1
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
2
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
3
|
O’Neill A, Martinez AL, Mueller AL, Huang W, Accorsi A, Kane MA, Eyerman D, Bloch RJ. Optimization of Xenografting Methods for Generating Human Skeletal Muscle in Mice. Cell Transplant 2024; 33:9636897241242624. [PMID: 38600801 PMCID: PMC11010746 DOI: 10.1177/09636897241242624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024] Open
Abstract
Xenografts of human skeletal muscle generated in mice can be used to study muscle pathology and to test drugs designed to treat myopathies and muscular dystrophies for their efficacy and specificity in human tissue. We previously developed methods to generate mature human skeletal muscles in immunocompromised mice starting with human myogenic precursor cells (hMPCs) from healthy individuals and individuals with facioscapulohumeral muscular dystrophy (FSHD). Here, we examine a series of alternative treatments at each stage in order to optimize engraftment. We show that (i) X-irradiation at 25Gy is optimal in preventing regeneration of murine muscle while supporting robust engraftment and the formation of human fibers without significant murine contamination; (ii) hMPC lines differ in their capacity to engraft; (iii) some hMPC lines yield grafts that respond better to intermittent neuromuscular electrical stimulation (iNMES) than others; (iv) some lines engraft better in male than in female mice; (v) coinjection of hMPCs with laminin, gelatin, Matrigel, or Growdex does not improve engraftment; (vi) BaCl2 is an acceptable replacement for cardiotoxin, but other snake venom preparations and toxins, including the major component of cardiotoxin, cytotoxin 5, are not; and (vii) generating grafts in both hindlimbs followed by iNMES of each limb yields more robust grafts than housing mice in cages with running wheels. Our results suggest that replacing cardiotoxin with BaCl2 and engrafting both tibialis anterior muscles generates robust grafts of adult human muscle tissue in mice.
Collapse
Affiliation(s)
- Andrea O’Neill
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anna Llach Martinez
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amber L. Mueller
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Cell Metabolism, Cambridge, MA, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - Anthony Accorsi
- Fulcrum Therapeutics, Cambridge, MA, USA
- Blackbird Laboratories, Baltimore, MD, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, USA
| | - David Eyerman
- Fulcrum Therapeutics, Cambridge, MA, USA
- Apellis Pharmaceuticals, Waltham, MA, USA
| | - Robert J. Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Wu D, Wang S, Hai C, Wang L, Pei D, Bai C, Su G, Liu X, Zhao Y, Liu Z, Yang L, Li G. The Effect of MSTN Mutation on Bile Acid Metabolism and Lipid Metabolism in Cattle. Metabolites 2023; 13:836. [PMID: 37512543 PMCID: PMC10384915 DOI: 10.3390/metabo13070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle genesis during development. MSTN mutation leads to increased lean meat production and reduced fat deposition in livestock. However, the mechanism by which MSTN promotes myogenesis by regulating metabolism is not clear. In this study, we compared the metabolomics of the livers of wild-type (WT) and MSTN mutation cattle (MT), and found changes in the content and proportion of fatty acids and bile acids in MT cattle. The differential metabolites were enriched in sterol synthesis and primary bile acid synthesis. We further analyzed the expression of genes involved in the regulation of lipid and bile acid metabolism, and found that the loss of MSTN may alter lipid synthesis and bile acid metabolism. This study provides new basic data for MSTN mutations in beef cattle breeding.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Song Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Linfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Dongchao Pei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Che J, Hu C, Wang Q, Fan C, Si Y, Gong X, Bao B. The double mutations of acvr2aa and acvr2ba leads to muscle hypertrophy in zebrafish. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
6
|
