1
|
Koeberl DD, Koch RL, Lim JA, Brooks ED, Arnson BD, Sun B, Kishnani PS. Gene therapy for glycogen storage diseases. J Inherit Metab Dis 2024; 47:93-118. [PMID: 37421310 PMCID: PMC10874648 DOI: 10.1002/jimd.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Glycogen storage disorders (GSDs) are inherited disorders of metabolism resulting from the deficiency of individual enzymes involved in the synthesis, transport, and degradation of glycogen. This literature review summarizes the development of gene therapy for the GSDs. The abnormal accumulation of glycogen and deficiency of glucose production in GSDs lead to unique symptoms based upon the enzyme step and tissues involved, such as liver and kidney involvement associated with severe hypoglycemia during fasting and the risk of long-term complications including hepatic adenoma/carcinoma and end stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and cardiac/skeletal/smooth muscle involvement associated with myopathy +/- cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease. These symptoms are present to a variable degree in animal models for the GSDs, which have been utilized to evaluate new therapies including gene therapy and genome editing. Gene therapy for Pompe disease and GSD Ia has progressed to Phase I and Phase III clinical trials, respectively, and are evaluating the safety and bioactivity of adeno-associated virus vectors. Clinical research to understand the natural history and progression of the GSDs provides invaluable outcome measures that serve as endpoints to evaluate benefits in clinical trials. While promising, gene therapy and genome editing face challenges with regard to clinical implementation, including immune responses and toxicities that have been revealed during clinical trials of gene therapy that are underway. Gene therapy for the glycogen storage diseases is under development, addressing an unmet need for specific, stable therapy for these conditions.
Collapse
Affiliation(s)
- Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Jeong-A Lim
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Elizabeth D Brooks
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Benjamin D Arnson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Baodong Sun
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Zhong J, Gou Y, Zhao P, Dong X, Guo M, Li A, Hao A, Luu HH, He TC, Reid RR, Fan J. Glycogen storage disease type I: Genetic etiology, clinical manifestations, and conventional and gene therapies. PEDIATRIC DISCOVERY 2023; 1:e3. [PMID: 38370424 PMCID: PMC10874634 DOI: 10.1002/pdi3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 02/20/2024]
Abstract
Glycogen storage disease type I (GSDI) is an inherited metabolic disorder characterized by a deficiency of enzymes or proteins involved in glycogenolysis and gluconeogenesis, resulting in excessive intracellular glycogen accumulation. While GSDI is classified into four different subtypes based on molecular genetic variants, GSDIa accounts for approximately 80%. GSDIa and GSDIb are autosomal recessive disorders caused by deficiencies in glucose-6-phosphatase (G6Pase-α) and glucose-6-phosphate-transporter (G6PT), respectively. For the past 50 years, the care of patients with GSDI has been improved following elaborate dietary managements. GSDI patients currently receive dietary therapies that enable patients to improve hypoglycemia and alleviate early symptomatic signs of the disease. However, dietary therapies have many limitations with a risk of calcium, vitamin D, and iron deficiency and cannot prevent long-term complications, such as progressive liver and renal failure. With the deepening understanding of the pathogenesis of GSDI and the development of gene therapy technology, there is great progress in the treatment of GSDI. Here, we review the underlying molecular genetics and the current clinical management strategies of GSDI patients with an emphasis on promising experimental gene therapies.
