1
|
Smith A, Zhang I, Trang P, Liu F. Engineering of RNase P Ribozymes for Therapy against Human Cytomegalovirus Infection. Viruses 2024; 16:1196. [PMID: 39205170 PMCID: PMC11360822 DOI: 10.3390/v16081196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Nucleic acid-based gene interference and editing strategies, such as antisense oligonucleotides, ribozymes, RNA interference (RNAi), and CRISPR/Cas9 coupled with guide RNAs, are exciting research tools and show great promise for clinical applications in treating various illnesses. RNase P ribozymes have been engineered for therapeutic applications against human viruses such as human cytomegalovirus (HCMV). M1 ribozyme, the catalytic RNA subunit of RNase P from Escherichia coli, can be converted into a sequence-specific endonuclease, M1GS ribozyme, which is capable of hydrolyzing an mRNA target base-pairing with the guide sequence. M1GS RNAs have been shown to hydrolyze essential HCMV mRNAs and block viral progeny production in virus-infected cell cultures. Furthermore, RNase P ribozyme variants with enhanced hydrolyzing activity can be generated by employing in vitro selection procedures and exhibit better ability in suppressing HCMV gene expression and replication in cultured cells. Additional studies have also examined the antiviral activity of RNase P ribozymes in mice in vivo. Using cytomegalovirus infection as an example, this review summarizes the principles underlying RNase P ribozyme-mediated gene inactivation, presents recent progress in engineering RNase P ribozymes for applications in vitro and in mice, and discusses the prospects of using M1GS technology for therapeutic applications against HCMV as well as other pathogenic viruses.
Collapse
Affiliation(s)
- Adam Smith
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Isadora Zhang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Kirsebom LA, Liu F, McClain WH. The discovery of a catalytic RNA within RNase P and its legacy. J Biol Chem 2024; 300:107318. [PMID: 38677513 PMCID: PMC11143913 DOI: 10.1016/j.jbc.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
Sidney Altman's discovery of the processing of one RNA by another RNA that acts like an enzyme was revolutionary in biology and the basis for his sharing the 1989 Nobel Prize in Chemistry with Thomas Cech. These breakthrough findings support the key role of RNA in molecular evolution, where replicating RNAs (and similar chemical derivatives) either with or without peptides functioned in protocells during the early stages of life on Earth, an era referred to as the RNA world. Here, we cover the historical background highlighting the work of Altman and his colleagues and the subsequent efforts of other researchers to understand the biological function of RNase P and its catalytic RNA subunit and to employ it as a tool to downregulate gene expression. We primarily discuss bacterial RNase P-related studies but acknowledge that many groups have significantly contributed to our understanding of archaeal and eukaryotic RNase P, as reviewed in this special issue and elsewhere.
Collapse
Affiliation(s)
- Leif A Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, California, USA.
| | - William H McClain
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Yan B, Liu Y, Chen YC, Liu F. External Guide Sequence Effectively Suppresses the Gene Expression and Replication of Herpes Simplex Virus 2. Molecules 2024; 29:2052. [PMID: 38731543 PMCID: PMC11085068 DOI: 10.3390/molecules29092052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Ribonuclease P (RNase P) complexed with an external guide sequence (EGS) represents a promising nucleic acid-based gene targeting approach for gene expression knock-down and modulation. The RNase P-EGS strategy is unique as an EGS can be designed to basepair any mRNA sequence and recruit intracellular RNase P for hydrolysis of the target mRNA. In this study, we provide the first direct evidence that the RNase P-based approach effectively blocks the gene expression and replication of herpes simplex virus 2 (HSV-2), the causative agent of genital herpes. We constructed EGSs to target the mRNA encoding HSV-2 single-stranded DNA binding protein ICP8, which is essential for viral DNA genome replication and growth. In HSV-2 infected cells expressing a functional EGS, ICP8 levels were reduced by 85%, and viral growth decreased by 3000 folds. On the contrary, ICP8 expression and viral growth exhibited no substantial differences between cells expressing no EGS and those expressing a disabled EGS with mutations precluding RNase P recognition. The anti-ICP8 EGS is specific in targeting ICP8 because it only affects ICP8 expression but does not affect the expression of the other viral immediate-early and early genes examined. This study shows the effective and specific anti-HSV-2 activity of the RNase P-EGS approach and demonstrates the potential of EGS RNAs for anti-HSV-2 applications.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Yang G, Yue Z, Pan P, Li Y. In Memory of the Virologist Jianguo Wu, 1957-2022. Viruses 2023; 15:1754. [PMID: 37632095 PMCID: PMC10457867 DOI: 10.3390/v15081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
It is with deep sorrow that we mourn the passing of the virologist Professor Jianguo Wu [...].