Tsai WC, Yu TY, Chang GJ, Chang HN, Lin LP, Lin MS, Pang JHS. Use of Platelet-Rich Plasma Plus Suramin, an Antifibrotic Agent, to Improve Muscle Healing After Injuries. Am J Sports Med 2021; 49:3102-3112. [PMID: 34351815 DOI: 10.1177/03635465211030295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The increasing use of platelet-rich plasma (PRP) to treat muscle injuries raises concerns because transforming growth factor-beta (TGF-β) in PRP may promote fibrosis in the injured muscle and thus impair muscle regeneration. PURPOSE To investigate whether suramin (a TGF-β inhibitor) can reduce muscle fibrosis to improve healing of the injured muscle after PRP treatment and identify the underlying molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Myoblasts isolated from the gastrocnemius muscle of Sprague Dawley rats were treated with PRP or PRP plus suramin. MTT assays were performed to evaluate cell viability. The expression of fibrosis-associated proteins (such as type I collagen and fibronectin), Smad2, and phosphorylated Smad2 was determined using Western blot analysis and immunofluorescent staining. An anti-TGF-β antibody was employed to verify the role of TGF-β in fibronectin expression. Gastrocnemius muscles were injured through a partial transverse incision and then treated using PRP or PRP plus suramin. Hematoxylin and eosin staining was conducted to evaluate the healing process 7 days after the injury. Immunofluorescent staining was performed to evaluate fibronectin expression. Muscle contractile properties-fast-twitch and tetanic strength-were evaluated through electric stimulation. RESULTS PRP plus 25 μg/mL of suramin promoted myoblast proliferation. PRP induced fibronectin expression in myoblasts, but suramin reduced this upregulation. The anti-TGF-β antibody also reduced the upregulation of fibronectin expression in the presence of PRP. The upregulation of phosphorylated Smad2 by PRP was reduced by either the anti-TGF-β antibody or suramin. In the animal study, no significant difference was discovered in muscle healing between the PRP versus PRP plus suramin groups. However, the PRP plus suramin group had reduced fibronectin expression at the injury site. Fast-twitch strength and tetanic strength were significantly higher in the injured muscle treated using PRP or PRP plus suramin. CONCLUSION Simultaneous PRP and suramin use reduced fibrosis in the injured muscle and promoted healing without negatively affecting the muscle's contractile properties. The underlying molecular mechanism may be associated with the phosphorylated Smad2 pathway. CLINICAL RELEVANCE Simultaneous PRP and suramin use may reduce muscle fibrosis without compromising muscle contractile properties and thus improve muscle healing.
Collapse
Affiliation(s)
- Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Miao-Sui Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
7
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
8
|
Ojima C, Noguchi Y, Miyamoto T, Saito Y, Orihashi H, Yoshimatsu Y, Watabe T, Takayama K, Hayashi Y, Itoh F. Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia. Cancer Sci 2020; 111:2954-2964. [PMID: 32519375 PMCID: PMC7419029 DOI: 10.1111/cas.14520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia, characterized by continuous muscle wasting, is a key determinant of cancer‐related death; however, there are few medical treatments to combat it. Myostatin (MSTN)/growth differentiation factor 8 (GDF‐8), which is a member of the transforming growth factor‐β family, is secreted in an inactivated form noncovalently bound to the prodomain, negatively regulating the skeletal muscle mass. Therefore, inhibition of MSTN signaling is expected to serve as a therapeutic target for intractable muscle wasting diseases. Here, we evaluated the inhibitory effect of peptide‐2, an inhibitory core of mouse MSTN prodomain, on MSTN signaling. Peptide‐2 selectively suppressed the MSTN signal, although it had no effect on the activin signal. In contrast, peptide‐2 slightly inhibited the GDF‐11 signaling pathway, which is strongly related to the MSTN signaling pathway. Furthermore, we found that the i.m. injection of peptide‐2 to tumor‐implanted C57BL/6 mice alleviated muscle wasting in cancer cachexia. Although peptide‐2 was unable to improve the loss of heart weight and fat mass when cancer cachexia model mice were injected with it, peptide‐2 increased the gastrocnemius muscle weight and muscle cross‐sectional area resulted in the enhanced grip strength in cancer cachexia mice. Consequently, the model mice treated with peptide‐2 could survive longer than those that did not undergo this treatment. Our results suggest that peptide‐2 might be a novel therapeutic candidate to suppress muscle wasting in cancer cachexia.