Collapse
Affiliation(s)
- Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Monteiro VCL, de Oliveira BM, Dos Santos BB, Sperb-Ludwig F, Refosco LF, Nalin T, Derks TGJ, Moura de Souza CF, Schwartz IVD. A triple-blinded crossover study to evaluate the short-term safety of sweet manioc starch for the treatment of glycogen storage disease type Ia. Orphanet J Rare Dis 2021; 16:254. [PMID: 34082801 PMCID: PMC8173866 DOI: 10.1186/s13023-021-01877-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 01/30/2023] Open
Abstract
Background Glycogen storage disease type 1a (GSD Ia) is characterized by severe fasting hypoglycemia. The clinical management includes the administration of uncooked cornstarch (UCCS). Although such a diet approach is effective in achieving euglycemia, its impact on the quality of life of patients should be considered. In vitro analyses suggest a longer release of glucose when using sweet manioc starch (SMS). Methods We compared the efficacy and safety of the administration of SMS and UCCS during a short-fasting challenge in patients with GSD Ia in a randomized, triple-blind, phase I/II, cross-over study. GSD Ia patients aged ≥ 16 years and treated with UCCS were enrolled. Participants were hospitalized for two consecutive nights, receiving UCCS or SMS in each night. After the administration of the starches, glucose, lactate and insulin levels were measured in 1-h interval throughout the hospitalization period. The procedures were interrupted after 10 h of fasting or in a hypoglycemic episode (< 3.88 mmol/L). Results Eleven individuals (mean age: 21.6 ± 4.3 years; all presenting body mass index > 25 kg/m2) participated in the study. The average fasting period was 8.2 ± 2.0 h for SMS and 7.7 ± 2.3 h for UCCS (p = 0.04). SMS maintained euglycemia for a greater period over UCCS. Increased lactate concentrations were detected even in absence of hypoglycemia, not being influenced by the different starches investigated (p = 0.17). No significant difference was found in total cholesterol, HDL, triglycerides and uric acid levels in both arms. None of the patients showed severe adverse events. Conclusions SMS appears to be non-inferior to UCCS in the maintenance of euglycemia, thus emerging as a promising alternative to the treatment of GSD Ia.
Collapse
Affiliation(s)
- Vaneisse C L Monteiro
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Bibiana M de Oliveira
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Bruna B Dos Santos
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences Laboratory (B.R.A.I.N), Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil
| | - Lilia F Refosco
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Tatiele Nalin
- Ultragenyx Brasil Farmacêutica Ltda, Presidente Juscelino Kubitchek Avenue, São Paulo, SP, 04543-011, Brazil
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University Medical Center of Groningen, University of Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands
| | - Carolina F Moura de Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil
| | - Ida V D Schwartz
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos St., 2350, Porto Alegre, Brazil. .,Basic Research and Advanced Investigations in Neurosciences Laboratory (B.R.A.I.N), Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil. .,Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil. .,NUCLIMED, Center for Clinical Research, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos St., 2350, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Jauze L, Monteillet L, Mithieux G, Rajas F, Ronzitti G. Challenges of Gene Therapy for the Treatment of Glycogen Storage Diseases Type I and Type III. Hum Gene Ther 2019; 30:1263-1273. [PMID: 31319709 DOI: 10.1089/hum.2019.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycogen storage diseases (GSDs) type I (GSDI) and type III (GSDIII), the most frequent hepatic GSDs, are due to defects in glycogen metabolism, mainly in the liver. In addition to hypoglycemia and liver pathology, renal, myeloid, or muscle complications affect GSDI and GSDIII patients. Currently, patient management is based on dietary treatment preventing severe hypoglycemia and increasing the lifespan of patients. However, most of the patients develop long-term pathologies. In the past years, gene therapy for GSDI has generated proof of concept for hepatic GSDs. This resulted in a recent clinical trial of adeno-associated virus (AAV)-based gene replacement for GSDIa. However, the current limitations of AAV-mediated gene transfer still represent a challenge for successful gene therapy in GSDI and GSDIII. Indeed, transgene loss over time was observed in GSDI liver, possibly due to the degeneration of hepatocytes underlying the physiopathology of both GSDI and GSDIII and leading to hepatic tumor development. Moreover, multitissue targeting requires high vector doses to target nonpermissive tissues such as muscle and kidney. Interestingly, recent pharmacological interventions or dietary regimen aiming at the amelioration of the hepatocyte abnormalities before the administration of gene therapy demonstrated improved efficacy in GSDs. In this review, we describe the advances in gene therapy and the limitations to be overcome to achieve efficient and safe gene transfer in GSDs.