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Zhaoyang Yue
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| | - Pan Pan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
- The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China
| |
Collapse
|
5
|
Liu Y, Chen YC, Yan B, Liu F. Suppressing Kaposi's Sarcoma-Associated Herpesvirus Lytic Gene Expression and Replication by RNase P Ribozyme. Molecules 2023; 28:molecules28083619. [PMID: 37110852 PMCID: PMC10142857 DOI: 10.3390/molecules28083619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Kaposi's sarcoma, an AIDS-defining illness, is caused by Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus. In this study, we engineered ribozymes derived from ribonuclease P (RNase P) catalytic RNA with targeting against the mRNA encoding KSHV immediate early replication and transcription activator (RTA), which is vital for KSHV gene expression. The functional ribozyme F-RTA efficiently sliced the RTA mRNA sequence in vitro. In cells, KSHV production was suppressed with ribozyme F-RTA expression by 250-fold, and RTA expression was suppressed by 92-94%. In contrast, expression of control ribozymes hardly affected RTA expression or viral production. Further studies revealed both overall KSHV early and late gene expression and viral growth decreased because of F-RTA-facilitated suppression of RTA expression. Our results indicate the first instance of RNase P ribozymes having potential for use in anti-KSHV therapy.
Collapse
Affiliation(s)
- Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
6
|
Yan B, Liu Y, Chen YC, Liu F. A RNase P Ribozyme Inhibits Gene Expression and Replication of Hepatitis B Virus in Cultured Cells. Microorganisms 2023; 11:microorganisms11030654. [PMID: 36985227 PMCID: PMC10058342 DOI: 10.3390/microorganisms11030654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Hepatitis B virus (HBV), an international public health concern, is a leading viral cause of liver disease, such as hepatocellular carcinoma. Sequence-specific ribozymes derived from ribonuclease P (RNase P) catalytic RNA are being explored for gene targeting applications. In this study, we engineered an active RNase P ribozyme, M1-S-A, targeting the overlapping region of HBV S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA), all deemed essential for viral infection. Ribozyme M1-S-A cleaved the S mRNA sequence efficiently in vitro. We studied the effect of RNase P ribozyme on HBV gene expression and replication using the human hepatocyte HepG2.2.15 culture model that harbors an HBV genome and supports HBV replication. In these cultured cells, the expression of M1-S-A resulted in a reduction of more than 80% in both HBV RNA and protein levels and an inhibition of about 300-fold in the capsid-associated HBV DNA levels when compared to the cells that did not express any ribozymes. In control experiments, cells expressing an inactive control ribozyme displayed little impact on HBV RNA and protein levels, and on capsid-associated viral DNA levels. Our study signifies that RNase P ribozyme can suppress HBV gene expression and replication, implying the promise of RNase P ribozymes for anti-HBV therapy.
Collapse
Affiliation(s)
- Bin Yan
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- School of Public Health, University of California, Berkeley, CA 94720, USA
- Program in Comparative Biochemistry, University of California, Berkeley, CA 94720, USA
- Correspondence: ; Tel.: +1-(510)-643-2436; Fax: +1-(510)-643-9955
| |
Collapse
|
7
|
Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv Drug Deliv Rev 2022; 187:114363. [PMID: 35649449 DOI: 10.1016/j.addr.2022.114363] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Collapse
|
8
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
9
|
Miao J, Gao P, Li Q, He K, Zhang L, Wang J, Huang L. Advances in Nanoparticle Drug Delivery Systems for Anti-Hepatitis B Virus Therapy: A Narrative Review. Int J Mol Sci 2021; 22:ijms222011227. [PMID: 34681886 PMCID: PMC8538950 DOI: 10.3390/ijms222011227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B (CHB) is an infectious viral disease that is prevalent worldwide. Traditional nucleoside analogues, as well as the novel drug targets against hepatitis B virus (HBV), are associated with certain critical factors that influence the curative effect, such as biological stability and safety, effective drug delivery, and controlled release. Nanoparticle drug delivery systems have significant advantages and have provided a basis for the development of anti-HBV strategies. In this review, we aim to review the advances in nanoparticle drug delivery systems for anti-hepatitis B virus therapy by summarizing the relevant literature. First, we focus on the characteristics of nanoparticle drug delivery systems for anti-HBV therapy. Second, we discuss the nanoparticle delivery systems for anti-HBV nucleoside drugs, gene-based drugs, and vaccines. Lastly, we provide an overview of the prospects for nanoparticle-based anti-HBV agents.