Collapse
Affiliation(s)
- Chiharu Ojima
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuri Noguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tatsuki Miyamoto
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Saito
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Orihashi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yasuhiro Yoshimatsu
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Muscle Hyperplasia in Japanese Quail by Single Amino Acid Deletion in MSTN Propeptide. Int J Mol Sci 2020; 21:ijms21041504. [PMID: 32098368 PMCID: PMC7073117 DOI: 10.3390/ijms21041504] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/07/2022] Open
Abstract
Mutation in myostatin (MSTN), a negative regulator of muscle growth in skeletal muscle, resulted in increased muscle mass in mammals and fishes. However, MSTN mutation in avian species has not been reported. The objective of this study was to generate MSTN mutation in quail and investigate the effect of MSTN mutation in avian muscle growth. Recently, a new targeted gene knockout approach for the avian species has been developed using an adenoviral CRISPR/Cas9 system. By injecting the recombinant adenovirus containing CRISPR/Cas9 into the quail blastoderm, potential germline chimeras were generated and offspring with three base-pair deletion in the targeted region of the MSTN gene was identified. This non-frameshift mutation in MSTN resulted in deletion of cysteine 42 in the MSTN propeptide region and homozygous mutant quail showed significantly increased body weight and muscle mass with muscle hyperplasia compared to heterozygous mutant and wild-type quail. In addition, decreased fat pad weight and increased heart weight were observed in MSTN mutant quail in an age- and sex-dependent manner, respectively. Taken together, these data indicate anti-myogenic function of MSTN in the avian species and the importance of cysteine 42 in regulating MSTN function.
Collapse
|
10
|
Mueller AL, Bloch RJ. Skeletal muscle cell transplantation: models and methods. J Muscle Res Cell Motil 2019; 41:297-311. [PMID: 31392564 DOI: 10.1007/s10974-019-09550-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Xenografts of skeletal muscle are used to study muscle repair and regeneration, mechanisms of muscular dystrophies, and potential cell therapies for musculoskeletal disorders. Typically, xenografting involves using an immunodeficient host that is pre-injured to create a niche for human cell engraftment. Cell type and method of delivery to muscle depend on the specific application, but can include myoblasts, satellite cells, induced pluripotent stem cells, mesangioblasts, immortalized muscle precursor cells, and other multipotent cell lines delivered locally or systemically. Some studies follow cell engraftment with interventions to enhance cell proliferation, migration, and differentiation into mature muscle fibers. Recently, several advances in xenografting human-derived muscle cells have been applied to study and treat Duchenne muscular dystrophy and Facioscapulohumeral muscular dystrophy. Here, we review the vast array of techniques available to aid researchers in designing future experiments aimed at creating robust muscle xenografts in rodent hosts.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD, 21201, USA.
| |
Collapse
|
11
|
Vajanthri KY, Sidu RK, Poddar S, Singh AK, Mahto SK. Combined substrate micropatterning and FFT analysis reveals myotube size control and alignment by contact guidance. Cytoskeleton (Hoboken) 2019; 76:269-285. [DOI: 10.1002/cm.21527] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Kiran Yellappa Vajanthri
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Rakesh Kumar Sidu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Ashish Kumar Singh
- School of Biochemical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
- Center for Advanced Biomaterials and Tissue EngineeringIndian Institute of Technology (Banaras Hindu University) Varanasi Uttar Pradesh India
| |
Collapse
|
12
|
Li Q, Liu R, Zhao H, Di R, Lu Z, Liu E, Wang Y, Chu M, Wei C. Identification and Characterization of Long Noncoding RNAs in Ovine Skeletal Muscle. Animals (Basel) 2018; 8:ani8070127. [PMID: 30041440 PMCID: PMC6071021 DOI: 10.3390/ani8070127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/06/2023] Open
Abstract
Simple Summary LncRNAs may play important role in many biological processes. The aims of this research were to identify potential lncRNAs active in skeletal muscle of the Texel and Ujumqin sheep and investigate their functions. Overall, 2002 lncRNA transcripts were found, some of which may be related to muscle development. The findings obtained here should promote understanding of the regulatory functions of lncRNAs in ovine muscle development and potentially also in other mammals. Abstract Long noncoding RNAs (lncRNAs) are increasingly being recognized as key regulators in many cellular processes. However, few reports of them in livestock have been published. Here, we describe the identification and characterization of lncRNAs in ovine skeletal muscle. Eight libraries were constructed from the gastrocnemius muscle of fetal (days 85 and 120), newborn and adult Texel and Ujumqin sheep. The 2002 identified transcripts shared some characteristics, such as their number of exons, length and distribution. We also identified some coding genes near these lncRNA transcripts, which are particularly associated with transcriptional regulation- and development-related processes, suggesting that the lncRNAs are associated with muscle development. In addition, in pairwise comparisons between the libraries of the same stage in different breeds, a total of 967 transcripts were differentially expressed but just 15 differentially expressed lncRNAs were common to all stages. Among them, we found that TCONS_00013201 exhibited higher expression in Ujumqin samples, while TCONS_00006187 and TCONS_00083104 were higher in Texel samples. Moreover, TCONS_00044801, TCONS_00008482 and TCONS_00102859 were almost completely absent from Ujumqin samples. Our results suggest that differences in the expression of these lncRNAs may be associated with the muscular differences observed between Texel and Ujumqin sheep breeds.