Collapse
Affiliation(s)
- Louisa Jauze
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France.,Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Laure Monteillet
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, France.,Université de Lyon, Lyon, France.,Université Lyon I, Villeurbanne, France
| | - Giuseppe Ronzitti
- INTEGRARE, Genethon, Inserm, Université d'Evry, Université Paris-Saclay, Evry, France
| |
Collapse
|
5
|
Chou JY, Kim GY, Cho JH. Recent development and gene therapy for glycogen storage disease type Ia. LIVER RESEARCH 2017; 1:174-180. [PMID: 29576889 PMCID: PMC5859325 DOI: 10.1016/j.livres.2017.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycogen storage disease type Ia (GSD-Ia) is an autosomal recessive metabolic disorder caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC) that is expressed primarily in the liver, kidney, and intestine. G6Pase-α catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate in the terminal step of gluconeogenesis and glycogenolysis, and is a key enzyme for endogenous glucose production. The active site of G6Pase-α is inside the endoplasmic reticulum (ER) lumen. For catalysis, the substrate G6P must be translocated from the cytoplasm into the ER lumen by a G6P transporter (G6PT). The functional coupling of G6Pase-α and G6PT maintains interprandial glucose homeostasis. Dietary therapies for GSD-Ia are available, but cannot prevent the long-term complication of hepatocellular adenoma that may undergo malignant transformation to hepatocellular carcinoma. Animal models of GSD-Ia are now available and are being exploited to both delineate the disease more precisely and develop new treatment approaches, including gene therapy.
Collapse
Affiliation(s)
- Janice Y. Chou
- Section on Cellular Differentiation, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD, USA
| | - Goo-Young Kim
- Section on Cellular Differentiation, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD, USA
| | - Jun-Ho Cho
- Section on Cellular Differentiation, Eunice Kennedy Shriver National
Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD, USA
| |
Collapse
|
6
|
Sun B, Brooks ED, Koeberl DD. Preclinical Development of New Therapy for Glycogen Storage Diseases. Curr Gene Ther 2016; 15:338-47. [PMID: 26122079 DOI: 10.2174/1566523215666150630132253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/24/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Glycogen storage disease (GSD) consists of more than 10 discrete conditions for which the biochemical and genetic bases have been determined, and new therapies have been under development for several of these conditions. Gene therapy research has generated proof-of-concept for GSD types I (von Gierke disease) and II (Pompe disease). Key features of these gene therapy strategies include the choice of vector and regulatory cassette, and recently adeno-associated virus (AAV) vectors containing tissue-specific promoters have achieved a high degree of efficacy. Efficacy of gene therapy for Pompe disease depend upon the induction of immune tolerance to the therapeutic enzyme. Efficacy of von Gierke disease is transient, waning gradually over the months following vector administration. Small molecule therapies have been evaluated with the goal of improving standard of care therapy or ameliorating the cellular abnormalities associated with specific GSDs. The receptor-mediated uptake of the therapeutic enzyme in Pompe disease was enhanced by administration of β2 agonists. Rapamycin reduced the liver fibrosis observed in GSD III. Further development of gene therapy could provide curative therapy for patients with GSD, if efficacy from preclinical research is observed in future clinical trials and these treatments become clinically available.
Collapse
|
7
|
Diagnosis and management of glycogen storage disease type I: a practice guideline of the American College of Medical Genetics and Genomics. Genet Med 2015; 16:e1. [PMID: 25356975 DOI: 10.1038/gim.2014.128] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Glycogen storage disease type I (GSD I) is a rare disease of variable clinical severity that primarily affects the liver and kidney. It is caused by deficient activity of the glucose 6-phosphatase enzyme (GSD Ia) or a deficiency in the microsomal transport proteins for glucose 6-phosphate (GSD Ib), resulting in excessive accumulation of glycogen and fat in the liver, kidney, and intestinal mucosa. Patients with GSD I have a wide spectrum of clinical manifestations, including hepatomegaly, hypoglycemia, lactic acidemia, hyperlipidemia, hyperuricemia, and growth retardation. Individuals with GSD type Ia typically have symptoms related to hypoglycemia in infancy when the interval between feedings is extended to 3–4 hours. Other manifestations of the disease vary in age of onset, rate of disease progression, and severity. In addition, patients with type Ib have neutropenia, impaired neutrophil function, and inflammatory bowel disease. This guideline for the management of GSD I was developed as an educational resource for health-care providers to facilitate prompt, accurate diagnosis and appropriate management of patients. METHODS A national group of experts in various aspects of GSD I met to review the evidence base from the scientific literature and provided their expert opinions. Consensus was developed in each area of diagnosis, treatment, and management. RESULTS This management guideline specifically addresses evaluation and diagnosis across multiple organ systems (hepatic, kidney, gastrointestinal/nutrition, hematologic, cardiovascular, reproductive) involved in GSD I. Conditions to consider in the differential diagnosis stemming from presenting features and diagnostic algorithms are discussed. Aspects of diagnostic evaluation and nutritional and medical management, including care coordination, genetic counseling, hepatic and renal transplantation, and prenatal diagnosis, are also addressed. CONCLUSION A guideline that facilitates accurate diagnosis and optimal management of patients with GSD I was developed. This guideline helps health-care providers recognize patients with all forms of GSD I, expedite diagnosis, and minimize adverse sequelae from delayed diagnosis and inappropriate management. It also helps to identify gaps in scientific knowledge that exist today and suggests future studies.
