1
|
Hackley RK, Vreugdenhil-Hayslette A, Darnell CL, Schmid AK. A conserved transcription factor controls gluconeogenesis via distinct targets in hypersaline-adapted archaea with diverse metabolic capabilities. PLoS Genet 2024; 20:e1011115. [PMID: 38227606 PMCID: PMC10817205 DOI: 10.1371/journal.pgen.1011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/26/2024] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.
Collapse
Affiliation(s)
- Rylee K. Hackley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | | | - Cynthia L. Darnell
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Marinov GK, Bagdatli ST, Wu T, He C, Kundaje A, Greenleaf WJ. The chromatin landscape of the euryarchaeon Haloferax volcanii. Genome Biol 2023; 24:253. [PMID: 37932847 PMCID: PMC10626798 DOI: 10.1186/s13059-023-03095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Archaea, together with Bacteria, represent the two main divisions of life on Earth, with many of the defining characteristics of the more complex eukaryotes tracing their origin to evolutionary innovations first made in their archaeal ancestors. One of the most notable such features is nucleosomal chromatin, although archaeal histones and chromatin differ significantly from those of eukaryotes, not all archaea possess histones and it is not clear if histones are a main packaging component for all that do. Despite increased interest in archaeal chromatin in recent years, its properties have been little studied using genomic tools. RESULTS Here, we adapt the ATAC-seq assay to archaea and use it to map the accessible landscape of the genome of the euryarchaeote Haloferax volcanii. We integrate the resulting datasets with genome-wide maps of active transcription and single-stranded DNA (ssDNA) and find that while H. volcanii promoters exist in a preferentially accessible state, unlike most eukaryotes, modulation of transcriptional activity is not associated with changes in promoter accessibility. Applying orthogonal single-molecule footprinting methods, we quantify the absolute levels of physical protection of H. volcanii and find that Haloferax chromatin is similarly or only slightly more accessible, in aggregate, than that of eukaryotes. We also evaluate the degree of coordination of transcription within archaeal operons and make the unexpected observation that some CRISPR arrays are associated with highly prevalent ssDNA structures. CONCLUSIONS Our results provide the first comprehensive maps of chromatin accessibility and active transcription in Haloferax across conditions and thus a foundation for future functional studies of archaeal chromatin.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - S Tansu Bagdatli
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Tong Wu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
3
|
Marinov GK, Doughty B, Kundaje A, Greenleaf WJ. The landscape of the histone-organized chromatin of Bdellovibrionota bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564843. [PMID: 37961278 PMCID: PMC10634947 DOI: 10.1101/2023.10.30.564843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Histone proteins have traditionally been thought to be restricted to eukaryotes and most archaea, with eukaryotic nucleosomal histones deriving from their archaeal ancestors. In contrast, bacteria lack histones as a rule. However, histone proteins have recently been identified in a few bacterial clades, most notably the phylum Bdellovibrionota, and these histones have been proposed to exhibit a range of divergent features compared to histones in archaea and eukaryotes. However, no functional genomic studies of the properties of Bdellovibrionota chromatin have been carried out. In this work, we map the landscape of chromatin accessibility, active transcription and three-dimensional genome organization in a member of Bdellovibrionota (a Bacteriovorax strain). We find that, similar to what is observed in some archaea and in eukaryotes with compact genomes such as yeast, Bacteriovorax chromatin is characterized by preferential accessibility around promoter regions. Similar to eukaryotes, chromatin accessibility in Bacteriovorax positively correlates with gene expression. Mapping active transcription through single-strand DNA (ssDNA) profiling revealed that unlike in yeast, but similar to the state of mammalian and fly promoters, Bacteriovorax promoters exhibit very strong polymerase pausing. Finally, similar to that of other bacteria without histones, the Bacteriovorax genome exists in a three-dimensional (3D) configuration organized by the parABS system along the axis defined by replication origin and termination regions. These results provide a foundation for understanding the chromatin biology of the unique Bdellovibrionota bacteria and the functional diversity in chromatin organization across the tree of life.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Benjamin Doughty
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Department of Computer Science, Stanford University, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
4
|
Lorenzetti APR, Kusebauch U, Zaramela LS, Wu WJ, de Almeida JPP, Turkarslan S, L. G. de Lomana A, Gomes-Filho JV, Vêncio RZN, Moritz RL, Koide T, Baliga NS. A Genome-Scale Atlas Reveals Complex Interplay of Transcription and Translation in an Archaeon. mSystems 2023; 8:e0081622. [PMID: 36912639 PMCID: PMC10134880 DOI: 10.1128/msystems.00816-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
The scale of post-transcriptional regulation and the implications of its interplay with other forms of regulation in environmental acclimation are underexplored for organisms of the domain Archaea. Here, we have investigated the scale of post-transcriptional regulation in the extremely halophilic archaeon Halobacterium salinarum NRC-1 by integrating the transcriptome-wide locations of transcript processing sites (TPSs) and SmAP1 binding, the genome-wide locations of antisense RNAs (asRNAs), and the consequences of RNase_2099C knockout on the differential expression of all genes. This integrated analysis has discovered that 54% of all protein-coding genes in the genome of this haloarchaeon are likely targeted by multiple mechanisms for putative post-transcriptional processing and regulation, with about 20% of genes likely being regulated by combinatorial schemes involving SmAP1, asRNAs, and RNase_2099C. Comparative analysis of mRNA levels (transcriptome sequencing [RNA-Seq]) and protein levels (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry [SWATH-MS]) for 2,579 genes over four phases of batch culture growth in complex medium generated additional evidence for the conditional post-transcriptional regulation of 7% of all protein-coding genes. We demonstrate that post-transcriptional regulation may act to fine-tune specialized and rapid acclimation to stressful environments, e.g., as a switch to turn on gas vesicle biogenesis to promote vertical relocation under anoxic conditions and modulate the frequency of transposition by insertion sequence (IS) elements of the IS200/IS605, IS4, and ISH3 families. Findings from this study are provided as an atlas in a public Web resource (https://halodata.systemsbiology.net). IMPORTANCE While the transcriptional regulation landscape of archaea has been extensively investigated, we currently have limited knowledge about post-transcriptional regulation and its driving mechanisms in this domain of life. In this study, we collected and integrated omics data from multiple sources and technologies to infer post-transcriptionally regulated genes and the putative mechanisms modulating their expression at the protein level in Halobacterium salinarum NRC-1. The results suggest that post-transcriptional regulation may drive environmental acclimation by regulating hallmark biological processes. To foster discoveries by other research groups interested in the topic, we extended our integrated data to the public in the form of an interactive atlas (https://halodata.systemsbiology.net).
Collapse
Affiliation(s)
- Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Institute for Systems Biology, Seattle, Washington, USA
| | | | - Lívia S. Zaramela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, Washington, USA
| | - João P. P. de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | - José V. Gomes-Filho
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
- Lawrence Berkeley National Lab, Berkeley, California, USA
| |
Collapse
|
5
|
Sakrikar S, Schmid A. An archaeal histone-like protein regulates gene expression in response to salt stress. Nucleic Acids Res 2021; 49:12732-12743. [PMID: 34883507 PMCID: PMC8682779 DOI: 10.1093/nar/gkab1175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/21/2022] Open
Abstract
Histones, ubiquitous in eukaryotes as DNA-packing proteins, find their evolutionary origins in archaea. Unlike the characterized histone proteins of a number of methanogenic and themophilic archaea, previous research indicated that HpyA, the sole histone encoded in the model halophile Halobacterium salinarum, is not involved in DNA packaging. Instead, it was found to have widespread but subtle effects on gene expression and to maintain wild type cell morphology. However, the precise function of halophilic histone-like proteins remain unclear. Here we use quantitative phenotyping, genetics, and functional genomics to investigate HpyA function. These experiments revealed that HpyA is important for growth and rod-shaped morphology in reduced salinity. HpyA preferentially binds DNA at discrete genomic sites under low salt to regulate expression of ion uptake, particularly iron. HpyA also globally but indirectly activates other ion uptake and nucleotide biosynthesis pathways in a salt-dependent manner. Taken together, these results demonstrate an alternative function for an archaeal histone-like protein as a transcriptional regulator, with its function tuned to the physiological stressors of the hypersaline environment.
Collapse
Affiliation(s)
- Saaz Sakrikar
- Biology Department, Duke University, Durham, NC27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC27708, USA
| | - Amy K Schmid
- Biology Department, Duke University, Durham, NC27708, USA
- University Program in Genetics and Genomics, Duke University, Durham, NC27708, USA
- Center for Genomics and Computational Biology, Duke University, Durham, NC27708, USA
| |
Collapse
|
6
|
Gemayel K, Lomsadze A, Borodovsky M. StartLink and StartLink+: Prediction of Gene Starts in Prokaryotic Genomes. FRONTIERS IN BIOINFORMATICS 2021; 1:704157. [PMID: 36303749 PMCID: PMC9581028 DOI: 10.3389/fbinf.2021.704157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022] Open
Abstract
State-of-the-art algorithms of ab initio gene prediction for prokaryotic genomes were shown to be sufficiently accurate. A pair of algorithms would agree on predictions of gene 3'ends. Nonetheless, predictions of gene starts would not match for 15-25% of genes in a genome. This discrepancy is a serious issue that is difficult to be resolved due to the absence of sufficiently large sets of genes with experimentally verified starts. We have introduced StartLink that infers gene starts from conservation patterns revealed by multiple alignments of homologous nucleotide sequences. We also have introduced StartLink+ combining both ab initio and alignment-based methods. The ability of StartLink to predict the start of a given gene is restricted by the availability of homologs in a database. We observed that StartLink made predictions for 85% of genes per genome on average. The StartLink+ accuracy was shown to be 98-99% on the sets of genes with experimentally verified starts. In comparison with database annotations, we observed that the annotated gene starts deviated from the StartLink+ predictions for ∼5% of genes in AT-rich genomes and for 10-15% of genes in GC-rich genomes on average. The use of StartLink+ has a potential to significantly improve gene start annotation in genomic databases.