Collapse
Affiliation(s)
- Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huijing Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Gansu Agriculture University, Lanzhou 730070, China.
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yuqin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Praud C, Vauchez K, Zongo P, Vilquin JT. Modelling human myoblasts survival upon xenotransplantation into immunodeficient mouse muscle. Exp Cell Res 2018; 364:217-223. [PMID: 29458172 DOI: 10.1016/j.yexcr.2018.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/07/2022]
Abstract
Cell transplantation has been challenged in several clinical indications of genetic or acquired muscular diseases, but therapeutic success were mitigated. To understand and improve the yields of tissue regeneration, we aimed at modelling the fate of CD56-positive human myoblasts after transplantation. Using immunodeficient severe combined immunodeficiency (SCID) mice as recipients, we assessed the survival, integration and satellite cell niche occupancy of human myoblasts by a triple immunohistochemical labelling of laminin, dystrophin and human lamin A/C. The counts were integrated into a classical mathematical decline equation. After injection, human cells were essentially located in the endomysium, then they disappeared progressively from D0 to D28. The final number of integrated human nuclei was grossly determined at D2 after injection, suggesting that no more efficient fusion between donor myoblasts and host fibers occurs after the resolution of the local damages created by needle insertion. Almost 1% of implanted human cells occupied a satellite-like cell niche. Our mathematical model validated by histological counting provided a reliable quantitative estimate of human myoblast survival and/or incorporation into SCID muscle fibers. Informations brought by histological labelling and this mathematical model are complementary.
Collapse
Affiliation(s)
| | - Karine Vauchez
- Sorbonne Université, INSERM, CNRS, Center for Research in Myology, Institute of Myology, F-75013, Paris, France
| | - Pascal Zongo
- BOA, INRA, Université de Tours, F-37380 Nouzilly, France
| | - Jean-Thomas Vilquin
- Sorbonne Université, INSERM, CNRS, Center for Research in Myology, Institute of Myology, F-75013, Paris, France
| |
Collapse
|
14
|
Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med 2017; 49:e377. [PMID: 28912572 PMCID: PMC5628274 DOI: 10.1038/emm.2017.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.
Collapse
|
15
|
Chen PR, Lee K. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development. J Anim Sci 2017; 94:3125-3134. [PMID: 27695802 DOI: 10.2527/jas.2016-0532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.