Collapse
|
8
|
Buckley SMK, Delhove JMKM, Perocheau DP, Karda R, Rahim AA, Howe SJ, Ward NJ, Birrell MA, Belvisi MG, Arbuthnot P, Johnson MR, Waddington SN, McKay TR. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci Rep 2015; 5:11842. [PMID: 26138224 PMCID: PMC4490336 DOI: 10.1038/srep11842] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022] Open
Abstract
The application of transcription factor activated luciferase reporter cassettes in vitro is widespread but potential for in vivo application has not yet been realized. Bioluminescence imaging enables non-invasive tracking of gene expression in transfected tissues of living rodents. However the mature immune response limits luciferase expression when delivered in adulthood. We present a novel approach of tissue-targeted delivery of transcription factor activated luciferase reporter lentiviruses to neonatal rodents as an alternative to the existing technology of generating germline transgenic light producing rodents. At this age, neonates acquire immune tolerance to the conditionally responsive luciferase reporter. This simple and transferrable procedure permits surrogate quantitation of transcription factor activity over the lifetime of the animal. We show principal efficacy by temporally quantifying NFκB activity in the brain, liver and lungs of somatotransgenic reporter mice subjected to lipopolysaccharide (LPS)-induced inflammation. This response is ablated in Tlr4(-/-) mice or when co-administered with the anti-inflammatory glucocorticoid analogue dexamethasone. Furthermore, we show the malleability of this technology by quantifying NFκB-mediated luciferase expression in outbred rats. Finally, we use somatotransgenic bioimaging to longitudinally quantify LPS- and ActivinA-induced upregulation of liver specific glucocorticoid receptor and Smad2/3 reporter constructs in somatotransgenic mice, respectively.
Collapse
Affiliation(s)
- Suzanne M. K. Buckley
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Juliette M. K. M. Delhove
- Stem Cell Group, Cardiovascular & Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dany P. Perocheau
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Rajvinder Karda
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, UK
| | - Ahad A. Rahim
- Department of Pharmacology, School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK
| | - Steven J. Howe
- Wolfson Institute for Gene Therapy, Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Natalie J. Ward
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
| | - Mark A. Birrell
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - Maria G. Belvisi
- Faculty of Medicine, National Heart & Lung Institute, Imperial College, London, UK
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mark R. Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, UK
| | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, 86–96 Chenies Mews, London WC1E 6HX, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tristan R. McKay
- Stem Cell Group, Cardiovascular & Cell Sciences Research Institute, St. George’s University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
9
|
Clar J, Mutel E, Gri B, Creneguy A, Stefanutti A, Gaillard S, Ferry N, Beuf O, Mithieux G, Nguyen TH, Rajas F. Hepatic lentiviral gene transfer prevents the long-term onset of hepatic tumours of glycogen storage disease type 1a in mice. Hum Mol Genet 2015; 24:2287-96. [DOI: 10.1093/hmg/ddu746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
Condiotti R, Goldenberg D, Giladi H, Schnitzer-Perlman T, Waddington SN, Buckley SM, Heim D, Cheung W, Themis M, Coutelle C, Simerzin A, Osejindu E, Wege H, Themis M, Galun E. Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature. Mol Ther 2013; 22:59-68. [PMID: 23982166 DOI: 10.1038/mt.2013.193] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/12/2013] [Indexed: 01/10/2023] Open
Abstract
Lentiviral vectors are widely used in basic research and clinical applications for gene transfer and long-term expression; however, safety issues have not yet been completely resolved. In this study, we characterized hepatocarcinomas that developed in mice 1 year after in utero administration of a feline-derived lentiviral vector. Mapped viral integration sites differed among tumors and did not coincide with the regions of chromosomal aberrations. Furthermore, gene expression profiling revealed that no known cancer-associated genes were deregulated in the vicinity of viral integrations. Nevertheless, five of the six tumors exhibited highly significant upregulation of E2F target genes, of which a majority are associated with oncogenesis, DNA damage response, and chromosomal instability. We further show in vivo and in vitro that E2F activation occurs early on following transduction of both fetal mice and cultured human hepatocytes. On the basis of the similarities in E2F target gene expression patterns among tumors and the lack of evidence implicating insertional mutagenesis, we propose that transduction of fetal mice with a feline lentiviral vector induces E2F-mediated major cellular processes that drive hepatocytes toward uncontrolled proliferation culminating in tumorigenesis.