Collapse
Affiliation(s)
- Karl Gemayel
- School of Computational Science and Engineering, Georgia Tech, Atlanta, GA, United States
| | - Alexandre Lomsadze
- Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
| | - Mark Borodovsky
- School of Computational Science and Engineering, Georgia Tech, Atlanta, GA, United States
- Wallace H Coulter Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, GA, United States
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
| |
Collapse
|
7
|
Abstract
Magnetosomes are complex membrane organelles synthesized by magnetotactic bacteria (MTB) for navigation in the Earth’s magnetic field. In the alphaproteobacterium Magnetospirillum gryphiswaldense, all steps of magnetosome formation are tightly controlled by >30 specific genes arranged in several gene clusters. However, the transcriptional organization of the magnetosome gene clusters has remained poorly understood. Here, by applying Cappable-seq and whole-transcriptome shotgun RNA sequencing, we show that mamGFDCop and feoAB1op are transcribed as single transcriptional units, whereas multiple transcription start sites (TSS) are present in mms6op, mamXYop, and the long (>16 kb) mamABop. Using a bioluminescence reporter assay and promoter knockouts, we demonstrate that most of the identified TSS originate from biologically meaningful promoters which mediate production of multiple transcripts and are functionally relevant for proper magnetosome biosynthesis. In addition, we identified a strong promoter in a large intergenic region within mamXYop, which likely drives transcription of a noncoding RNA important for gene expression in this operon. In summary, our data suggest a more complex transcriptional architecture of the magnetosome operons than previously recognized, which is largely conserved in other magnetotactic Magnetospirillum species and, thus, is likely fundamental for magnetosome biosynthesis in these organisms. IMPORTANCE Magnetosomes have emerged as a model system to study prokaryotic organelles and a source of biocompatible magnetic nanoparticles for various biomedical applications. However, the lack of knowledge about the transcriptional organization of magnetosome gene clusters has severely impeded the engineering, manipulation, and transfer of this highly complex biosynthetic pathway into other organisms. Here, we provide a high-resolution image of the previously unappreciated transcriptional landscape of the magnetosome operons. Our findings are important for further unraveling the complex genetic framework of magnetosome biosynthesis. In addition, they will facilitate the rational reengineering of magnetic bacteria for improved bioproduction of tunable magnetic nanoparticles, as well as transplantation of magnetosome biosynthesis into foreign hosts by synthetic biology approaches. Overall, our study exemplifies how a genetically complex pathway is orchestrated at the transcriptional level to ensure the balanced expression of the numerous constituents required for the proper assembly of one of the most intricate prokaryotic organelles.
Collapse
|
8
|
Ibrahim AGAER, Vêncio RZN, Lorenzetti APR, Koide T. Halobacterium salinarum and Haloferax volcanii Comparative Transcriptomics Reveals Conserved Transcriptional Processing Sites. Genes (Basel) 2021; 12:genes12071018. [PMID: 34209065 PMCID: PMC8303175 DOI: 10.3390/genes12071018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 01/15/2023] Open
Abstract
Post-transcriptional processing of messenger RNA is an important regulatory strategy that allows relatively fast responses to changes in environmental conditions. In halophile systems biology, the protein perspective of this problem (i.e., ribonucleases which implement the cleavages) is generally more studied than the RNA perspective (i.e., processing sites). In the present in silico work, we mapped genome-wide transcriptional processing sites (TPS) in two halophilic model organisms, Halobacterium salinarum NRC-1 and Haloferax volcanii DS2. TPS were established by reanalysis of publicly available differential RNA-seq (dRNA-seq) data, searching for non-primary (monophosphorylated RNAs) enrichment. We found 2093 TPS in 43% of H. salinarum genes and 3515 TPS in 49% of H. volcanii chromosomal genes. Of the 244 conserved TPS sites found, the majority were located around start and stop codons of orthologous genes. Specific genes are highlighted when discussing antisense, ribosome and insertion sequence associated TPS. Examples include the cell division gene ftsZ2, whose differential processing signal along growth was detected and correlated with post-transcriptional regulation, and biogenesis of sense overlapping transcripts associated with IS200/IS605. We hereby present the comparative, transcriptomics-based processing site maps with a companion browsing interface.
Collapse
Affiliation(s)
- Amr Galal Abd El-Raheem Ibrahim
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Ricardo Z. N. Vêncio
- Department of Computation and Mathematics, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil; (A.G.A.E.-R.I.); (R.Z.N.V.)
| | - Alan P. R. Lorenzetti
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
| | - Tie Koide
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil;
- Correspondence: ; Tel.: +55-16-3315-3107
| |
Collapse
|
9
|
Seitzer P, Yao AI, Cisneros A, Facciotti MT. The Exploration of Novel Regulatory Relationships Drives Haloarchaeal Operon-Like Structural Dynamics over Short Evolutionary Distances. Microorganisms 2020; 8:E1900. [PMID: 33266086 PMCID: PMC7760734 DOI: 10.3390/microorganisms8121900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
Operons are a dominant feature of bacterial and archaeal genome organization. Numerous investigations have related aspects of operon structure to operon function, making operons exemplars for studies aimed at deciphering Nature's design principles for genomic organization at a local scale. We consider this understanding to be both fundamentally important and ultimately useful in the de novo design of increasingly complex synthetic circuits. Here we analyze the evolution of the genomic context of operon-like structures in a set of 76 sequenced and annotated species of halophilic archaea. The phylogenetic depth and breadth of this dataset allows insight into changes in operon-like structures over shorter evolutionary time scales than have been studied in previous cross-species analysis of operon evolution. Our analysis, implemented in the updated software package JContextExplorer finds that operon-like context as measured by changes in structure frequently differs from a sequence divergence model of whole-species phylogeny and that changes seem to be dominated by the exploration of novel regulatory relationships.
Collapse
Affiliation(s)
- Phillip Seitzer
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Andrew I. Yao
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| | - Ariana Cisneros
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
| | - Marc T. Facciotti
- UC Davis Genome Center, UC Davis, Davis, CA 95616, USA; (P.S.); (A.I.Y.); (A.C.)
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Mejía-Almonte C, Busby SJW, Wade JT, van Helden J, Arkin AP, Stormo GD, Eilbeck K, Palsson BO, Galagan JE, Collado-Vides J. Redefining fundamental concepts of transcription initiation in bacteria. Nat Rev Genet 2020; 21:699-714. [PMID: 32665585 PMCID: PMC7990032 DOI: 10.1038/s41576-020-0254-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2020] [Indexed: 12/15/2022]
Abstract
Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.
Collapse
Affiliation(s)
- Citlalli Mejía-Almonte
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México
| | | | - Joseph T Wade
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jacques van Helden
- Aix-Marseille University, INSERM UMR S 1090, Theory and Approaches of Genome Complexity (TAGC), Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Gary D Stormo
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Karen Eilbeck
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Cuernavaca, México.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
11
|
Mishra A, Dhanda S, Siwach P, Aggarwal S, Jayaram B. A novel method SEProm for prokaryotic promoter prediction based on DNA structure and energetics. Bioinformatics 2020; 36:2375-2384. [PMID: 31909789 DOI: 10.1093/bioinformatics/btz941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/08/2019] [Accepted: 01/02/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Despite conservation in general architecture of promoters and protein-DNA interaction interface of RNA polymerases among various prokaryotes, identification of promoter regions in the whole genome sequences remains a daunting challenge. The available tools for promoter prediction do not seem to address the problem satisfactorily, apparently because the biochemical nature of promoter signals is yet to be understood fully. Using 28 structural and 3 energetic parameters, we found that prokaryotic promoter regions have a unique structural and energy state, quite distinct from that of coding regions and the information for this signature state is in-built in their sequences. We developed a novel promoter prediction tool from these 31 parameters using various statistical techniques. RESULTS Here, we introduce SEProm, a novel tool that is developed by studying and utilizing the in-built structural and energy information of DNA sequences, which is applicable to all prokaryotes including archaea. Compared to five most recent, diverged and current best available tools, SEProm performs much better, predicting promoters with an 'F-value' of 82.04 and 'Precision' of 81.08. The next best 'F-value' was obtained with PromPredict (72.14) followed by BProm (68.37). On the basis of 'Precision' value, the next best 'Precision' was observed for Pepper (75.39) followed by PromPredict (72.01). SEProm maintained the lead even when comparison was done on two test organisms (not involved in training for SEProm). AVAILABILITY AND IMPLEMENTATION The software is freely available with easy to follow instructions (www.scfbio-iitd.res.in/software/TSS_Predict.jsp). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology.,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Sahil Dhanda
- Supercomputing Facility for Bioinformatics & Computational Biology
| | - Priyanka Siwach
- Supercomputing Facility for Bioinformatics & Computational Biology.,Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Shruti Aggarwal
- Supercomputing Facility for Bioinformatics & Computational Biology
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology.,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India.,Department of Chemistry, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
12
|
Darnell CL, Zheng J, Wilson S, Bertoli RM, Bisson-Filho AW, Garner EC, Schmid AK. The Ribbon-Helix-Helix Domain Protein CdrS Regulates the Tubulin Homolog ftsZ2 To Control Cell Division in Archaea. mBio 2020; 11:e01007-20. [PMID: 32788376 PMCID: PMC7439475 DOI: 10.1128/mbio.01007-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
Precise control of the cell cycle is central to the physiology of all cells. In prior work we demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms underlying the cell cycle remain unexplored in this domain of life. Here, we use genetics, functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene regulatory network in a model species of archaea. We demonstrate the central role of these ribbon-helix-helix family transcription factors in the regulation of cell division through specific transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time-lapse fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate that FtsZ2 is required for cell division but not elongation. The cdrS-ftsZ2 locus is highly conserved throughout the archaeal domain, and the central function of CdrS in regulating cell division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2 transcriptional network coordinates cell division timing with cell growth in archaea.IMPORTANCE Healthy cell growth and division are critical for individual organism survival and species long-term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy cell cycle. Understanding the archaeal cell cycle is of paramount evolutionary importance given that an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here, we identify and characterize novel molecular players needed for regulating cell division in archaea. These molecules dictate the timing of cell septation but are dispensable for growth between divisions. Timing is accomplished through transcriptional control of the cell division ring. Our results shed light on mechanisms underlying the archaeal cell cycle, which has thus far remained elusive.
