1
|
Hitomi K, Ishii Y, Ying BW. Experimental evolution for the recovery of growth loss due to genome reduction. eLife 2024; 13:RP93520. [PMID: 38690805 PMCID: PMC11062635 DOI: 10.7554/elife.93520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024] Open
Abstract
As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.
Collapse
Affiliation(s)
- Kenya Hitomi
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Yoichiro Ishii
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Bei-Wen Ying
- School of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| |
Collapse
|
2
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Matsui Y, Nagai M, Ying BW. Growth rate-associated transcriptome reorganization in response to genomic, environmental, and evolutionary interruptions. Front Microbiol 2023; 14:1145673. [PMID: 37032868 PMCID: PMC10073601 DOI: 10.3389/fmicb.2023.1145673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
The genomic, environmental, and evolutionary interruptions caused the changes in bacterial growth, which were stringently associated with changes in gene expression. The growth and gene expression changes remained unclear in response to these interruptions that occurred combinative. As a pilot study, whether and how bacterial growth was affected by the individual and dual interruptions of genome reduction, environmental stress, and adaptive evolution were investigated. Growth assay showed that the presence of the environmental stressors, i.e., threonine and chloramphenicol, significantly decreased the growth rate of the wild-type Escherichia coli, whereas not that of the reduced genome. It indicated a canceling effect in bacterial growth due to the dual interruption of the genomic and environmental changes. Experimental evolution of the reduced genome released the canceling effect by improving growth fitness. Intriguingly, the transcriptome architecture maintained a homeostatic chromosomal periodicity regardless of the genomic, environmental, and evolutionary interruptions. Negative epistasis in transcriptome reorganization was commonly observed in response to the dual interruptions, which might contribute to the canceling effect. It was supported by the changes in the numbers of differentially expressed genes (DEGs) and the enriched regulons and functions. Gene network analysis newly constructed 11 gene modules, one out of which was correlated to the growth rate. Enrichment of DEGs in these modules successfully categorized them into three types, i.e., conserved, responsive, and epistatic. Taken together, homeostasis in transcriptome architecture was essential to being alive, and it might be attributed to the negative epistasis in transcriptome reorganization and the functional differentiation in gene modules. The present study directly connected bacterial growth fitness with transcriptome reorganization and provided a global view of how microorganisms responded to genomic, environmental, and evolutionary interruptions for survival from wild nature.
Collapse
|
4
|
The economy of chromosomal distances in bacterial gene regulation. NPJ Syst Biol Appl 2021; 7:49. [PMID: 34911953 PMCID: PMC8674286 DOI: 10.1038/s41540-021-00209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
In the transcriptional regulatory network (TRN) of a bacterium, the nodes are genes and a directed edge represents the action of a transcription factor (TF), encoded by the source gene, on the target gene. It is a condensed representation of a large number of biological observations and facts. Nonrandom features of the network are structural evidence of requirements for a reliable systemic function. For the bacterium Escherichia coli we here investigate the (Euclidean) distances covered by the edges in the TRN when its nodes are embedded in the real space of the circular chromosome. Our work is motivated by 'wiring economy' research in Computational Neuroscience and starts from two contradictory hypotheses: (1) TFs are predominantly employed for long-distance regulation, while local regulation is exerted by chromosomal structure, locally coordinated by the action of structural proteins. Hence long distances should often occur. (2) A large distance between the regulator gene and its target requires a higher expression level of the regulator gene due to longer reaching times and ensuing increased degradation (proteolysis) of the TF and hence will be evolutionarily reduced. Our analysis supports the latter hypothesis.
Collapse
|
5
|
Krogh TJ, Franke A, Møller-Jensen J, Kaleta C. Elucidating the Influence of Chromosomal Architecture on Transcriptional Regulation in Prokaryotes - Observing Strong Local Effects of Nucleoid Structure on Gene Regulation. Front Microbiol 2020; 11:2002. [PMID: 32983020 PMCID: PMC7491251 DOI: 10.3389/fmicb.2020.02002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Both intrinsic and extrinsic mechanisms regulating bacterial expression have been elucidated and described, however, such studies have mainly focused on local effects on the two-dimensional structure of the prokaryote genome while long-range as well as spatial interactions influencing gene expression are still only poorly understood. In this paper, we investigate the association between co-expression and distance between genes, using RNA-seq data at multiple growth phases in order to illuminate whether such conserved patterns are an indication of a gene regulatory mechanism relevant for prokaryotic cell proliferation, adaption, and evolution. We observe recurrent sinusoidal patterns in correlation of pairwise expression as function of genomic distance and rule out that these are caused by transcription-induced supercoiling gradients, gene clustering in operons, or association with regulatory transcription factors (TFs). By comparing spatial proximity for pairs of genomic bins with their correlation of pairwise expression, we further observe a high co-expression proportional with the spatial proximity. Based on these observations, we propose that the observed patterns are related to nucleoid structure as a product of transcriptional spilling, where genes actively influence transcription of spatially proximal genes through increases within shared local pools of RNA polymerases (RNAP), and actively spilling transcription onto neighboring genes.