Collapse
|
16
|
BAYARSAIKHAN O, KAWAI N, MORI H, KINOUCHI N, NIKAWA T, TANAKA E. Co-Administration of Myostatin-Targeting siRNA and ActRIIB-Fc Fusion Protein Increases Masseter Muscle Mass and Fiber Size. J Nutr Sci Vitaminol (Tokyo) 2017; 63:244-248. [DOI: 10.3177/jnsv.63.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Od BAYARSAIKHAN
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nobuhiko KAWAI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyo MORI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nao KINOUCHI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takeshi NIKAWA
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Eiji TANAKA
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
17
|
Neuromuscular electrical stimulation promotes development in mice of mature human muscle from immortalized human myoblasts. Skelet Muscle 2016; 6:4. [PMID: 26925213 PMCID: PMC4769538 DOI: 10.1186/s13395-016-0078-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Studies of the pathogenic mechanisms underlying human myopathies and muscular dystrophies often require animal models, but models of some human diseases are not yet available. Methods to promote the engraftment and development of myogenic cells from individuals with such diseases in mice would accelerate such studies and also provide a useful tool for testing therapeutics. Here, we investigate the ability of immortalized human myogenic precursor cells (hMPCs) to form mature human myofibers following implantation into the hindlimbs of non-obese diabetic-Rag1nullIL2rγnull (NOD-Rag)-immunodeficient mice. Results We report that hindlimbs of NOD-Rag mice that are X-irradiated, treated with cardiotoxin, and then injected with immortalized control hMPCs or hMPCs from an individual with facioscapulohumeral muscular dystrophy (FSHD) develop mature human myofibers. Furthermore, intermittent neuromuscular electrical stimulation (iNMES) of the peroneal nerve of the engrafted limb enhances the development of mature fibers in the grafts formed by both immortal cell lines. With control cells, iNMES increases the number and size of the human myofibers that form and promotes closer fiber-to-fiber packing. The human myofibers in the graft are innervated, fully differentiated, and minimally contaminated with murine myonuclei. Conclusions Our results indicate that control and FSHD human myofibers can form in mice engrafted with hMPCs and that iNMES enhances engraftment and subsequent development of mature human muscle.
Collapse
|
18
|
Chiang YA, Kinoshita M, Maekawa S, Kulkarni A, Lo CF, Yoshiura Y, Wang HC, Aoki T. TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system. FISH & SHELLFISH IMMUNOLOGY 2016; 48:212-220. [PMID: 26578247 DOI: 10.1016/j.fsi.2015.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Although myostatin, a suppressor of skeletal muscle development and growth, has been well studied in mammals, its function in fish remains unclear. In this study, we used a popular genome editing tool with high efficiency and target specificity (TALENs; transcription activator-like effector nucleases) to mutate the genome sequence of myostatin (MSTN) in medaka (Oryzias latipes). After the TALEN pair targeting OlMyostatin was injected into fertilized medaka eggs, mutant G0 fish carrying different TALENs-induced frameshifts in the OlMSTN coding sequence were mated together in order to transmit the mutant sequences to the F1 generation. Two F1 mutants with frameshifted myostatin alleles were then mated to produce the F2 generation, and these F2 OlMSTN null (MSTN(-/-)) medaka were evaluated for growth performance. The F2 fish showed significantly increased body length and weight compared to the wild type fish at the juvenile and post-juvenile stages. At the post-juvenile stage, the average body weight of the MSTN(-/-) medaka was ∼25% greater than the wild type. However, we also found that when the F3 generation were challenged with red spotted grouper nervous necrosis virus (RGNNV), the expression levels of the interferon-stimulated genes were lower than in the wild type, and the virus copy number was maintained at a high level. We therefore conclude that although the MSTN(-/-) medaka had a larger phenotype, their immune system appeared to be at least partially suppressed or undeveloped.