Collapse
Affiliation(s)
| | - Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Sean Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan M Bertoli
- Biology Department, Duke University, Durham, North Carolina, USA
| | - Alexandre W Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amy K Schmid
- Biology Department, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
13
|
Abstract
Our findings demonstrate conclusively that low abundance and upregulated transcripts are preferentially translated, potentially by environment-specific translation systems with distinct ribosomal protein composition. We show that a complex interplay of transcriptional and posttranscriptional regulation underlies the conditional and modular regulatory programs that generate ribosomes of distinct protein composition. The modular regulation of ribosomal proteins with other transcription, translation, and metabolic genes is generalizable to bacterial and eukaryotic microbes. These findings are relevant to how microorganisms adapt to unfavorable environments when they transition from active growth to quiescence by generating proteins from upregulated transcripts that are in considerably lower abundance relative to transcripts associated with the previous physiological state. Selective translation of transcripts by distinct ribosomes could form the basis for adaptive evolution to new environments through a modular regulation of the translational systems. When organisms encounter an unfavorable environment, they transition to a physiologically distinct, quiescent state wherein abundant transcripts from the previous active growth state continue to persist, albeit their active transcription is downregulated. In order to generate proteins for the new quiescent physiological state, we hypothesized that the translation machinery must selectively translate upregulated transcripts in an intracellular milieu crowded with considerably higher abundance transcripts from the previous active growth state. Here, we have analyzed genome-wide changes in the transcriptome (RNA sequencing [RNA-seq]), changes in translational regulation and efficiency by ribosome profiling across all transcripts (ribosome profiling [Ribo-seq]), and protein level changes in assembled ribosomal proteins (sequential window acquisition of all theoretical mass spectra [SWATH-MS]) to investigate the interplay of transcriptional and translational regulation in Halobacterium salinarum as it transitions from active growth to quiescence. We have discovered that interplay of regulatory processes at different levels of information processing generates condition-specific ribosomal complexes to translate preferentially pools of low abundance and upregulated transcripts. Through analysis of the gene regulatory network architecture of H. salinarum, Escherichia coli, and Saccharomyces cerevisiae, we demonstrate that this conditional, modular organization of regulatory programs governing translational systems is a generalized feature across all domains of life. IMPORTANCE Our findings demonstrate conclusively that low abundance and upregulated transcripts are preferentially translated, potentially by environment-specific translation systems with distinct ribosomal protein composition. We show that a complex interplay of transcriptional and posttranscriptional regulation underlies the conditional and modular regulatory programs that generate ribosomes of distinct protein composition. The modular regulation of ribosomal proteins with other transcription, translation, and metabolic genes is generalizable to bacterial and eukaryotic microbes. These findings are relevant to how microorganisms adapt to unfavorable environments when they transition from active growth to quiescence by generating proteins from upregulated transcripts that are in considerably lower abundance relative to transcripts associated with the previous physiological state. Selective translation of transcripts by distinct ribosomes could form the basis for adaptive evolution to new environments through a modular regulation of the translational systems.
Collapse
|
14
|
Niessen N, Soppa J. Regulated Iron Siderophore Production of the Halophilic Archaeon Haloferax volcanii. Biomolecules 2020; 10:biom10071072. [PMID: 32709147 PMCID: PMC7407949 DOI: 10.3390/biom10071072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
Iron is part of many redox and other enzymes and, thus, it is essential for all living beings. Many oxic environments have extremely low concentrations of free iron. Therefore, many prokaryotic species evolved siderophores, i.e., small organic molecules that complex Fe3+ with very high affinity. Siderophores of bacteria are intensely studied, in contrast to those of archaea. The haloarchaeon Haloferax volcanii contains a gene cluster that putatively encodes siderophore biosynthesis genes, including four iron uptake chelate (iuc) genes. Underscoring this hypothesis, Northern blot analyses revealed that a hexacistronic transcript is generated that is highly induced under iron starvation. A quadruple iuc deletion mutant was generated, which had a growth defect solely at very low concentrations of Fe3+, not Fe2+. Two experimental approaches showed that the wild type produced and exported an Fe3+-specific siderophore under low iron concentrations, in contrast to the iuc deletion mutant. Bioinformatic analyses revealed that haloarchaea obtained the gene cluster by lateral transfer from bacteria and enabled the prediction of enzymatic functions of all six gene products. Notably, a biosynthetic pathway is proposed that starts with aspartic acid, uses several group donors and citrate, and leads to the hydroxamate siderophore Schizokinen.
Collapse
Affiliation(s)
- Natalie Niessen
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Campus Callaghan, Faculty of Health and Medicine, School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe-University, Biocentre, Max-von-Laue-str. 9, D-60439 Frankfurt, Germany;
- Correspondence:
| |
Collapse
|
15
|
Berkemer SJ, Maier LK, Amman F, Bernhart SH, Wörtz J, Märkle P, Pfeiffer F, Stadler PF, Marchfelder A. Identification of RNA 3´ ends and termination sites in Haloferax volcanii. RNA Biol 2020; 17:663-676. [PMID: 32041469 PMCID: PMC7237163 DOI: 10.1080/15476286.2020.1723328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Archaeal genomes are densely packed; thus, correct transcription termination is an important factor for orchestrated gene expression. A systematic analysis of RNA 3´ termini, to identify transcription termination sites (TTS) using RNAseq data has hitherto only been performed in two archaea, Methanosarcina mazei and Sulfolobus acidocaldarius. In this study, only regions directly downstream of annotated genes were analysed, and thus, only part of the genome had been investigated. Here, we developed a novel algorithm (Internal Enrichment-Peak Calling) that allows an unbiased, genome-wide identification of RNA 3´ termini independent of annotation. In an RNA fraction enriched for primary transcripts by terminator exonuclease (TEX) treatment we identified 1,543 RNA 3´ termini. Approximately half of these were located in intergenic regions, and the remainder were found in coding regions. A strong sequence signature consistent with known termination events at intergenic loci indicates a clear enrichment for native TTS among them. Using these data we determined distinct putative termination motifs for intergenic (a T stretch) and coding regions (AGATC). In vivo reporter gene tests of selected TTS confirmed termination at these sites, which exemplify the different motifs. For several genes, more than one termination site was detected, resulting in transcripts with different lengths of the 3´ untranslated region (3´ UTR).
Collapse
Affiliation(s)
- Sarah J Berkemer
- Bioinformatics Group, Department of Computer Science - and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| | | | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.,Division of Cell and Developmental Biology, Medical University Vienna, Vienna, Austria
| | - Stephan H Bernhart
- Bioinformatics Group, Department of Computer Science - and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Transcriptome Bioinformatics, Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | | | | | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science - and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.,Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.,Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.,Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia.,Center for RNA in Technology and Health, University Copenhagen, Frederiksberg C, Denmark.,Santa Fe Institute, Santa Fe, NM, USA.,German Centre for Integrative Biodiversity Research (iDiv), Halle, Jena and Leipzig, Germany.,Competence Center for Scalable Data Services and Solutions, and Leipzig, Research Center for Civilization Diseases, University Leipzig, Leipzig, Germany
| | | |
Collapse
|
16
|
Characterization of the transcriptome of Haloferax volcanii, grown under four different conditions, with mixed RNA-Seq. PLoS One 2019; 14:e0215986. [PMID: 31039177 PMCID: PMC6490895 DOI: 10.1371/journal.pone.0215986] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Haloferax volcanii is a well-established model species for haloarchaea. Small scale RNomics and bioinformatics predictions were used to identify small non-coding RNAs (sRNAs), and deletion mutants revealed that sRNAs have important regulatory functions. A recent dRNA-Seq study was used to characterize the primary transcriptome. Unexpectedly, it was revealed that, under optimal conditions, H. volcanii contains more non-coding sRNAs than protein-encoding mRNAs. However, the dRNA-Seq approach did not contain any length information. Therefore, a mixed RNA-Seq approach was used to determine transcript length and to identify additional transcripts, which are not present under optimal conditions. In total, 50 million paired end reads of 150 nt length were obtained. 1861 protein-coding RNAs (cdRNAs) were detected, which encoded 3092 proteins. This nearly doubled the coverage of cdRNAs, compared to the previous dRNA-Seq study. About 2/3 of the cdRNAs were monocistronic, and 1/3 covered more than one gene. In addition, 1635 non-coding sRNAs were identified. The highest fraction of non-coding RNAs were cis antisense RNAs (asRNAs). Analysis of the length distribution revealed that sRNAs have a median length of about 150 nt. Based on the RNA-Seq and dRNA-Seq results, genes were chosen to exemplify characteristics of the H. volcanii transcriptome by Northern blot analyses, e.g. 1) the transcript patterns of gene clusters can be straightforward, but also very complex, 2) many transcripts differ in expression level under the four analyzed conditions, 3) some genes are transcribed into RNA isoforms of different length, which can be differentially regulated, 4) transcripts with very long 5'-UTRs and with very long 3'-UTRs exist, and 5) about 30% of all cdRNAs have overlapping 3'-ends, which indicates, together with the asRNAs, that H. volcanii makes ample use of sense-antisense interactions. Taken together, this RNA-Seq study, together with a previous dRNA-Seq study, enabled an unprecedented view on the H. volcanii transcriptome.
Collapse
|
17
|
The Primary Antisense Transcriptome of Halobacterium salinarum NRC-1. Genes (Basel) 2019; 10:genes10040280. [PMID: 30959844 PMCID: PMC6523106 DOI: 10.3390/genes10040280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
Antisense RNAs (asRNAs) are present in diverse organisms and play important roles in gene regulation. In this work, we mapped the primary antisense transcriptome in the halophilic archaeon Halobacterium salinarum NRC-1. By reanalyzing publicly available data, we mapped antisense transcription start sites (aTSSs) and inferred the probable 3′ ends of these transcripts. We analyzed the resulting asRNAs according to the size, location, function of genes on the opposite strand, expression levels and conservation. We show that at least 21% of the genes contain asRNAs in H. salinarum. Most of these asRNAs are expressed at low levels. They are located antisense to genes related to distinctive characteristics of H. salinarum, such as bacteriorhodopsin, gas vesicles, transposases and other important biological processes such as translation. We provide evidence to support asRNAs in type II toxin–antitoxin systems in archaea. We also analyzed public Ribosome profiling (Ribo-seq) data and found that ~10% of the asRNAs are ribosome-associated non-coding RNAs (rancRNAs), with asRNAs from transposases overrepresented. Using a comparative transcriptomics approach, we found that ~19% of the asRNAs annotated in H. salinarum belong to genes with an ortholog in Haloferax volcanii, in which an aTSS could be identified with positional equivalence. This shows that most asRNAs are not conserved between these halophilic archaea.