Collapse
Affiliation(s)
- Reba Condiotti
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel Goldenberg
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Hilla Giladi
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Temima Schnitzer-Perlman
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Simon N Waddington
- 1] Institute for Women's Health, University College London, London, UK [2] School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Suzanne Mk Buckley
- Department of Haematology, University College Medical School, London, UK
| | - Denise Heim
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wing Cheung
- Institute for Women's Health, University College London, London, UK
| | - Matthew Themis
- Division of Biosciences, Brunel University, Middlesex, UK
| | | | - Alina Simerzin
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Emma Osejindu
- Division of Biosciences, Brunel University, Middlesex, UK
| | - Henning Wege
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Themis
- 1] Division of Biosciences, Brunel University, Middlesex, UK [2] National Heart and Lung Institute, Imperial College, London, UK
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
11
|
Rittelmeyer I, Rothe M, Brugman MH, Iken M, Schambach A, Manns MP, Baum C, Modlich U, Ott M. Hepatic lentiviral gene transfer is associated with clonal selection, but not with tumor formation in serially transplanted rodents. Hepatology 2013; 58:397-408. [PMID: 23258554 DOI: 10.1002/hep.26204] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
UNLABELLED Lentiviral (LV) vectors are promising tools for long-term genetic correction of hereditary diseases. In hematopoietic stem cell gene therapies adverse events in patients due to vector integration-associated genotoxicity have been observed. Only a few studies have explored the potential risks of LV gene therapy targeting the liver. To analyze hepatic genotoxicity in vivo, we transferred the fumarylacetoacetate hydrolase (FAH) gene by LV vectors into FAH((-/-)) mice (n = 97) and performed serial hepatocyte transplantations (four generations). The integration profile (4,349 mapped insertions) of the LV vectors was assessed by ligation-mediated polymerase chain reaction and deep sequencing. We tested whether the polyclonality of vector insertions was maintained in serially transplanted mice, linked the integration sites to global hepatocyte gene expression, and investigated the effects of LV liver gene therapy on the survival of the animals. The lifespan of in vivo gene-corrected mice was increased compared to 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) control animals and unchanged in serially transplanted animals. The integration profile (4,349 mapped insertions) remained polyclonal through all mouse generations with only mild clonal expansion. Genes close to the integration sites of expanding clones may be associated with enhanced hepatocyte proliferation capacity. CONCLUSION We did not find evidence for vector-induced tumors. LV hepatic gene therapy showed a favorable risk profile for stable and long-term therapeutic gene expression. Polyclonality of hepatocyte regeneration was maintained even in an environment of enforced proliferation.
Collapse
Affiliation(s)
- Ina Rittelmeyer
- Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hen G, Yosefi S, Shinder D, Or A, Mygdal S, Condiotti R, Galun E, Bor A, Sela-Donenfeld D, Friedman-Einat M. Gene transfer to chicks using lentiviral vectors administered via the embryonic chorioallantoic membrane. PLoS One 2012; 7:e36531. [PMID: 22606269 PMCID: PMC3350527 DOI: 10.1371/journal.pone.0036531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 04/03/2012] [Indexed: 12/22/2022] Open
Abstract
The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∼0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides.