Collapse
Affiliation(s)
- Yi-An Chiang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Shun Maekawa
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Amod Kulkarni
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan City 701, Taiwan
| | - Yasutoshi Yoshiura
- National Research Institute of Fisheries and Enhancement of Inland Sea, Fisheries Research Agency, Kagawa 761-0111, Japan
| | - Han-Ching Wang
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| | - Takashi Aoki
- Institute of Biotechnology, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
19
|
Zhou F, Sun R, Chen H, Fei J, Lu D. Myostatin Gene Mutated Mice Induced with TALE Nucleases. Anim Biotechnol 2015; 26:169-79. [DOI: 10.1080/10495398.2014.913598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Kelc R, Trapecar M, Gradisnik L, Rupnik MS, Vogrin M. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS One 2015; 10:e0117302. [PMID: 25679956 PMCID: PMC4332503 DOI: 10.1371/journal.pone.0117302] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/21/2014] [Indexed: 01/28/2023] Open
Abstract
Regeneration of skeletal muscle after injury is limited by scar formation, slow healing time and a high recurrence rate. A therapy based on platelet-rich plasma (PRP) has become a promising lead for tendon and ligament injuries in recent years, however concerns have been raised that PRP-derived TGF-β could contribute to fibrotic remodelling in skeletal muscle after injury. Due to the lack of scientific grounds for a PRP -based muscle regeneration therapy, we have designed a study using human myogenic progenitors and evaluated the potential of PRP alone and in combination with decorin (a TGF-β inhibitor), to alter myoblast proliferation, metabolic activity, cytokine profile and expression of myogenic regulatory factors (MRFs). Advanced imaging multicolor single-cell analysis enabled us to create a valuable picture on the ratio of quiescent, activated and terminally committed myoblasts in treated versus control cell populations. Finally high-resolution confocal microscopy validated the potential of PRP and decorin to stimulate the formation of polynucleated myotubules. PRP was shown to down-regulate fibrotic cytokines, increase cell viability and proliferation, enhance the expression of MRFs, and contribute to a significant myogenic shift during differentiation. When combined with decorin further synergistc effects were identified. These results suggest that PRP could not only prevent fibrosis but could also stimulate muscle commitment, especially when combined with a TGF-β inhibitor.
Collapse
Affiliation(s)
- Robi Kelc
- Department of Orthopaedic Surgery, University Medical Center Maribor, Maribor, Slovenia
- * E-mail:
| | - Martin Trapecar
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Lidija Gradisnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Matjaz Vogrin
- Department of Orthopaedic Surgery, University Medical Center Maribor, Maribor, Slovenia
| |
Collapse
|
21
|
Sepulveda PV, Bush ED, Baar K. Pharmacology of manipulating lean body mass. Clin Exp Pharmacol Physiol 2015; 42:1-13. [PMID: 25311629 PMCID: PMC4383600 DOI: 10.1111/1440-1681.12320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/04/2023]
Abstract
Dysfunction and wasting of skeletal muscle as a consequence of illness decreases the length and quality of life. Currently, there are few, if any, effective treatments available to address these conditions. Hence, the existence of this unmet medical need has fuelled large scientific efforts. Fortunately, these efforts have shown many of the underlying mechanisms adversely affecting skeletal muscle health. With increased understanding have come breakthrough disease-specific and broad spectrum interventions, some progressing through clinical development. The present review focuses its attention on the role of the antagonistic process regulating skeletal muscle mass before branching into prospective promising therapeutic targets and interventions. Special attention is given to therapies in development against cancer cachexia and Duchenne muscular dystrophy before closing remarks on design and conceptualization of future therapies are presented to the reader.
Collapse
Affiliation(s)
- Patricio V Sepulveda
- Department of Physiology, Monash University, Monash College Wellington Rd, Melbourne Victoria, Australia
| | - Ernest D Bush
- Akashi Therapeutics, Cambridge, MA, University of California Davis, Davis, CA, USA
| | - Keith Baar
- Departments of Neurobiology, Physiology and Behaviour and Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
22
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|
23
|
Knockdown of endogenous myostatin promotes sheep myoblast proliferation. In Vitro Cell Dev Biol Anim 2013; 50:94-102. [PMID: 24052475 DOI: 10.1007/s11626-013-9689-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/06/2013] [Indexed: 02/06/2023]
Abstract
Myostatin (MSTN), is a known negative regulator of myogenesis. Silencing of the function of MSTN could result in increasing muscle mass in mice. To determine the function of endogenous MSTN expression on proliferation of sheep myoblasts, a short-hairpin RNA-targeting sheep MSTN was constructed into lentiviral vector to silence endogenous MSTN expression. We demonstrated that silencing of endogenous MSTN gene with up to approximately 73.3% reduction by short hairpin RNA (shRNA) resulted in significant increase (overall 28.3%) of proliferation of primary ovine myoblasts. The upregulation of proliferation was accompanied by the decrease expression of MyoD (-37.6%, p = 0.025), myogenin (-33.1%, p = 0.049), p21 (-49.3%, p = 0.046), and Smad3 (-50.0%, p = 0.007). Silencing of myostatin using shRNA may provide a feasible approach to improve meat productivity in farm animals.