Collapse
|
18
|
Abstract
Advances in genome-wide sequence technologies allow for detailed insights into the complexity of RNA landscapes of organisms from all three domains of life. Recent analyses of archaeal transcriptomes identified interaction and regulation networks of noncoding RNAs in this understudied domain. Here, we review current knowledge of small, noncoding RNAs with important functions for the archaeal lifestyle, which often requires adaptation to extreme environments. One focus is RNA metabolism at elevated temperatures in hyperthermophilic archaea, which reveals elevated amounts of RNA-guided RNA modification and virus defense strategies. Genome rearrangement events result in unique fragmentation patterns of noncoding RNA genes that require elaborate maturation pathways to yield functional transcripts. RNA-binding proteins, e.g., L7Ae and LSm, are important for many posttranscriptional control functions of RNA molecules in archaeal cells. We also discuss recent insights into the regulatory potential of their noncoding RNA partners.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Michael Daume
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
| | - Lennart Randau
- Prokaryotic Small RNA Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;, ,
- LOEWE Center for Synthetic Microbiology (Synmikro), 35032 Marburg, Germany
| |
Collapse
|
19
|
Garanina IA, Fisunov GY, Govorun VM. BAC-BROWSER: The Tool for Visualization and Analysis of Prokaryotic Genomes. Front Microbiol 2018; 9:2827. [PMID: 30519231 PMCID: PMC6258810 DOI: 10.3389/fmicb.2018.02827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Prokaryotes are actively studied objects in the scope of genomic regulation. Microbiologists need special tools for complex analysis of data to study and identification of regulatory mechanism in bacteria and archaea. We developed a tool BAC-BROWSER, specifically for visualization and analysis of small prokaryotic genomes. BAC-BROWSER provides tools for different types of analysis to study a wide set of regulatory mechanisms of prokaryotes: -transcriptional regulation by transcription factors (TFs), analysis of TFs, their targets, and binding sites.-other regulatory motifs, promoters, terminators and ribosome binding sites-transcriptional regulation by variation of operon structure, alternative starts or ends of transcription.-non-coding RNAs, antisense RNAs-RNA secondary structure, riboswitches-GC content, GC skew, codon usage BAC-browser incorporated free programs accelerating the verification of obtained results: primer design and oligocalculator, vector visualization, the tool for synthetic gene construction. The program is designed for Windows operating system and freely available for download in http://smdb.rcpcm.org/tools/index.html.
Collapse
Affiliation(s)
- Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
20
|
Ten-Caten F, Vêncio RZN, Lorenzetti APR, Zaramela LS, Santana AC, Koide T. Internal RNAs overlapping coding sequences can drive the production of alternative proteins in archaea. RNA Biol 2018; 15:1119-1132. [PMID: 30175688 PMCID: PMC6161675 DOI: 10.1080/15476286.2018.1509661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prokaryotic genomes show a high level of information compaction often with different molecules transcribed from the same locus. Although antisense RNAs have been relatively well studied, RNAs in the same strand, internal RNAs (intraRNAs), are still poorly understood. The question of how common is the translation of overlapping reading frames remains open. We address this question in the model archaeon Halobacterium salinarum. In the present work we used differential RNA-seq (dRNA-seq) in H. salinarum NRC-1 to locate intraRNA signals in subsets of internal transcription start sites (iTSS) and establish the open reading frames associated to them (intraORFs). Using C-terminally flagged proteins, we experimentally observed isoforms accurately predicted by intraRNA translation for kef1, acs3 and orc4 genes. We also recovered from the literature and mass spectrometry databases several instances of protein isoforms consistent with intraRNA translation such as the gas vesicle protein gene gvpC1. We found evidence for intraRNAs in horizontally transferred genes such as the chaperone dnaK and the aerobic respiration related cydA in both H. salinarum and Escherichia coli. Also, intraRNA translation evidence in H. salinarum, E. coli and yeast of a universal elongation factor (aEF-2, fusA and eEF-2) suggests that this is an ancient phenomenon present in all domains of life.
Collapse
Affiliation(s)
- Felipe Ten-Caten
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ricardo Z N Vêncio
- b Department of Computation and Mathematics, Faculdade de Filosofia , Ciências e Letras de Ribeirão Preto, University of São Paulo , Ribeirão Preto , Brazil
| | - Alan Péricles R Lorenzetti
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Livia Soares Zaramela
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Ana Carolina Santana
- c Department of Cell and Molecular Biology and Pathogenic Bioagents , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| | - Tie Koide
- a Department of Biochemistry and Immunology , Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto , Brazil
| |
Collapse
|
21
|
Dulmage KA, Darnell CL, Vreugdenhil A, Schmid AK. Copy number variation is associated with gene expression change in archaea. Microb Genom 2018; 4. [PMID: 30142055 PMCID: PMC6202454 DOI: 10.1099/mgen.0.000210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genomic instability, although frequently deleterious, is also an important mechanism for microbial adaptation to environmental change. Although widely studied in bacteria, in archaea the effect of genomic instability on organism phenotypes and fitness remains unclear. Here we use DNA segmentation methods to detect and quantify genome-wide copy number variation (CNV) in large compendia of high-throughput datasets in a model archaeal species, Halobacterium salinarum. CNV hotspots were identified throughout the genome. Some hotspots were strongly associated with changes in gene expression, suggesting a mechanism for phenotypic innovation. In contrast, CNV hotspots in other genomic loci left expression unchanged, suggesting buffering of certain phenotypes. The correspondence of CNVs with gene expression was validated with strain- and condition-matched transcriptomics and DNA quantification experiments at specific loci. Significant correlation of CNV hotspot locations with the positions of known insertion sequence (IS) elements suggested a mechanism for generating genomic instability. Given the efficient recombination capabilities in H. salinarum despite stability at the single nucleotide level, these results suggest that genomic plasticity mediated by IS element activity can provide a source of phenotypic innovation in extreme environments.
Collapse
Affiliation(s)
- Keely A Dulmage
- 1University Program in Genetics and Genomics, Duke University, Durham, NC, USA.,2Biology Department, Duke University, Durham, NC, USA
| | | | | | - Amy K Schmid
- 1University Program in Genetics and Genomics, Duke University, Durham, NC, USA.,2Biology Department, Duke University, Durham, NC, USA.,3Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
22
|
Martinez-Pastor M, Tonner PD, Darnell CL, Schmid AK. Transcriptional Regulation in Archaea: From Individual Genes to Global Regulatory Networks. Annu Rev Genet 2018; 51:143-170. [PMID: 29178818 DOI: 10.1146/annurev-genet-120116-023413] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea are major contributors to biogeochemical cycles, possess unique metabolic capabilities, and resist extreme stress. To regulate the expression of genes encoding these unique programs, archaeal cells use gene regulatory networks (GRNs) composed of transcription factor proteins and their target genes. Recent developments in genetics, genomics, and computational methods used with archaeal model organisms have enabled the mapping and prediction of global GRN structures. Experimental tests of these predictions have revealed the dynamical function of GRNs in response to environmental variation. Here, we review recent progress made in this area, from investigating the mechanisms of transcriptional regulation of individual genes to small-scale subnetworks and genome-wide global networks. At each level, archaeal GRNs consist of a hybrid of bacterial, eukaryotic, and uniquely archaeal mechanisms. We discuss this theme from the perspective of the role of individual transcription factors in genome-wide regulation, how these proteins interact to compile GRN topological structures, and how these topologies lead to emergent, high-level GRN functions. We conclude by discussing how systems biology approaches are a fruitful avenue for addressing remaining challenges, such as discovering gene function and the evolution of GRNs.
Collapse
Affiliation(s)
| | - Peter D Tonner
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA
| | - Cynthia L Darnell
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, North Carolina 27708, USA.,Graduate Program in Computational Biology and Bioinformatics, Duke University, Durham, North Carolina 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
23
|
Lomsadze A, Gemayel K, Tang S, Borodovsky M. Modeling leaderless transcription and atypical genes results in more accurate gene prediction in prokaryotes. Genome Res 2018; 28:1079-1089. [PMID: 29773659 PMCID: PMC6028130 DOI: 10.1101/gr.230615.117] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 05/16/2018] [Indexed: 11/24/2022]
Abstract
In a conventional view of the prokaryotic genome organization, promoters precede operons and ribosome binding sites (RBSs) with Shine-Dalgarno consensus precede genes. However, recent experimental research suggesting a more diverse view motivated us to develop an algorithm with improved gene-finding accuracy. We describe GeneMarkS-2, an ab initio algorithm that uses a model derived by self-training for finding species-specific (native) genes, along with an array of precomputed "heuristic" models designed to identify harder-to-detect genes (likely horizontally transferred). Importantly, we designed GeneMarkS-2 to identify several types of distinct sequence patterns (signals) involved in gene expression control, among them the patterns characteristic for leaderless transcription as well as noncanonical RBS patterns. To assess the accuracy of GeneMarkS-2, we used genes validated by COG (Clusters of Orthologous Groups) annotation, proteomics experiments, and N-terminal protein sequencing. We observed that GeneMarkS-2 performed better on average in all accuracy measures when compared with the current state-of-the-art gene prediction tools. Furthermore, the screening of ∼5000 representative prokaryotic genomes made by GeneMarkS-2 predicted frequent leaderless transcription in both archaea and bacteria. We also observed that the RBS sites in some species with leadered transcription did not necessarily exhibit the Shine-Dalgarno consensus. The modeling of different types of sequence motifs regulating gene expression prompted a division of prokaryotic genomes into five categories with distinct sequence patterns around the gene starts.