Collapse
Affiliation(s)
- Gideon Hen
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sara Yosefi
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dmitry Shinder
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Adi Or
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Sivan Mygdal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Reba Condiotti
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amir Bor
- Ministry of Agriculture, Volcani Center, Bet-Dagan, Israel
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail: (DSD); (MFE)
| | | |
Collapse
|
13
|
A lentiviral vector-based, herpes simplex virus 1 (HSV-1) glycoprotein B vaccine affords cross-protection against HSV-1 and HSV-2 genital infections. J Virol 2012; 86:6563-74. [PMID: 22491465 DOI: 10.1128/jvi.00302-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genital herpes is caused by herpes simplex virus 1 (HSV-1) and HSV-2, and its incidence is constantly increasing in the human population. Regardless of the clinical manifestation, HSV-1 and HSV-2 infections are highly transmissible to sexual partners and enhance susceptibility to other sexually transmitted infections. An effective vaccine is not yet available. Here, HSV-1 glycoprotein B (gB1) was delivered by a feline immunodeficiency virus (FIV) vector and tested against HSV-1 and HSV-2 vaginal challenges in C57BL/6 mice. The gB1 vaccine elicited cross-neutralizing antibodies and cell-mediated responses that protected 100 and 75% animals from HSV-1- and HSV-2-associated severe disease, respectively. Two of the eight fully protected vaccinees underwent subclinical HSV-2 infection, as demonstrated by deep immunosuppression and other analyses. Finally, vaccination prevented death in 83% of the animals challenged with a HSV-2 dose that killed 78 and 100% naive and mock-vaccinated controls, respectively. Since this FIV vector can accommodate two or more HSV immunogens, this vaccine has ample potential for improvement and may become a candidate for the development of a truly effective vaccine against genital herpes.
Collapse
|
14
|
Treatment of newborn G6pc(-/-) mice with bone marrow-derived myelomonocytes induces liver repair. J Hepatol 2011; 55:1263-71. [PMID: 21703205 PMCID: PMC6541203 DOI: 10.1016/j.jhep.2011.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/03/2011] [Accepted: 02/28/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Several studies have shown that bone marrow-derived committed myelomonocytic cells can repopulate diseased livers by fusing with host hepatocytes and can restore normal liver function. These data suggest that myelomonocyte transplantation could be a promising approach for targeted and well-tolerated cell therapy aimed at liver regeneration. We sought to determine whether bone marrow-derived myelomonocytic cells could be effective for liver reconstitution in newborn mice knock-out for glucose-6-phosphatase-α. METHODS Bone marrow-derived myelomonocytic cells obtained from adult wild type mice were transplanted in newborn knock-out mice. Tissues of control and treated mice were frozen for histochemical analysis, or paraffin-embedded and stained with hematoxylin and eosin for histological examination or analyzed by immunohistochemistry or fluorescent in situ hybridization. RESULTS Histological sections of livers of treated knock-out mice revealed areas of regenerating tissue consisting of hepatocytes of normal appearance and partial recovery of normal architecture as early as 1 week after myelomonocytic cells transplant. FISH analysis with X and Y chromosome paints indicated fusion between infused cells and host hepatocytes. Glucose-6-phosphatase activity was detected in treated mice with improved profiles of liver functional parameters. CONCLUSIONS Our data indicate that bone marrow-derived myelomonocytic cell transplant may represent an effective way to achieve liver reconstitution of highly degenerated livers in newborn animals.
Collapse
|
15
|
Abstract
INTRODUCTION Glycogen storage disease (GSD) type Ia and Ib are disorders of impaired glucose homeostasis affecting the liver and kidney. GSD-Ib also affects neutrophils. Current dietary therapies cannot prevent long-term complications. In animal studies, recombinant adeno-associated virus (rAAV) vector-mediated gene therapy can correct or minimize multiple aspects of the disorders, offering hope for human gene therapy. AREAS COVERED A summary of recent progress in rAAV-mediated gene therapy for GSD-I; strategies to improve rAAV-mediated gene delivery, transduction efficiency and immune avoidance; and vector refinements that improve expression. EXPERT OPINION rAAV-mediated gene delivery to the liver can restore glucose homeostasis in preclinical models of GSD-I, but some long-term complications of the liver and kidney remain. Gene therapy for GSD-Ib is less advanced than for GSD-Ia and only transient correction of myeloid dysfunction has been achieved. A question remains as to whether a single rAAV vector can meet the expression efficiency and tropism required to treat all aspects of GSD-I, or if a multi-pronged approach is needed. An understanding of the strengths and weaknesses of rAAV vectors in the context of strategies to achieve efficient transduction of the liver, kidney and hematopoietic stem cells is required for treating GSD-I.