Collapse
|
24
|
Briggs D, Morgan JE. Recent progress in satellite cell/myoblast engraftment -- relevance for therapy. FEBS J 2013; 280:4281-93. [PMID: 23560812 PMCID: PMC3795440 DOI: 10.1111/febs.12273] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
There is currently no cure for muscular dystrophies, although several promising strategies are in basic and clinical research. One such strategy is cell transplantation with satellite cells (or their myoblast progeny) to repair damaged muscle and provide dystrophin protein with the aim of preventing subsequent myofibre degeneration and repopulating the stem cell niche for future use. The present review aims to cover recent advances in satellite cell/myoblast therapy and to discuss the challenges that remain for it to become a realistic therapy.
Collapse
Affiliation(s)
- Deborah Briggs
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| | - Jennifer E Morgan
- The Dubowitz Neuromuscular Centre, UCL Institute of Child HealthLondon, UK
| |
Collapse
|
25
|
Fakhfakh R, Lee SJ, Tremblay JP. Administration of a soluble activin type IIB receptor promotes the transplantation of human myoblasts in dystrophic mice. Cell Transplant 2013; 21:1419-30. [PMID: 22449443 DOI: 10.3727/096368911x627480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a recessive disease caused by a dystrophin gene mutation. Myoblast transplantation permits the introduction of the dystrophin gene into dystrophic muscle fibers. However, this strategy has so far produced limited results. Modulation of transforming growth factor-β (TGF-β) superfamily signaling promotes skeletal muscle differentiation and growth and myogenic regeneration. We investigated the possibility that the combination of TGF-β superfamily signaling inhibition with myoblast transplantation might be an effective therapeutic approach in dystrophin-deficient patients. In vitro, blocking myostatin and other ligands with a soluble form of the extracellular domain of the activin IIB receptor (ActRIIB/Fc) upregulated the expression of myogenic differentiation factors and increased human myoblast fusion. In vivo, systemic inhibition of activin IIB receptor signaling by delivery of ActRIIB/Fc increased the success of the myoblast transplantation. This effect was further increased by forcing the mice to swim weekly to induce cycles of muscle degeneration and regeneration. Treatment of dystrophic mice with ActRIIB/Fc led to increased body weight, increased skeletal muscle mass, and improved myoblast transplantation. Thus, ActRIIB/Fc represents an effective therapeutic strategy for muscular dystrophies, and its effects are enhanced when combined with muscle exercise.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de Recherche en Génétique Humaine, Centre de Recherche de CHUL, CHUQ, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
26
|
Kärst S, Strucken EM, Schmitt AO, Weyrich A, de Villena FPM, Yang H, Brockmann GA. Effect of the myostatin locus on muscle mass and intramuscular fat content in a cross between mouse lines selected for hypermuscularity. BMC Genomics 2013; 14:16. [PMID: 23324137 PMCID: PMC3626839 DOI: 10.1186/1471-2164-14-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/19/2012] [Indexed: 12/07/2022] Open
Abstract
Background This study is aimed at the analysis of genetic and physiological effects of myostatin on economically relevant meat quality traits in a genetic background of high muscularity. For this purpose, we generated G3 populations of reciprocal crosses between the two hypermuscular mouse lines BMMI866, which carries a myostatin mutation and is lean, and BMMI806, which has high intramuscular and body fat content. To assess the relationship between muscle mass, body composition and muscle quality traits, we also analysed intramuscular fat content (IMF), water holding capacity (WHC), and additional physiological parameters in M. quadriceps and M. longissimus in 308 G3-animals. Results We found that individuals with larger muscles have significantly lower total body fat (r = −0.28) and IMF (r = −0.64), and in females, a lower WHC (r = −0.35). In males, higher muscle mass was also significantly correlated with higher glycogen contents (r = 0.2) and lower carcass pH-values 24 hours after dissection (r = −0.19). Linkage analyses confirmed the influence of the myostatin mutation on higher lean mass (1.35 g), reduced body fat content (−1.15%), and lower IMF in M. longissimus (−0.13%) and M. quadriceps (−0.07%). No effect was found for WHC. A large proportion of variation of intramuscular fat content of the M. longissimus at the myostatin locus could be explained by sex (23%) and direction-of-cross effects (26%). The effects were higher in males (+0.41%). An additional locus with negative over-dominance effects on total fat mass (−0.55 g) was identified on chromosome 16 at 94 Mb (86–94 Mb) which concurs with fat related QTL in syntenic regions on SSC13 in pigs and BTA1 in cattle. Conclusion The data shows QTL effects on mouse muscle that are similar to those previously observed in livestock, supporting the mouse model. New information from the mouse model helps to describe variation in meat quantity and quality, and thus contribute to research in livestock.