Collapse
Affiliation(s)
- Alexandre Lomsadze
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech, Atlanta, Georgia 30332, USA
- Gene Probe, Incorporated, Atlanta, Georgia 30324, USA
| | - Karl Gemayel
- School of Computational Science and Engineering, Georgia Tech, Atlanta, Georgia 30332, USA
| | - Shiyuyun Tang
- School of Biological Sciences, Georgia Tech, Atlanta, Georgia 30332, USA
| | - Mark Borodovsky
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech, Atlanta, Georgia 30332, USA
- Gene Probe, Incorporated, Atlanta, Georgia 30324, USA
- School of Computational Science and Engineering, Georgia Tech, Atlanta, Georgia 30332, USA
- School of Biological Sciences, Georgia Tech, Atlanta, Georgia 30332, USA
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, 141700, Russia
| |
Collapse
|
24
|
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H. BMC Genomics 2018; 19:24. [PMID: 29304737 PMCID: PMC5756330 DOI: 10.1186/s12864-017-4415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5′-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. Results Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). Conclusions This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4415-x) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Turkarslan S, Raman AV, Thompson AW, Arens CE, Gillespie MA, von Netzer F, Hillesland KL, Stolyar S, López García de Lomana A, Reiss DJ, Gorman-Lewis D, Zane GM, Ranish JA, Wall JD, Stahl DA, Baliga NS. Mechanism for microbial population collapse in a fluctuating resource environment. Mol Syst Biol 2017; 13:919. [PMID: 28320772 PMCID: PMC5371734 DOI: 10.15252/msb.20167058] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Managing trade-offs through gene regulation is believed to confer resilience to a microbial community in a fluctuating resource environment. To investigate this hypothesis, we imposed a fluctuating environment that required the sulfate-reducer Desulfovibrio vulgaris to undergo repeated ecologically relevant shifts between retaining metabolic independence (active capacity for sulfate respiration) and becoming metabolically specialized to a mutualistic association with the hydrogen-consuming Methanococcus maripaludis Strikingly, the microbial community became progressively less proficient at restoring the environmentally relevant physiological state after each perturbation and most cultures collapsed within 3-7 shifts. Counterintuitively, the collapse phenomenon was prevented by a single regulatory mutation. We have characterized the mechanism for collapse by conducting RNA-seq analysis, proteomics, microcalorimetry, and single-cell transcriptome analysis. We demonstrate that the collapse was caused by conditional gene regulation, which drove precipitous decline in intracellular abundance of essential transcripts and proteins, imposing greater energetic burden of regulation to restore function in a fluctuating environment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Drew Gorman-Lewis
- Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Grant M Zane
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | | | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
26
|
Smollett K, Blombach F, Reichelt R, Thomm M, Werner F. A global analysis of transcription reveals two modes of Spt4/5 recruitment to archaeal RNA polymerase. Nat Microbiol 2017; 2:17021. [PMID: 28248297 PMCID: PMC7616672 DOI: 10.1038/nmicrobiol.2017.21] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/24/2017] [Indexed: 01/21/2023]
Abstract
The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase (RNAP) II system, while archaeal genomes are more similar to bacteria with densely packed genes organized in operons. This makes understanding transcription in archaea vital, both in terms of molecular mechanisms and evolution. Very little is known about how archaeal cells orchestrate transcription on a systems level. We have characterized the genome-wide occupancy of the Methanocaldococcus jannaschii transcription machinery and its transcriptome. Our data reveal how the TATA and BRE promoter elements facilitate recruitment of the essential initiation factors TATA-binding protein and transcription factor B, respectively, which in turn are responsible for the loading of RNAP into the transcription units. The occupancies of RNAP and Spt4/5 strongly correlate with each other and with RNA levels. Our results show that Spt4/5 is a general elongation factor in archaea as its presence on all genes matches RNAP. Spt4/5 is recruited proximal to the transcription start site on the majority of transcription units, while on a subset of genes, including rRNA and CRISPR loci, Spt4/5 is recruited to the transcription elongation complex during early elongation within 500 base pairs of the transcription start site and akin to its bacterial homologue NusG.
Collapse
Affiliation(s)
- Katherine Smollett
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| | - Robert Reichelt
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Michael Thomm
- Institut of Microbiology and Archaea Center, Universität Regensburg, 93053Regensburg, Germany
| | - Finn Werner
- University College London, Institute for Structural and Molecular Biology, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
27
|
Aquino P, Honda B, Jaini S, Lyubetskaya A, Hosur K, Chiu JG, Ekladious I, Hu D, Jin L, Sayeg MK, Stettner AI, Wang J, Wong BG, Wong WS, Alexander SL, Ba C, Bensussen SI, Bernstein DB, Braff D, Cha S, Cheng DI, Cho JH, Chou K, Chuang J, Gastler DE, Grasso DJ, Greifenberger JS, Guo C, Hawes AK, Israni DV, Jain SR, Kim J, Lei J, Li H, Li D, Li Q, Mancuso CP, Mao N, Masud SF, Meisel CL, Mi J, Nykyforchyn CS, Park M, Peterson HM, Ramirez AK, Reynolds DS, Rim NG, Saffie JC, Su H, Su WR, Su Y, Sun M, Thommes MM, Tu T, Varongchayakul N, Wagner TE, Weinberg BH, Yang R, Yaroslavsky A, Yoon C, Zhao Y, Zollinger AJ, Stringer AM, Foster JW, Wade J, Raman S, Broude N, Wong WW, Galagan JE. Coordinated regulation of acid resistance in Escherichia coli. BMC SYSTEMS BIOLOGY 2017; 11:1. [PMID: 28061857 PMCID: PMC5217608 DOI: 10.1186/s12918-016-0376-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 12/07/2016] [Indexed: 12/29/2022]
Abstract
Background Enteric Escherichia coli survives the highly acidic environment of the stomach through multiple acid resistance (AR) mechanisms. The most effective system, AR2, decarboxylates externally-derived glutamate to remove cytoplasmic protons and excrete GABA. The first described system, AR1, does not require an external amino acid. Its mechanism has not been determined. The regulation of the multiple AR systems and their coordination with broader cellular metabolism has not been fully explored. Results We utilized a combination of ChIP-Seq and gene expression analysis to experimentally map the regulatory interactions of four TFs: nac, ntrC, ompR, and csiR. Our data identified all previously in vivo confirmed direct interactions and revealed several others previously inferred from gene expression data. Our data demonstrate that nac and csiR directly modulate AR, and leads to a regulatory network model in which all four TFs participate in coordinating acid resistance, glutamate metabolism, and nitrogen metabolism. This model predicts a novel mechanism for AR1 by which the decarboxylation enzymes of AR2 are used with internally derived glutamate. This hypothesis makes several testable predictions that we confirmed experimentally. Conclusions Our data suggest that the regulatory network underlying AR is complex and deeply interconnected with the regulation of GABA and glutamate metabolism, nitrogen metabolism. These connections underlie and experimentally validated model of AR1 in which the decarboxylation enzymes of AR2 are used with internally derived glutamate. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0376-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia Aquino
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brent Honda
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Suma Jaini
- Department of Biomedical Engineering, Boston University, Boston, USA
| | | | - Krutika Hosur
- Department of Biomedical Engineering, Boston University, Boston, USA.,BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Joanna G Chiu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Iriny Ekladious
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dongjian Hu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Lin Jin
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Marianna K Sayeg
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Arion I Stettner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Julia Wang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Brandon G Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Winnie S Wong
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Cong Ba
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Seth I Bensussen
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David B Bernstein
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Dana Braff
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Susie Cha
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel I Cheng
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jang Hwan Cho
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Kenny Chou
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - James Chuang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel E Gastler
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel J Grasso
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Chen Guo
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Anna K Hawes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Divya V Israni
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Saloni R Jain
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jessica Kim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Junyu Lei
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hao Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - David Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Qian Li
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Ning Mao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Salwa F Masud
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Cari L Meisel
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jing Mi
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Minhee Park
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hannah M Peterson
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Alfred K Ramirez
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Daniel S Reynolds
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Nae Gyune Rim
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Jared C Saffie
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Hang Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Wendell R Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yaqing Su
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meng Sun
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Meghan M Thommes
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Tao Tu
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Tyler E Wagner
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Rouhui Yang
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Christine Yoon
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | - Yanyu Zhao
- BE605 Course, Biomedical Engineering, Boston University, Boston, USA
| | | | - Anne M Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - John W Foster
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Joseph Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Sahadaven Raman
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL, 36688, USA
| | - Natasha Broude
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, USA
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, USA. .,Bioinformatics program, Boston University, Boston, USA. .,National Emerging Infectious Diseases Laboratory, Boston University, Boston, USA.
| |
Collapse
|
28
|
Dar D, Prasse D, Schmitz RA, Sorek R. Widespread formation of alternative 3′ UTR isoforms via transcription termination in archaea. Nat Microbiol 2016; 1:16143. [DOI: 10.1038/nmicrobiol.2016.143] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
|
29
|
Babski J, Haas KA, Näther-Schindler D, Pfeiffer F, Förstner KU, Hammelmann M, Hilker R, Becker A, Sharma CM, Marchfelder A, Soppa J. Genome-wide identification of transcriptional start sites in the haloarchaeon Haloferax volcanii based on differential RNA-Seq (dRNA-Seq). BMC Genomics 2016; 17:629. [PMID: 27519343 PMCID: PMC4983044 DOI: 10.1186/s12864-016-2920-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/07/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Differential RNA-Seq (dRNA-Seq) is a recently developed method of performing primary transcriptome analyses that allows for the genome-wide mapping of transcriptional start sites (TSSs) and the identification of novel transcripts. Although the transcriptomes of diverse bacterial species have been characterized by dRNA-Seq, the transcriptome analysis of archaeal species is still rather limited. Therefore, we used dRNA-Seq to characterize the primary transcriptome of the model archaeon Haloferax volcanii. RESULTS Three independent cultures of Hfx. volcanii grown under optimal conditions to the mid-exponential growth phase were used to determine the primary transcriptome and map the 5'-ends of the transcripts. In total, 4749 potential TSSs were detected. A position weight matrix (PWM) was derived for the promoter predictions, and the results showed that 64 % of the TSSs were preceded by stringent or relaxed basal promoters. Of the identified TSSs, 1851 belonged to protein-coding genes. Thus, fewer than half (46 %) of the 4040 protein-coding genes were expressed under optimal growth conditions. Seventy-two percent of all protein-coding transcripts were leaderless, which emphasized that this pathway is the major pathway for translation initiation in haloarchaea. A total of 2898 of the TSSs belonged to potential non-coding RNAs, which accounted for an unexpectedly high fraction (61 %) of all transcripts. Most of the non-coding TSSs had not been previously described (2792) and represented novel sequences (59 % of all TSSs). A large fraction of the potential novel non-coding transcripts were cis-antisense RNAs (1244 aTSSs). A strong negative correlation between the levels of antisense transcripts and cognate sense mRNAs was found, which suggested that the negative regulation of gene expression via antisense RNAs may play an important role in haloarchaea. The other types of novel non-coding transcripts corresponded to internal transcripts overlapping with mRNAs (1153 iTSSs) and intergenic small RNA (sRNA) candidates (395 TSSs). CONCLUSION This study provides a comprehensive map of the primary transcriptome of Hfx. volcanii grown under optimal conditions. Fewer than half of all protein-coding genes have been transcribed under these conditions. Unexpectedly, more than half of the detected TSSs belonged to several classes of non-coding RNAs. Thus, RNA-based regulation appears to play a more important role in haloarchaea than previously anticipated.