Collapse
Affiliation(s)
- Thøger Jensen Krogh
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Andre Franke
- Institute of Clinical Molecular Biology (IKMB), Christian-Albrechts-University Kiel, Kiel, Germany
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Xu M, Lawrence JG, Durand D. Selection, periodicity and potential function for Highly Iterative Palindrome-1 (HIP1) in cyanobacterial genomes. Nucleic Acids Res 2019; 46:2265-2278. [PMID: 29432573 PMCID: PMC5861425 DOI: 10.1093/nar/gky075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
Highly Iterated Palindrome 1 (HIP1, GCGATCGC) is hyper-abundant in most cyanobacterial genomes. In some cyanobacteria, average HIP1 abundance exceeds one motif per gene. Such high abundance suggests a significant role in cyanobacterial biology. However, 20 years of study have not revealed whether HIP1 has a function, much less what that function might be. We show that HIP1 is 15- to 300-fold over-represented in genomes analyzed. More importantly, HIP1 sites are conserved both within and between open reading frames, suggesting that their overabundance is maintained by selection rather than by continual replenishment by neutral processes, such as biased DNA repair. This evidence for selection suggests a functional role for HIP1. No evidence was found to support a functional role as a peptide or RNA motif or a role in the regulation of gene expression. Rather, we demonstrate that the distribution of HIP1 along cyanobacterial chromosomes is significantly periodic, with periods ranging from 10 to 90 kb, consistent in scale with periodicities reported for co-regulated, co-expressed and evolutionarily correlated genes. The periodicity we observe is also comparable in scale to chromosomal interaction domains previously described in other bacteria. In this context, our findings imply HIP1 functions associated with chromosome and nucleoid structure.
Collapse
Affiliation(s)
- Minli Xu
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jeffrey G Lawrence
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dannie Durand
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Junier I, Frémont P, Rivoire O. Universal and idiosyncratic characteristic lengths in bacterial genomes. Phys Biol 2018; 15:035001. [PMID: 29512518 DOI: 10.1088/1478-3975/aab4ac] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10-20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Collapse
Affiliation(s)
- Ivan Junier
- CNRS, TIMC-IMAG, Grenoble, France. Univ. Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | | | | |
Collapse
|
8
|
Cameron ADS, Dillon SC, Kröger C, Beran L, Dorman CJ. Broad-scale redistribution of mRNA abundance and transcriptional machinery in response to growth rate in Salmonella enterica serovar Typhimurium. Microb Genom 2017; 3:e000127. [PMID: 29177086 PMCID: PMC5695205 DOI: 10.1099/mgen.0.000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/12/2017] [Indexed: 11/18/2022] Open
Abstract
We have investigated the connection between the four-dimensional architecture of the bacterial nucleoid and the organism's global gene expression programme. By localizing the transcription machinery and the transcriptional outputs across the genome of the model bacterium Salmonella enterica serovar Typhimurium at different stages of the growth cycle, a surprising disconnection between gene dosage and transcriptional output was revealed. During exponential growth, gene output occurred chiefly in the Ori (origin), Ter (terminus) and NSL (non-structured left) domains, whereas the Left macrodomain remained transcriptionally quiescent at all stages of growth. The apparently high transcriptional output in Ter was correlated with an enhanced stability of the RNA expressed there during exponential growth, suggesting that longer mRNA half-lives compensate for low gene dosage. During exponential growth, RNA polymerase (RNAP) was detected everywhere, whereas in stationary phase cells, RNAP was concentrated in the Ter macrodomain. The alternative sigma factors RpoE, RpoH and RpoN were not required to drive transcription in these growth conditions, consistent with their observed binding to regions away from RNAP and regions of active transcription. Specifically, these alternative sigma factors were found in the Ter macrodomain during exponential growth, whereas they were localized at the Ori macrodomain in stationary phase.
