33.1, and gains of 7q36.3 and 20q11.21q13.32. Fluorescence in situ hybridization done in the same cohort for the 4 select regions 1q21.3, 7q36.3, 9p21.3p24.1 and 20q11.21q13.32 clearly confirmed the results of array comparative genomic hybridization. CONCLUSIONS Data suggest that specific chromosomal alterations in clear cell renal cell carcinoma can be used to predict metastasis and cancer specific survival in patients with clear cell renal cell carcinoma. It seems possible to design a combined fluorescence in situ hybridization assay based on these genetic targets for outcome prediction, which can be used for routine diagnostics.
Collapse
Affiliation(s)
- Jimsgene Sanjmyatav
- Department of Urology and Pathology, Jena University Hospital, Jena, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Kidney and upper urinary tract cancers account for approximately 54,000 cases every year in the United States, and represent about 3.7% of adult malignancies, with more than 13,000 annual deaths. Classification of renal tumors is typically based on histomorphologic characteristics but, on occasion, morphologic characteristics are not sufficient. Each of the most common histologic subtypes harbors specific recurrent genetic abnormalities, such as deletion of 3p in conventional clear cell carcinoma, trisomy 7 and 17 in papillary renal cell carcinoma, multiple monosomies in chromophobe renal cell carcinoma, and a nearly diploid genome in benign oncocytomas. Knowledge of this information can provide diagnostic support and prognostic refinement in renal epithelial tumors. Identification of the specific subtype of a renal tumor is critical in guiding surveillance for recurrence and the appropriate use of targeted therapies. Cytogenomic arrays are increasingly being used as a clinical tool for genome-wide assessment of copy number and loss of heterozygosity in renal tumors. In addition, the improved understanding of the hereditary causes of renal tumors and their role in sporadic malignancies has led to the development of more effective targeted therapies. This review summarizes the genetic and genomic changes in the most common types of renal epithelial tumors and highlights the clinical implications of these aberrations.
Collapse
|
48
|
Hudes GR, Carducci MA, Choueiri TK, Esper P, Jonasch E, Kumar R, Margolin KA, Michaelson MD, Motzer RJ, Pili R, Roethke S, Srinivas S. NCCN Task Force report: optimizing treatment of advanced renal cell carcinoma with molecular targeted therapy. J Natl Compr Canc Netw 2011; 9 Suppl 1:S1-29. [PMID: 21335444 DOI: 10.6004/jnccn.2011.0124] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The outcome of patients with metastatic renal cell carcinoma has been substantially improved with administration of the currently available molecularly targeted therapies. However, proper selection of therapy and management of toxicities remain challenging. NCCN convened a multidisciplinary task force panel to address the clinical issues associated with these therapies in attempt to help practicing oncologists optimize patient outcomes. This report summarizes the background data presented at the task force meeting and the ensuing discussion.
Collapse
|
49
|
Algaba F, Akaza H, López-Beltrán A, Martignoni G, Moch H, Montironi R, Reuter V. Current pathology keys of renal cell carcinoma. Eur Urol 2011; 60:634-43. [PMID: 21741159 DOI: 10.1016/j.eururo.2011.06.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/24/2011] [Indexed: 02/03/2023]
Abstract
CONTEXT Renal cell carcinoma (RCC) in adults comprises a heterogeneous group of tumours with variable clinical outcomes that range from indolent to overtly malignant. The application of molecular genetic techniques to the study of renal neoplasms has resulted in an improved classification of these entities and a better understanding of the biologic mechanisms responsible for tumour development and progression. The current 2004 World Health Organisation classification of adult renal epithelial neoplasms has expanded rapidly with new categories recently incorporated. OBJECTIVE To review and evaluate the evidence implicating pathologic features and classification of RCC in adults as a tool to approach patients' prognosis and modulate current therapy. EVIDENCE ACQUISITION Members of Committee 3: Pathology, under the auspices of the International Consultation on Urological Diseases and the European Association of Urology (ICUD-EAU) International Consultation on Kidney Cancer, performed a systematic review using PubMed. Participating pathologists discussed pathologic categories and diagnostic features of RCC in adults. EVIDENCE SYNTHESIS We reviewed and discussed articles and the personal experiences of participating uropathologists. CONCLUSIONS The conclusions reached by the ICUD-EAU 2010 International Consultation on Kidney Cancer emphasise the appropriate pathologic diagnosis of RCC in adults as a tool to approach patients' prognosis and modulate current therapy. Further emphasis should be placed on defining risk groups of RCC and diagnostic features of unusual tumours such as familial RCC, translocation RCC, and tubular mucinous and spindle cell carcinoma. A number of recently described entities and morphologic variants of classical categories deserves recognition because they can be important in differential diagnosis and therapy.
Collapse
Affiliation(s)
- Ferran Algaba
- Section of Pathology, Fundació Puigvert-Universitat Autónoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
50
|
Ficarra V, Brunelli M, Cheng L, Kirkali Z, Lopez-Beltran A, Martignoni G, Montironi R, Novara G, Van Poppel H. Prognostic and Therapeutic Impact of the Histopathologic Definition of Parenchymal Epithelial Renal Tumors. Eur Urol 2010; 58:655-68. [DOI: 10.1016/j.eururo.2010.08.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 08/02/2010] [Indexed: 01/20/2023]
|