Collapse
Affiliation(s)
- Julia Babski
- Institute for Molecular Biosciences, Goethe University, Biocentre, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany
| | | | - Daniela Näther-Schindler
- Institute for Molecular Biosciences, Goethe University, Biocentre, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany
| | - Friedhelm Pfeiffer
- Computational Biology Group, MaxPlanckInstitute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Konrad U. Förstner
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Matthias Hammelmann
- Institute for Molecular Biosciences, Goethe University, Biocentre, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany
| | - Rolf Hilker
- Bioinformatik und Systembiologie, University of Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Anke Becker
- LOEWE-Center for Synthetic Microbiology, Hans-Meerwein-Str., 35032 Marburg, Germany
| | - Cynthia M. Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | | | - Jörg Soppa
- Institute for Molecular Biosciences, Goethe University, Biocentre, Max-von-Laue-Str. 9, D-60439 Frankfurt, Germany
| |
Collapse
|
30
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
31
|
Gomes-Filho JV, Zaramela LS, Italiani VCDS, Baliga NS, Vêncio RZN, Koide T. Sense overlapping transcripts in IS1341-type transposase genes are functional non-coding RNAs in archaea. RNA Biol 2016; 12:490-500. [PMID: 25806405 PMCID: PMC4615843 DOI: 10.1080/15476286.2015.1019998] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The existence of sense overlapping transcripts that share regulatory and coding information in the same genomic sequence shows an additional level of prokaryotic gene expression complexity. Here we report the discovery of ncRNAs associated with IS1341-type transposase (tnpB) genes, at the 3'-end of such elements, with examples in archaea and bacteria. Focusing on the model haloarchaeon Halobacterium salinarum NRC-1, we show the existence of sense overlapping transcripts (sotRNAs) for all its IS1341-type transposases. Publicly available transcriptome compendium show condition-dependent differential regulation between sotRNAs and their cognate genes. These sotRNAs allowed us to find a UUCA tetraloop motif that is present in other archaea (ncRNA family HgcC) and in a H. salinarum intergenic ncRNA derived from a palindrome associated transposable elements (PATE). Overexpression of one sotRNA and the PATE-derived RNA harboring the tetraloop motif improved H. salinarum growth, indicating that these ncRNAs are functional.
Collapse
Affiliation(s)
- José Vicente Gomes-Filho
- a Department of Biochemistry and Immunology ; Ribeirão Preto Medical School ; University of São Paulo ; Ribeirão Preto , Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Reichelt R, Gindner A, Thomm M, Hausner W. Genome-wide binding analysis of the transcriptional regulator TrmBL1 in Pyrococcus furiosus. BMC Genomics 2016; 17:40. [PMID: 26747700 PMCID: PMC4706686 DOI: 10.1186/s12864-015-2360-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/28/2015] [Indexed: 01/19/2023] Open
Abstract
Background Several in vitro studies document the function of the transcriptional regulator TrmBL1 of Pyrococcus furiosus. These data indicate that the protein can act as repressor or activator and is mainly involved in transcriptional control of sugar uptake and in the switch between glycolysis and gluconeogenesis. The aim of this study was to complement the in vitro data with an in vivo analysis using ChIP-seq to explore the genome-wide binding profile of TrmBL1 under glycolytic and gluconeogenic growth conditions. Results The ChIP-seq analysis revealed under gluconeogenic growth conditions 28 TrmBL1 binding sites where the TGM is located upstream of coding regions and no binding sites under glycolytic conditions. The experimental confirmation of the binding sites using qPCR, EMSA, DNase I footprinting and in vitro transcription experiments validated the in vivo identified TrmBL1 binding sites. Furthermore, this study provides evidence that TrmBL1 is also involved in transcriptional regulation of additional cellular processes e.g. amino acid metabolism, transcriptional control or metabolic pathways. In the initial setup we were interested to include the binding analysis of TrmB, an additional member of the TrmB family, but western blot experiments and the ChIP-seq data indicated that the corresponding gene is deleted in our Pyrococcus strain. A detailed analysis of a new type strain demonstrated that a 16 kb fragment containing the trmb gene is almost completely deleted after the first re-cultivation. Conclusions The identified binding sites in the P. furiosus genome classified TrmBL1 as a more global regulator as hitherto known. Furthermore, the high resolution of the mapped binding positions enabled reliable predictions, if TrmBL1 activates (binding site upstream of the promoter) or represses transcription (binding site downstream) of the corresponding genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2360-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Reichelt
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Antonia Gindner
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Michael Thomm
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| | - Winfried Hausner
- Lehrstuhl für Mikrobiologie und Archaeenzentrum, Universität Regensburg, Universitätsstrasse 31, Regensburg, D-93053, Germany.
| |
Collapse
|
33
|
Mao X, Ma Q, Liu B, Chen X, Zhang H, Xu Y. Revisiting operons: an analysis of the landscape of transcriptional units in E. coli. BMC Bioinformatics 2015; 16:356. [PMID: 26538447 PMCID: PMC4634151 DOI: 10.1186/s12859-015-0805-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/29/2015] [Indexed: 11/21/2022] Open
Abstract
Background Bacterial operons are considerably more complex than what were thought. At least their components are dynamically rather than statically defined as previously assumed. Here we present a computational study of the landscape of the transcriptional units (TUs) of E. coli K12, revealed by the available genomic and transcriptomic data, providing new understanding about the complexity of TUs as a whole encoded in the genome of E. coli K12. Results and conclusion Our main findings include that (i) different TUs may overlap with each other by sharing common genes, giving rise to clusters of overlapped TUs (TUCs) along the genomic sequence; (ii) the intergenic regions in front of the first gene of each TU tend to have more conserved sequence motifs than those of the other genes inside the TU, suggesting that TUs each have their own promoters; (iii) the terminators associated with the 3’ ends of TUCs tend to be Rho-independent terminators, substantially more often than terminators of TUs that end inside a TUC; and (iv) the functional relatedness of adjacent gene pairs in individual TUs is higher than those in TUCs, suggesting that individual TUs are more basic functional units than TUCs. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0805-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xizeng Mao
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,Present address: MD Anderson Cancer Center, Houston, TX, 77054, USA.
| | - Qin Ma
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,BioEnergy Research Center (BESC), Athens, GA, USA. .,Present address: Department of Plant Science, South Dakota State University, Brookings, SD, 57006, USA. .,Present address: BioSNTR, Brookings, SD, USA.
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China.
| | - Xin Chen
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,College of Computer Sciences and Technology, Changchun, Jilin, China.
| | - Hanyuan Zhang
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,Present address: Systems Biology and Biomedical Informatics (SBBI) Laboratory University of Nebraska-Lincoln 122B/122C Avery Hall, 1144 T St, Lincoln, NE, 68588-0115, USA.
| | - Ying Xu
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, University of Georgia, Athens, USA. .,BioEnergy Research Center (BESC), Athens, GA, USA. .,College of Computer Sciences and Technology, Changchun, Jilin, China. .,School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
34
|
Maier LK, Benz J, Fischer S, Alstetter M, Jaschinski K, Hilker R, Becker A, Allers T, Soppa J, Marchfelder A. Deletion of the Sm1 encoding motif in the lsm gene results in distinct changes in the transcriptome and enhanced swarming activity of Haloferax cells. Biochimie 2015; 117:129-37. [DOI: 10.1016/j.biochi.2015.02.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
|
35
|
Liao Y, Huang L, Wang B, Zhou F, Pan L. The global transcriptional landscape of Bacillus amyloliquefaciens XH7 and high-throughput screening of strong promoters based on RNA-seq data. Gene 2015; 571:252-62. [DOI: 10.1016/j.gene.2015.06.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/25/2022]
|
36
|
Development of New Modular Genetic Tools for Engineering the Halophilic Archaeon Halobacterium salinarum. PLoS One 2015; 10:e0129215. [PMID: 26061363 PMCID: PMC4465625 DOI: 10.1371/journal.pone.0129215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Our ability to genetically manipulate living organisms is usually constrained by the efficiency of the genetic tools available for the system of interest. In this report, we present the design, construction and characterization of a set of four new modular vectors, the pHsal series, for engineering Halobacterium salinarum, a model halophilic archaeon widely used in systems biology studies. The pHsal shuttle vectors are organized in four modules: (i) the E. coli’s specific part, containing a ColE1 origin of replication and an ampicillin resistance marker, (ii) the resistance marker and (iii) the replication origin, which are specific to H. salinarum and (iv) the cargo, which will carry a sequence of interest cloned in a multiple cloning site, flanked by universal M13 primers. Each module was constructed using only minimal functional elements that were sequence edited to eliminate redundant restriction sites useful for cloning. This optimization process allowed the construction of vectors with reduced sizes compared to currently available platforms and expanded multiple cloning sites. Additionally, the strong constitutive promoter of the fer2 gene was sequence optimized and incorporated into the platform to allow high-level expression of heterologous genes in H. salinarum. The system also includes a new minimal suicide vector for the generation of knockouts and/or the incorporation of chromosomal tags, as well as a vector for promoter probing using a GFP gene as reporter. This new set of optimized vectors should strongly facilitate the engineering of H. salinarum and similar strategies could be implemented for other archaea.