Collapse
Affiliation(s)
- Andrew D S Cameron
- 1Institute of Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada.,2Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Shane C Dillon
- 3School of Biological Sciences, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland
| | - Carsten Kröger
- 4Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Laurens Beran
- 1Institute of Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Charles J Dorman
- 4Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Chromosomal organization of transcription: in a nutshell. Curr Genet 2017; 64:555-565. [PMID: 29184972 DOI: 10.1007/s00294-017-0785-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023]
Abstract
Early studies of transcriptional regulation focused on individual gene promoters defined specific transcription factors as central agents of genetic control. However, recent genome-wide data propelled a different view by linking spatially organized gene expression patterns to chromosomal dynamics. Therefore, the major problem in contemporary molecular genetics concerned with transcriptional gene regulation is to establish a unifying model that reconciles these two views. This problem, situated at the interface of polymer physics and network theory, requires development of an integrative methodology. In this review, we discuss recent achievements in classical model organism E. coli and provide some novel insights gained from studies of a bacterial plant pathogen, D. dadantii. We consider DNA topology and the basal transcription machinery as key actors of regulation, in which activation of functionally relevant genes is coupled to and coordinated with the establishment of extended chromosomal domains of coherent transcription. We argue that the spatial organization of genome plays a fundamental role in its own regulation.
Collapse
|
10
|
Messerschmidt SJ, Waldminghaus T. Dynamic Organization: Chromosome Domains in Escherichia coli. J Mol Microbiol Biotechnol 2015; 24:301-15. [DOI: 10.1159/000369098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Muskhelishvili G, Travers A. Order from the Order: How a Spatiotemporal Genetic Program Is Encoded in a 2-D Genetic Map of the Bacterial Chromosome. J Mol Microbiol Biotechnol 2015; 24:332-43. [DOI: 10.1159/000368852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Srinivasan R, Scolari VF, Lagomarsino MC, Seshasayee ASN. The genome-scale interplay amongst xenogene silencing, stress response and chromosome architecture in Escherichia coli. Nucleic Acids Res 2014; 43:295-308. [PMID: 25429971 PMCID: PMC4288151 DOI: 10.1093/nar/gku1229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gene expression state of exponentially growing Escherichia coli cells is manifested by high expression of essential and growth-associated genes and low levels of stress-related and horizontally acquired genes. An important player in maintaining this homeostasis is the H-NS-StpA gene silencing system. A Δhns-stpA deletion mutant results in high expression of otherwise-silent horizontally acquired genes, many located in the terminus-half of the chromosome, and an indirect downregulation of many highly expressed genes. The Δhns-stpA double mutant displays slow growth. Using laboratory evolution we address the evolutionary strategies that E. coli would adopt to redress this gene expression imbalance. We show that two global gene regulatory mutations-(i) point mutations inactivating the stress-responsive sigma factor RpoS or σ38 and (ii) an amplification of ∼40% of the chromosome centred around the origin of replication-converge in partially reversing the global gene expression imbalance caused by Δhns-stpA. Transcriptome data of these mutants further show a three-way link amongst the global gene regulatory networks of H-NS and σ38, as well as chromosome architecture. Increasing gene expression around the terminus of replication results in a decrease in the expression of genes around the origin and vice versa; this appears to be a persistent phenomenon observed as an association across ∼300 publicly-available gene expression data sets for E. coli. These global suppressor effects are transient and rapidly give way to more specific mutations, whose roles in reversing the growth defect of H-NS mutations remain to be understood.
Collapse
Affiliation(s)
- Rajalakshmi Srinivasan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India
| | - Vittore Ferdinando Scolari
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104, India Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France
| | - Marco Cosentino Lagomarsino
- Genomic Physics Group, UMR 7238 CNRS Microorganism Genomics, UPMC, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR 7238, Computational and Quantitative Biology, 15 Rue de l'École de Médecine Paris, France CNRS, UMR 7238, Paris, France
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore 560065, India
| |
Collapse
|
13
|
Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat Rev Microbiol 2013; 11:349-55. [DOI: 10.1038/nrmicro3007] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Sobetzko P, Glinkowska M, Travers A, Muskhelishvili G. DNA thermodynamic stability and supercoil dynamics determine the gene expression program during the bacterial growth cycle. MOLECULAR BIOSYSTEMS 2013; 9:1643-51. [PMID: 23493878 DOI: 10.1039/c3mb25515h] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The chromosomal DNA polymer constituting the cellular genetic material is primarily a device for coding information. Whilst the gene sequences comprise the digital (discontinuous) linear code, physiological alterations of the DNA superhelical density generate in addition analog (continuous) three-dimensional information essential for regulation of both chromosome compaction and gene expression. Insight into the relationship between the DNA analog information and the digital linear code is of fundamental importance for understanding genetic regulation. Our previous study in the model organism Escherichia coli suggested that the chromosomal gene order and a spatiotemporal gradient of DNA superhelicity associated with DNA replication determine the growth phase-dependent gene transcription. In this study we reveal a general gradient of DNA thermodynamic stability correlated with the polarity of chromosomal replication and manifest in the spatiotemporal pattern of gene transcription during the bacterial growth cycle. Furthermore, by integrating the physical and dynamic features of the transcribed sequences with their functional content we identify spatiotemporal domains of gene expression encompassing different functions. We thus provide both an insight into the organisational principle of the bacterial growth program and a novel holistic methodology for exploring chromosomal dynamics.