Collapse
Affiliation(s)
- Janice Y Chou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Section on Cellular Differentiation, Program on Developmental Endocrinology and Genetics, Bethesda, MD 20892 1830, USA.
| | | |
Collapse
|
16
|
Luo X, Hall G, Li S, Bird A, Lavin PJ, Winn MP, Kemper AR, Brown TT, Koeberl DD. Hepatorenal correction in murine glycogen storage disease type I with a double-stranded adeno-associated virus vector. Mol Ther 2011; 19:1961-70. [PMID: 21730973 DOI: 10.1038/mt.2011.126] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glycogen storage disease type Ia (GSD-Ia) is caused by the deficiency of glucose-6-phosphatase (G6Pase). Long-term complications of GSD-Ia include life-threatening hypoglycemia and proteinuria progressing to renal failure. A double-stranded (ds) adeno-associated virus serotype 2 (AAV2) vector encoding human G6Pase was pseudotyped with four serotypes, AAV2, AAV7, AAV8, and AAV9, and we evaluated efficacy in 12-day-old G6pase (-/-) mice. Hypoglycemia during fasting (plasma glucose <100 mg/dl) was prevented for >6 months by the dsAAV2/7, dsAAV2/8, and dsAAV2/9 vectors. Prolonged fasting for 8 hours revealed normalization of blood glucose following dsAAV2/9 vector administration at the higher dose. The glycogen content of kidney was reduced by >65% with both the dsAAV2/7 and dsAAV2/9 vectors, and renal glycogen content was stably reduced between 7 and 12 months of age for the dsAAV2/9 vector-treated mice. Every vector-treated group had significantly reduced glycogen content in the liver, in comparison with untreated G6pase (-/-) mice. G6Pase was expressed in many renal epithelial cells of with the dsAAV2/9 vector for up to 12 months. Albuminuria and renal fibrosis were reduced by the dsAAV2/9 vector. Hepatorenal correction in G6pase (-/-) mice demonstrates the potential of AAV vectors for the correction of inherited diseases of metabolism.
Collapse
Affiliation(s)
- Xiaoyan Luo
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dylla DE, Xie L, Michele DE, Kunz S, McCray PB. Altering α-dystroglycan receptor affinity of LCMV pseudotyped lentivirus yields unique cell and tissue tropism. GENETIC VACCINES AND THERAPY 2011; 9:8. [PMID: 21477292 PMCID: PMC3080791 DOI: 10.1186/1479-0556-9-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 04/08/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo. METHODS We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals. RESULTS In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining. CONCLUSIONS These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer. ABBREVIATIONS Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50).
Collapse
Affiliation(s)
- Douglas E Dylla
- Genetics Ph,D, Program, Program in Gene Therapy, 240 EMRB, The University of Iowa Roy J, and Lucille A, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242 USA.
| | | | | | | | | |
Collapse
|
18
|
McKay TR, Rahim AA, Buckley SM, Ward NJ, Chan JK, Howe SJ, Waddington SN. Perinatal gene transfer to the liver. Curr Pharm Des 2011; 17:2528-41. [PMID: 21774770 PMCID: PMC3182410 DOI: 10.2174/138161211797247541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 01/08/2023]
Abstract
The liver acts as a host to many functions hence raising the possibility that any one may be compromised by a single gene defect. Inherited or de novo mutations in these genes may result in relatively mild diseases or be so devastating that death within the first weeks or months of life is inevitable. Some diseases can be managed using conventional medicines whereas others are, as yet, untreatable. In this review we consider the application of early intervention gene therapy in neonatal and fetal preclinical studies. We appraise the tools of this technology, including lentivirus, adenovirus and adeno-associated virus (AAV)-based vectors. We highlight the application of these for a range of diseases including hemophilia, urea cycle disorders such as ornithine transcarbamylase deficiency, organic acidemias, lysosomal storage diseases including mucopolysaccharidoses, glycogen storage diseases and bile metabolism. We conclude by assessing the advantages and disadvantages associated with fetal and neonatal liver gene transfer.
Collapse
Affiliation(s)
- Tristan R McKay
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Ahad A Rahim
- Institute for Women’s Health, University College London, London, UK
| | | | - Natalie J Ward
- Institute for Women’s Health, University College London, London, UK
| | - Jerry K.Y Chan
- Experimental Fetal Medicine Group, National University of Singapore, Singapore
| | - Steven J Howe
- Institute of Child Health, University College London, London, UK
| | | |
Collapse
|