Collapse
|
37
|
Darnell CL, Schmid AK. Systems biology approaches to defining transcription regulatory networks in halophilic archaea. Methods 2015; 86:102-14. [PMID: 25976837 DOI: 10.1016/j.ymeth.2015.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
To survive complex and changing environmental conditions, microorganisms use gene regulatory networks (GRNs) composed of interacting regulatory transcription factors (TFs) to control the timing and magnitude of gene expression. Genome-wide datasets; such as transcriptomics and protein-DNA interactions; and experiments such as high throughput growth curves; facilitate the construction of GRNs and provide insight into TF interactions occurring under stress. Systems biology approaches integrate these datasets into models of GRN architecture as well as statistical and/or dynamical models to understand the function of networks occurring in cells. Previously, these types of studies have focused on traditional model organisms (e.g. Escherichia coli, yeast). However, recent advances in archaeal genetics and other tools have enabled a systems approach to understanding GRNs in these relatively less studied archaeal model organisms. In this report, we outline a systems biology workflow for generating and integrating data focusing on the TF regulator. We discuss experimental design, outline the process of data collection, and provide the tools required to produce high confidence regulons for the TFs of interest. We provide a case study as an example of this workflow, describing the construction of a GRN centered on multi-TF coordinate control of gene expression governing the oxidative stress response in the hypersaline-adapted archaeon Halobacterium salinarum.
Collapse
Affiliation(s)
| | - Amy K Schmid
- Biology Department, Duke University, Durham, NC 27708, USA; Center for Systems Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
38
|
Tonner PD, Pittman AMC, Gulli JG, Sharma K, Schmid AK. A regulatory hierarchy controls the dynamic transcriptional response to extreme oxidative stress in archaea. PLoS Genet 2015; 11:e1004912. [PMID: 25569531 PMCID: PMC4287449 DOI: 10.1371/journal.pgen.1004912] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022] Open
Abstract
Networks of interacting transcription factors are central to the regulation of cellular responses to abiotic stress. Although the architecture of many such networks has been mapped, their dynamic function remains unclear. Here we address this challenge in archaea, microorganisms possessing transcription factors that resemble those of both eukaryotes and bacteria. Using genome-wide DNA binding location analysis integrated with gene expression and cell physiological data, we demonstrate that a bacterial-type transcription factor (TF), called RosR, and five TFIIB proteins, homologs of eukaryotic TFs, combinatorially regulate over 100 target genes important for the response to extremely high levels of peroxide. These genes include 20 other transcription factors and oxidative damage repair genes. RosR promoter occupancy is surprisingly dynamic, with the pattern of target gene expression during the transition from rapid growth to stress correlating strongly with the pattern of dynamic binding. We conclude that a hierarchical regulatory network orchestrated by TFs of hybrid lineage enables dynamic response and survival under extreme stress in archaea. This raises questions regarding the evolutionary trajectory of gene networks in response to stress. Complex circuits of genes rather than a single gene underlie many important processes such as disease, development, and cellular damage repair. Although the wiring of many of these circuits has been mapped, how circuits operate in real time to carry out their functions is poorly understood. Here we address these questions by investigating the function of a gene circuit that responds to reactive oxygen species damage in archaea, microorganisms that represent the third domain of life. Members of this domain of life are excellent models for investigating the function and evolution of gene circuits. Components of archaeal regulatory machinery driving gene circuits resemble those of both bacteria and eukaryotes. Here we demonstrate that regulatory proteins of hybrid ancestry collaborate to control the expression of over 100 genes whose products repair cellular damage. Among these are other regulatory proteins, setting up a stepwise hierarchical circuit that controls damage repair. Regulation is dynamic, with gene targets showing immediate response to damage and restoring normal cellular functions soon thereafter. This study demonstrates how strong environmental forces such as stress may have shaped the wiring and dynamic function of gene circuits, raising important questions regarding how circuits originated over evolutionary time.
Collapse
Affiliation(s)
- Peter D. Tonner
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, North Carolina, United States of America
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | | | - Jordan G. Gulli
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Kriti Sharma
- Biology Department, Duke University, Durham, North Carolina, United States of America
| | - Amy K. Schmid
- Computational Biology and Bioinformatics Graduate Program, Duke University, Durham, North Carolina, United States of America
- Biology Department, Duke University, Durham, North Carolina, United States of America
- Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
39
|
Plaisier CL, Lo FY, Ashworth J, Brooks AN, Beer KD, Kaur A, Pan M, Reiss DJ, Facciotti MT, Baliga NS. Evolution of context dependent regulation by expansion of feast/famine regulatory proteins. BMC SYSTEMS BIOLOGY 2014; 8:122. [PMID: 25394904 PMCID: PMC4236453 DOI: 10.1186/s12918-014-0122-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/16/2014] [Indexed: 11/25/2022]
Abstract
Background Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. Results We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. Conclusions This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism. Electronic supplementary material The online version of this article (doi:10.1186/s12918-014-0122-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Fang-Yin Lo
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | | | - Aaron N Brooks
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | - Karlyn D Beer
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA.
| | | | - Marc T Facciotti
- Department of Biomedical Engineering, University of California, Davis, CA, USA. .,Genome Center, University of California, Davis, CA, USA.
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA. .,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA. .,Department of Microbiology, University of Washington, Seattle, WA, USA. .,Department of Biology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
40
|
Siqueira FM, Gerber AL, Guedes RLM, Almeida LG, Schrank IS, Vasconcelos ATR, Zaha A. Unravelling the transcriptome profile of the Swine respiratory tract mycoplasmas. PLoS One 2014; 9:e110327. [PMID: 25333523 PMCID: PMC4198240 DOI: 10.1371/journal.pone.0110327] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
The swine respiratory ciliary epithelium is mainly colonized by Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis. While colonization by M. flocculare is virtually asymptomatic, M. hyopneumoniae and M. hyorhinis infections may cause respiratory disease. Information regarding transcript structure and gene abundance provides valuable insight into gene function and regulation, which has not yet been analyzed on a genome-wide scale in these Mycoplasma species. In this study, we report the construction of transcriptome maps for M. hyopneumoniae, M. flocculare and M. hyorhinis, which represent data for conducting comparative studies on the transcriptional repertory. For each species, three cDNA libraries were generated, yielding averages of 415,265, 695,313 and 93,578 reads for M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively, with an average read length of 274 bp. The reads mapping showed that 92%, 98% and 96% of the predicted genes were transcribed in the M. hyopneumoniae, M. flocculare and M. hyorhinis genomes, respectively. Moreover, we showed that the majority of the genes are co-expressed, confirming the previously predicted transcription units. Finally, our data defined the RNA populations in detail, with the map transcript boundaries and transcription unit structures on a genome-wide scale.
Collapse
Affiliation(s)
- Franciele Maboni Siqueira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas – Bioquímica, UFRGS, Porto Alegre, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Rafael Lucas Muniz Guedes
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Luiz Gonzaga Almeida
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Irene Silveira Schrank
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | | | - Arnaldo Zaha
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
- * E-mail:
| |
Collapse
|
41
|
Zaramela LS, Vêncio RZN, ten-Caten F, Baliga NS, Koide T. Transcription start site associated RNAs (TSSaRNAs) are ubiquitous in all domains of life. PLoS One 2014; 9:e107680. [PMID: 25238539 PMCID: PMC4169567 DOI: 10.1371/journal.pone.0107680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/18/2014] [Indexed: 01/06/2023] Open
Abstract
A plethora of non-coding RNAs has been discovered using high-resolution transcriptomics tools, indicating that transcriptional and post-transcriptional regulation is much more complex than previously appreciated. Small RNAs associated with transcription start sites of annotated coding regions (TSSaRNAs) are pervasive in both eukaryotes and bacteria. Here, we provide evidence for existence of TSSaRNAs in several archaeal transcriptomes including: Halobacterium salinarum, Pyrococcus furiosus, Methanococcus maripaludis, and Sulfolobus solfataricus. We validated TSSaRNAs from the model archaeon Halobacterium salinarum NRC-1 by deep sequencing two independent small-RNA enriched (RNA-seq) and a primary-transcript enriched (dRNA-seq) strand-specific libraries. We identified 652 transcripts, of which 179 were shown to be primary transcripts (∼7% of the annotated genome). Distinct growth-associated expression patterns between TSSaRNAs and their cognate genes were observed, indicating a possible role in environmental responses that may result from RNA polymerase with varying pausing rhythms. This work shows that TSSaRNAs are ubiquitous across all domains of life.
Collapse
Affiliation(s)
- Livia S. Zaramela
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Z. N. Vêncio
- Department of Computing and Mathematics, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe ten-Caten
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Tie Koide
- Department Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
42
|
Abstract
Genomic analysis of H. salinarum indicated that the de novo pathway for aromatic amino acid (AroAA) biosynthesis does not follow the classical pathway but begins from non-classical precursors, as is the case for M. jannaschii. The first two steps in the pathway were predicted to be carried out by genes OE1472F and OE1475F, while the 3rd step follows the canonical pathway involving gene OE1477R. The functions of these genes and their products were tested by biochemical and genetic methods. In this study, we provide evidence that supports the role of proteins OE1472F and OE1475F catalyzing consecutive enzymatic reactions leading to the production of 3-dehydroquinate (DHQ), after which AroAA production proceeds via the canonical pathway starting with the formation of DHS (dehydroshikimate), catalyzed by the product of ORF OE1477R. Nutritional requirements and AroAA uptake studies of the mutants gave results that were consistent with the proposed roles of these ORFs in AroAA biosynthesis. DNA microarray data indicated that the 13 genes of the canonical pathway appear to be utilised for AroAA biosynthesis in H. salinarum, as they are differentially expressed when cells are grown in medium lacking AroAA.