Collapse
Affiliation(s)
- Patrick Sobetzko
- Jacobs University Bremen, School of Engineering and Science, Campus Ring 1, D-28759 Bremen, Germany
| | | | | | | |
Collapse
|
15
|
Ma Q, Xu Y. Global genomic arrangement of bacterial genes is closely tied with the total transcriptional efficiency. GENOMICS PROTEOMICS & BIOINFORMATICS 2013; 11:66-71. [PMID: 23434046 PMCID: PMC4357662 DOI: 10.1016/j.gpb.2013.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 01/03/2023]
Abstract
The availability of a large number of sequenced bacterial genomes allows researchers not only to derive functional and regulation information about specific organisms but also to study the fundamental properties of the organization of a genome. Here we address an important and challenging question regarding the global arrangement of operons in a bacterial genome: why operons in a bacterial genome are arranged in the way they are. We have previously studied this question and found that operons of more frequently activated pathways tend to be more clustered together in a genome. Specifically, we have developed a simple sequential distance-based pseudo energy function and found that the arrangement of operons in a bacterial genome tend to minimize the clusteredness function (C value) in comparison with artificially-generated alternatives, for a variety of bacterial genomes. Here we extend our previous work, and report a number of new observations: (a) operons of the same pathways tend to group into a few clusters rather than one; and (b) the global arrangement of these operon clusters tend to minimize a new “energy” function (C+ value) that reflects the efficiency of the transcriptional activation of the encoded pathways. These observations provide insights into further study of the genomic organization of genes in bacteria.
Collapse
Affiliation(s)
- Qin Ma
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
16
|
Ying BW, Seno S, Kaneko F, Matsuda H, Yomo T. Multilevel comparative analysis of the contributions of genome reduction and heat shock to the Escherichia coli transcriptome. BMC Genomics 2013; 14:25. [PMID: 23324527 PMCID: PMC3553035 DOI: 10.1186/1471-2164-14-25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 12/29/2012] [Indexed: 12/24/2022] Open
Abstract
Background Both large deletions in genome and heat shock stress would lead to alterations in the gene expression profile; however, whether there is any potential linkage between these disturbances to the transcriptome have not been discovered. Here, the relationship between the genomic and environmental contributions to the transcriptome was analyzed by comparing the transcriptomes of the bacterium Escherichia coli (strain MG1655 and its extensive genomic deletion derivative, MDS42) grown in regular and transient heat shock conditions. Results The transcriptome analysis showed the following: (i) there was a reorganization of the transcriptome in accordance with preferred chromosomal periodicity upon genomic or heat shock perturbation; (ii) there was a considerable overlap between the perturbed regulatory networks and the categories enriched for differentially expressed genes (DEGs) following genome reduction and heat shock; (iii) the genes sensitive to genome reduction tended to be located close to genomic scars, and some were also highly responsive to heat shock; and (iv) the genomic and environmental contributions to the transcriptome displayed not only a positive correlation but also a negatively compensated relationship (i.e., antagonistic epistasis). Conclusion The contributions of genome reduction and heat shock to the Escherichia coli transcriptome were evaluated at multiple levels. The observations of overlapping perturbed networks, directional similarity in transcriptional changes, positive correlation and epistatic nature linked the two contributions and suggest somehow a crosstalk guiding transcriptional reorganization in response to both genetic and environmental disturbances in bacterium E. coli.