Collapse
Affiliation(s)
- Stefan Kärst
- Department for Crop and Animal Sciences, Breeding Biology and Molecular Genetics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
The critical role of myostatin in differentiation of sheep myoblasts. Biochem Biophys Res Commun 2012; 422:381-6. [DOI: 10.1016/j.bbrc.2012.04.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/27/2012] [Indexed: 12/27/2022]
|
28
|
Agley CC, Velloso CP, Lazarus NR, Harridge SDR. An image analysis method for the precise selection and quantitation of fluorescently labeled cellular constituents: application to the measurement of human muscle cells in culture. J Histochem Cytochem 2012; 60:428-38. [PMID: 22511600 DOI: 10.1369/0022155412442897] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored.
Collapse
Affiliation(s)
- Chibeza C Agley
- Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
29
|
Myostatin: more than just a regulator of muscle mass. Drug Discov Today 2012; 17:702-9. [PMID: 22342983 DOI: 10.1016/j.drudis.2012.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/19/2011] [Accepted: 02/02/2012] [Indexed: 12/07/2022]
Abstract
The presence of sufficient skeletal muscle mass is of paramount importance for body function and the myostatin cascade is known to inhibit muscle growth in mammals. In addition, myostatin seems to have an important role in the cross-talk between skeletal muscle and adipose tissue and is involved in insulin sensitivity. In this article we highlight the latest developments related to the myostatin system, emphasizing therapeutic implications for wasting diseases and also the involvement of the system in other organs, in addition to skeletal muscle, such as heart or adipose tissue. Moreover, we highlight the possible role of the myostatin system in the cross-talk between skeletal muscle and adipose tissue, an important aspect that deserves consideration in wasting diseases.
Collapse
|
30
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
31
|
Fakhfakh R, Lamarre Y, Skuk D, Tremblay JP. Losartan Enhances the Success of Myoblast Transplantation. Cell Transplant 2012; 21:139-52. [PMID: 21535912 DOI: 10.3727/096368911x576045] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Duchenne muscular dystrophy is a recessive X-linked genetic disease caused by dystrophin gene mutations. Cell therapy can be a potential approach aiming to introduce a functional dystrophin in the dystrophic patient myofibers. However, this strategy produced so far limited results. Transforming growth factor-β (TGF-β) is a negative regulator of skeletal muscle development and is responsible for limiting myogenic regeneration. The combination of TGF-β signaling inhibition with myoblast transplantation can be an effective therapeutic approach in dystrophin-deficient patients. Our aim was to verify whether the success of human myoblast transplantation in immunodeficient dystrophic mice is enhanced with losartan, a molecule that downregulates TGF-β expression. In vitro, blocking TGF-β activity with losartan increased proliferation and fusion and decreased apoptosis in human myoblasts. In vivo, human myoblasts were transplanted in mice treated with oral losartan. Immunodetection of human dystrophin in tibialis anterior cross sections 1 month posttransplantation revealed more human dystrophin-positive myofibers in these mice than in nontreated dystrophic mice. Thus, blocking the TGF-β signal with losartan treatment improved the success of myoblast transplantation probably by increasing myoblast proliferation and fusion, decreasing macrophage activation, and changing the expression of myogenic regulator factors.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Yann Lamarre
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Daniel Skuk
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Jacques P. Tremblay
- Unité de recherche de recherche en Génétique Humaine, Centre de recherche de CHUL, CHUQ, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
32
|
|