Collapse
|
43
|
Primary transcriptome map of the hyperthermophilic archaeon Thermococcus kodakarensis. BMC Genomics 2014; 15:684. [PMID: 25127548 PMCID: PMC4247193 DOI: 10.1186/1471-2164-15-684] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 01/02/2023] Open
Abstract
Background Prokaryotes have relatively small genomes, densely-packed with protein-encoding sequences. RNA sequencing has, however, revealed surprisingly complex transcriptomes and here we report the transcripts present in the model hyperthermophilic Archaeon, Thermococcus kodakarensis, under different physiological conditions. Results Sequencing cDNA libraries, generated from RNA isolated from cells under different growth and metabolic conditions has identified >2,700 sites of transcription initiation, established a genome-wide map of transcripts, and consensus sequences for transcription initiation and post-transcription regulatory elements. The primary transcription start sites (TSS) upstream of 1,254 annotated genes, plus 644 primary TSS and their promoters within genes, are identified. Most mRNAs have a 5'-untranslated region (5'-UTR) 10 to 50 nt long (median = 16 nt), but ~20% have 5'-UTRs from 50 to 300 nt long and ~14% are leaderless. Approximately 50% of mRNAs contain a consensus ribosome binding sequence. The results identify TSS for 1,018 antisense transcripts, most with sequences complementary to either the 5'- or 3'-region of a sense mRNA, and confirm the presence of transcripts from all three CRISPR loci, the RNase P and 7S RNAs, all tRNAs and rRNAs and 69 predicted snoRNAs. Two putative riboswitch RNAs were present in growing but not in stationary phase cells. The procedure used is designed to identify TSS but, assuming that the number of cDNA reads correlates with transcript abundance, the results also provide a semi-quantitative documentation of the differences in T. kodakarensis genome expression under different growth conditions and confirm previous observations of substrate-dependent specific gene expression. Many previously unanticipated small RNAs have been identified, some with relative low GC contents (≤50%) and sequences that do not fold readily into base-paired secondary structures, contrary to the classical expectations for non-coding RNAs in a hyperthermophile. Conclusion The results identify >2,700 TSS, including almost all of the primary sites of transcription initiation upstream of annotated genes, plus many secondary sites, sites within genes and sites resulting in antisense transcripts. The T. kodakarensis genome is small (~2.1 Mbp) and tightly packed with protein-encoding genes, but the transcriptomes established also contain many non-coding RNAs and predict extensive RNA-based regulation in this model Archaeon. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-684) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Brooks AN, Reiss DJ, Allard A, Wu WJ, Salvanha DM, Plaisier CL, Chandrasekaran S, Pan M, Kaur A, Baliga NS. A system-level model for the microbial regulatory genome. Mol Syst Biol 2014; 10:740. [PMID: 25028489 PMCID: PMC4299497 DOI: 10.15252/msb.20145160] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.
Collapse
Affiliation(s)
- Aaron N Brooks
- Institute for Systems Biology, Seattle, WA, USA Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | | | - Antoine Allard
- Département de Physique, de Génie Physique et d'Optique, Université Laval, Québec, QC, Canada
| | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Diego M Salvanha
- Institute for Systems Biology, Seattle, WA, USA LabPIB, Department of Computing and Mathematics FFCLRP-USP, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA, USA Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA Departments of Microbiology and Biology, University of Washington, Seattle, WA, USA Lawrence Berkeley National Laboratories, Berkeley, CA, USA
| |
Collapse
|
45
|
Abstract
Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function. Importance: The first step of gene expression is the initiation of transcription from promoters, which have been traditionally thought to be located upstream of genes. Recently, studies showed that in diverse bacteria, promoters are often located inside genes. It has not been clear if these unexpected promoters are important to the organism or if they result from transcriptional noise. Here, we identify and examine promoters in eight related bacterial species. Promoters that lie within genes on the sense strand are often conserved as locations and in their sequences. Furthermore, these promoters often affect the bacterium's growth. Thus, many of these unexpected promoters are likely functional. Fewer promoters that lie within genes on the antisense strand are conserved, but the conserved ones seem to drive the expression of nearby genes.
Collapse
|
46
|
Transcriptome dynamics-based operon prediction in prokaryotes. BMC Bioinformatics 2014; 15:145. [PMID: 24884724 PMCID: PMC4235196 DOI: 10.1186/1471-2105-15-145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 04/22/2014] [Indexed: 11/21/2022] Open
Abstract
Background Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. Results In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. Conclusion We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available.
Collapse
|
47
|
Krajewski SS, Narberhaus F. Temperature-driven differential gene expression by RNA thermosensors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:978-988. [PMID: 24657524 DOI: 10.1016/j.bbagrm.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/28/2014] [Accepted: 03/14/2014] [Indexed: 12/20/2022]
Abstract
Many prokaryotic genes are organized in operons. Genes organized in such transcription units are co-transcribed into a polycistronic mRNA. Despite being clustered in a single mRNA, individual genes can be subjected to differential regulation, which is mainly achieved at the level of translation depending on initiation and elongation. Efficiency of translation initiation is primarily determined by the structural accessibility of the ribosome binding site (RBS). Structured cis-regulatory elements like RNA thermometers (RNATs) can contribute to differential regulation of individual genes within a polycistronic mRNA. RNATs are riboregulators that mediate temperature-responsive regulation of a downstream gene by modulating the accessibility of its RBS. At low temperature, the RBS is trapped by intra-molecular base pairing prohibiting translation initiation. The secondary structure melts with increasing temperature thus liberating the RBS. Here, we present an overview of different RNAT types and specifically highlight recently discovered RNATs. The main focus of this review is on RNAT-based differential control of polycistronic operons. Finally, we discuss the influence of temperature on other riboregulators and the potential of RNATs in synthetic RNA biology. This article is part of a Special Issue entitled: Riboswitches.
Collapse
|
48
|
Pfeifer-Sancar K, Mentz A, Rückert C, Kalinowski J. Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique. BMC Genomics 2013; 14:888. [PMID: 24341750 PMCID: PMC3890552 DOI: 10.1186/1471-2164-14-888] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/03/2013] [Indexed: 01/16/2023] Open
Abstract
Background The use of RNAseq to resolve the transcriptional organization of an organism was established in recent years and also showed the complexity and dynamics of bacterial transcriptomes. The aim of this study was to comprehensively investigate the transcriptome of the industrially relevant amino acid producer and model organism Corynebacterium glutamicum by RNAseq in order to improve its genome annotation and to describe important features for transcription and translation. Results RNAseq data sets were obtained by two methods, one that focuses on 5′-ends of primary transcripts and another that provides the overall transcriptome with an improved resolution of 3′-ends of transcripts. Subsequent data analysis led to the identification of more than 2,000 transcription start sites (TSSs), the definition of 5′-UTRs (untranslated regions) for annotated protein-coding genes, operon structures and many novel transcripts located between or in antisense orientation to protein-coding regions. Interestingly, a high number of mRNAs (33%) is transcribed as leaderless transcripts. From the data, consensus promoter and ribosome binding site (RBS) motifs were identified and it was shown that the majority of genes in C. glutamicum are transcribed monocistronically, but operons containing up to 16 genes are also present. Conclusions The comprehensive transcriptome map of C. glutamicum established in this study represents a major step forward towards a complete definition of genetic elements (e.g. promoter regions, gene starts and stops, 5′-UTRs, RBSs, transcript starts and ends) and provides the ideal basis for further analyses on transcriptional regulatory networks in this organism. The methods developed are easily applicable for other bacteria and have the potential to be used also for quantification of transcriptomes, replacing microarrays in the near future.
Collapse
Affiliation(s)
| | | | | | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
49
|
Analysis of the transcriptional regulator GlpR, promoter elements, and posttranscriptional processing involved in fructose-induced activation of the phosphoenolpyruvate-dependent sugar phosphotransferase system in Haloferax mediterranei. Appl Environ Microbiol 2013; 80:1430-40. [PMID: 24334671 DOI: 10.1128/aem.03372-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among all known archaeal strains, the phosphoenolpyruvate-dependent phosphotransferase system (PTS) for fructose utilization is used primarily by haloarchaea, which thrive in hypersaline environments, whereas the molecular details of the regulation of the archaeal PTS under fructose induction remain unclear. In this study, we present a comprehensive examination of the regulatory mechanism of the fructose PTS in the haloarchaeon Haloferax mediterranei. With gene knockout and complementation, microarray analysis, and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR), we revealed that GlpR is the indispensable activator, which specifically binds to the PTS promoter (PPTS) during fructose induction. Further promoter-scanning mutation indicated that three sites located upstream of the H. mediterranei PPTS, which are conserved in most haloarchaeal PPTSs, are involved in this induction. Interestingly, two PTS transcripts (named T8 and T17) with different lengths of 5' untranslated region (UTR) were observed, and promoter or 5' UTR swap experiments indicated that the shorter 5' UTR was most likely generated from the longer one. Notably, the translation efficiency of the transcript with this shorter 5' UTR was significantly higher and the ratio of T8 (with the shorter 5' UTR) to T17 increased during fructose induction, implying that a posttranscriptional mechanism is also involved in PTS activation. With these insights into the molecular regulation of the haloarchaeal PTS, we have proposed a working model for haloarchaea in response to environmental fructose.
Collapse
|
50
|
Quax TEF, Wolf YI, Koehorst JJ, Wurtzel O, van der Oost R, Ran W, Blombach F, Makarova KS, Brouns SJJ, Forster AC, Wagner EGH, Sorek R, Koonin EV, van der Oost J. Differential translation tunes uneven production of operon-encoded proteins. Cell Rep 2013; 4:938-44. [PMID: 24012761 DOI: 10.1016/j.celrep.2013.07.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 12/27/2022] Open
Abstract
Clustering of functionally related genes in operons allows for coregulated gene expression in prokaryotes. This is advantageous when equal amounts of gene products are required. Production of protein complexes with an uneven stoichiometry, however, requires tuning mechanisms to generate subunits in appropriate relative quantities. Using comparative genomic analysis, we show that differential translation is a key determinant of modulated expression of genes clustered in operons and that codon bias generally is the best in silico indicator of unequal protein production. Variable ribosome density profiles of polycistronic transcripts correlate strongly with differential translation patterns. In addition, we provide experimental evidence that de novo initiation of translation can occur at intercistronic sites, allowing for differential translation of any gene irrespective of its position on a polycistronic messenger. Thus, modulation of translation efficiency appears to be a universal mode of control in bacteria and archaea that allows for differential production of operon-encoded proteins.
Collapse
Affiliation(s)
- Tessa E F Quax
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|