Collapse
Affiliation(s)
- Bei-Wen Ying
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
Zarei M, Sclavi B, Cosentino Lagomarsino M. Gene silencing and large-scale domain structure of the E. coli genome. MOLECULAR BIOSYSTEMS 2013; 9:758-67. [DOI: 10.1039/c3mb25364c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Abstract
Genes that interact or function together are often clustered in bacterial genomes, and it has been proposed that this clustering may affect gene expression. In this study, we directly compared gene expression in nonclustered arrangements and in three common clustered arrangements (codirectional, divergent, and operon) using synthetic circuits in Escherichia coli. We found that gene clustering had minimal effects on gene expression. Specifically, gene clustering did not alter constitutive expression levels or stochastic fluctuations in expression ("expression noise"). Remarkably, the expression of two genes that share the same chromosome position with the same promoter (operon) or with separate promoters (codirectional and divergent arrangements) was not significantly more correlated than genes at different chromosome positions (nonclustered arrangements). The only observed effect of clustering was increased transcription factor binding in codirectional and divergent gene arrangements due to DNA looping, but this is not a specific feature of clustering. In summary, we demonstrate that gene clustering is not a general modulator of gene expression, and therefore any effects of clustering are likely to occur only with specific genes or under certain conditions.
Collapse
|
19
|
Dame RT, Espéli O, Grainger DC, Wiggins PA. Multidisciplinary perspectives on bacterial genome organization and dynamics. Mol Microbiol 2012; 86:1023-30. [DOI: 10.1111/mmi.12055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Olivier Espéli
- CNRS; Centre de Génétique Moléculaire; Gif-sur-yvette Cedex; France
| | - David C. Grainger
- School of Biosciences; University of Birmingham; Edgbaston; Birmingham; B15 2TT; UK
| | - Paul A. Wiggins
- Department of Physics; University of Washington; Seattle; WA; USA
| |
Collapse
|
20
|
Benza VG, Bassetti B, Dorfman KD, Scolari VF, Bromek K, Cicuta P, Lagomarsino MC. Physical descriptions of the bacterial nucleoid at large scales, and their biological implications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:076602. [PMID: 22790781 DOI: 10.1088/0034-4885/75/7/076602] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Recent experimental and theoretical approaches have attempted to quantify the physical organization (compaction and geometry) of the bacterial chromosome with its complement of proteins (the nucleoid). The genomic DNA exists in a complex and dynamic protein-rich state, which is highly organized at various length scales. This has implications for modulating (when not directly enabling) the core biological processes of replication, transcription and segregation. We overview the progress in this area, driven in the last few years by new scientific ideas and new interdisciplinary experimental techniques, ranging from high space- and time-resolution microscopy to high-throughput genomics employing sequencing to map different aspects of the nucleoid-related interactome. The aim of this review is to present the wide spectrum of experimental and theoretical findings coherently, from a physics viewpoint. In particular, we highlight the role that statistical and soft condensed matter physics play in describing this system of fundamental biological importance, specifically reviewing classic and more modern tools from the theory of polymers. We also discuss some attempts toward unifying interpretations of the current results, pointing to possible directions for future investigation.
Collapse
Affiliation(s)
- Vincenzo G Benza
- Dipartimento di Fisica e Matematica, Università dell'Insubria, Como, Italy
| | | | | | | | | | | | | |
Collapse
|
21
|
Scolari VF, Zarei M, Osella M, Lagomarsino MC. NuST: analysis of the interplay between nucleoid organization and gene expression. Bioinformatics 2012; 28:1643-4. [PMID: 22531214 DOI: 10.1093/bioinformatics/bts201] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
UNLABELLED Different experimental results suggest the presence of an interplay between global transcriptional regulation and chromosome spatial organization in bacteria. The identification and clear visualization of spatial clusters of contiguous genes targeted by specific DNA-binding proteins or sensitive to nucleoid perturbations can elucidate links between nucleoid structure and gene expression patterns. Similarly, statistical analysis to assess correlations between results from independent experiments can provide the integrated analysis needed in this line of research. NuST (Nucleoid Survey tools), based on the Escherichia coli genome, gives the non-expert the possibility to analyze the aggregation of genes or loci sets along the genome coordinate, at different scales of observation. It is useful to discover correlations between different sources of data (e.g. expression, binding or genomic data) and genome organization. A user can use it on datasets in the form of gene lists coming from his/her own experiments or bioinformatic analyses, but also make use of the internal database, which collects data from many published studies. AVAILABILITY AND IMPLEMENTATION NuST is a web server (available at http://www.lgm.upmc.fr/nust/). The website is implemented in PHP, SQLite and Ajax, with all major browsers supported, while the core algorithms are optimized and implemented in C. NuST has an extensive help page and provides a direct visualization of results as well as different downloadable file formats. A template Perl code for automated access to the web server can be downloaded at http://www.lgm.upmc.fr/nust/downloads/, in order to allow the users to use NuST in systematic bioinformatic analyses.
Collapse
Affiliation(s)
- Vittore F Scolari
- Genomic Physics Group, UMR 7238 CNRS Génomique des Microorganismes, Université Pierre et Marie Curie, 15 rue de L'École de Médecine, 75006, Paris, France.
| | | | | | | |
Collapse
|
22
|
The layout of a bacterial genome. FEBS Lett 2012; 586:2043-8. [DOI: 10.1016/j.febslet.2012.03.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 12/25/2022]
|
23
|
Junier I, Hérisson J, Képès F. Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. J Mol Biol 2012; 419:369-86. [PMID: 22446685 DOI: 10.1016/j.jmb.2012.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/30/2022]
Abstract
The need for efficient molecular interplay in time and space within a cell imposes strong constraints that could be partially relaxed if relative gene positions along chromosomes were appropriate. Comparative genomics studies have demonstrated the short-scale conservation of gene proximity along bacterial chromosomes. Additionally, the long-range periodic positioning of evolutionarily correlated genes within Escherichia coli has recently been highlighted. To gain further insight into these different genetic organizations, we examined the compromise between chromosomal proximity and periodicity for all available eubacterial genomes by evaluating groups of evolutionarily correlated genes from a benchmark data set. In enterobacteria, strict chromosomal proximity is found to be limited to groups under 20 genes, whereas periodicity is significant in all groups over 50. The E. coli K12 genome bears 511 periodic genes (12% of the genome), whose orthologs are found to be periodic in all eubacterial phyla. These periodic genes predominantly function in macromolecular synthesis and spatial organization of cellular components. They are enriched in essential and housekeeping genes and tend to often be constitutively expressed. On this basis, it is argued that chromosomal proximity and periodicity are ubiquitous complementary genomic strategies that favor the build-up of local concentrations of co-functional molecules. In particular, the periodic layout may facilitate chromosome folding to spatially organize the construction of major cell components. The transition at 20 genes is reminiscent of the size of the longest operons and of topological microdomains. The range for which DNA neighborhood optimizes biochemical interactions might therefore be defined by DNA topology.
Collapse
Affiliation(s)
- Ivan Junier
- Epigenomics Project/Institute of Systems and Synthetic Biology, Genopole, CNRS, University of Evry, 91030 Evry, France.
| | | | | |
Collapse
|
24
|
Norris V, Grondin Y. DNA movies and panspermia. Life (Basel) 2011; 1:9-18. [PMID: 25382053 PMCID: PMC4187124 DOI: 10.3390/life1010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 10/08/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022] Open
Abstract
There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1) the codons to exploit Life's non-equilibrium character or (2) the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.
Collapse
Affiliation(s)
- Victor Norris
- EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| | - Yohann Grondin
- Harvard School of Public Health, 665 Huntington Avenue, 02115 Boston, MA, USA.
| |
Collapse
|
25
|
Rimsky S, Travers A. Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 2011; 14:136-41. [PMID: 21288763 DOI: 10.1016/j.mib.2011.01.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/07/2011] [Accepted: 01/07/2011] [Indexed: 01/10/2023]
Abstract
Bacterial DNA is organised in a compact nucleoid body that is tightly associated with the coupled transcription and translation of mRNAs. This structure contains abundant DNA-binding proteins which perform both structural and regulatory roles, and, in Escherichia coli, serve to buffer and organise pervasive DNA superhelicity. We argue that NAPs coordinate regulation of gene expression and superhelicity at the global (or chromosomal) and at local (corresponding to promoter activity and genetic recombination) levels.
Collapse
Affiliation(s)
- Sylvie Rimsky
- LBPA, Ecole Normale Supérieure de Cachan, CNRS, 94235 Cachan, France.
| | | |
Collapse
|
26
|
Scolari VF, Bassetti B, Sclavi B, Lagomarsino MC. Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. ACTA ACUST UNITED AC 2011; 7:878-88. [DOI: 10.1039/c0mb00213e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
27
|
Browning DF, Grainger DC, Busby SJW. Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 2010; 13:773-80. [DOI: 10.1016/j.mib.2010.09.013] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
|