Collapse
Affiliation(s)
- Jing Miao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Hangzhou 310003, China
| | - Peng Gao
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Qian Li
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China;
| | - Kaifeng He
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Liwen Zhang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
| | - Junyan Wang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| | - Lingfei Huang
- Department of Pharmacy, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; (J.M.); (P.G.); (K.H.); (L.Z.)
- Correspondence: (J.W.); (L.H.)
| |
Collapse
|
10
|
Deng Q, Liu Y, Li X, Yan B, Sun X, Tang W, Trang P, Yang Z, Gong H, Wang Y, Lu J, Chen J, Xia C, Xing X, Lu S, Liu F. Inhibition of human cytomegalovirus major capsid protein expression and replication by ribonuclease P-associated external guide sequences. RNA (NEW YORK, N.Y.) 2019; 25:645-655. [PMID: 30803999 PMCID: PMC6467005 DOI: 10.1261/rna.069682.118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 05/08/2023]
Abstract
External guide sequences (EGSs) signify the short RNAs that induce ribonuclease P (RNase P), an enzyme responsible for processing the 5' termini of tRNA, to specifically cleave a target mRNA by forming a precursor tRNA-like complex. Hence, the EGS technology may serve as a potential strategy for gene-targeting therapy. Our previous studies have revealed that engineered EGS variants induced RNase P to efficiently hydrolyze target mRNAs. In the present research, an EGS variant was designed to be complementary to the mRNA coding for human cytomegalovirus (HCMV) major capsid protein (MCP), which is vital to form the viral capsid. In vitro, the EGS variant was about 80-fold more efficient in inducing human RNase P-mediated cleavage of the target mRNA than a natural tRNA-derived EGS. Moreover, the expressed variant and natural tRNA-originated EGSs led to a decrease of MCP expression by 98% and 73%-74% and a decrease of viral growth by about 10,000- and 200-fold in cells infected with HCMV, respectively. These results reveal direct evidence that the engineered EGS variant has higher efficiency in blocking the expression of HCMV genes and viral growth than the natural tRNA-originated EGS. Therefore, our findings imply that the EGS variant can be a potent candidate agent for the treatment of infections caused by HCMV.
Collapse
MESH Headings
- Base Pairing
- Capsid Proteins/biosynthesis
- Capsid Proteins/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cytomegalovirus/genetics
- Cytomegalovirus/metabolism
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation, Viral
- Gene Targeting/methods
- Genetic Engineering/methods
- Host-Pathogen Interactions/genetics
- Humans
- Molecular Targeted Therapy
- Neuroglia/metabolism
- Neuroglia/virology
- Nucleic Acid Conformation
- Primary Cell Culture
- RNA Cleavage
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Ribonuclease P/chemistry
- Ribonuclease P/genetics
- Ribonuclease P/metabolism
- Virus Replication/physiology
Collapse
Affiliation(s)
- Qiudi Deng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yujun Liu
- School of Public Health, University of California, Berkeley, California 94720, USA
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
| | - Xin Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bin Yan
- School of Public Health, University of California, Berkeley, California 94720, USA
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Wei Tang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Phong Trang
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
- Guangzhou Qinheli Biotechnolgies Inc, Guangzhou, Guangdong 510600, China
| | - Hao Gong
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Yu Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnolgies Inc, Taizhou, Jiangsu 225300, China
| | - Jie Lu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiwen Xing
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, California 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Li W, Liu Y, Wang Y, Li R, Trang P, Tang W, Yang Z, Wang Y, Sun X, Xing X, Lu S, Liu F. Engineered RNase P Ribozymes Effectively Inhibit the Infection of Murine Cytomegalovirus in Animals. Am J Cancer Res 2018; 8:5634-5644. [PMID: 30555569 PMCID: PMC6276291 DOI: 10.7150/thno.27776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/03/2018] [Indexed: 01/30/2023] Open
Abstract
Rationales: Gene-targeting ribozymes represent promising nucleic acid-based gene interference agents for therapeutic application. We previously used an in vitro selection procedure to engineer novel RNase P-based ribozyme variants with enhanced targeting activity. However, it has not been reported whether these ribozyme variants also exhibit improved activity in blocking gene expression in animals. Methods and Results: In this report, R388-AS, a new engineered ribozyme variant, was designed to target the mRNA of assemblin (AS) of murine cytomegalovirus (MCMV), which is essential for viral progeny production. Variant R338-AS cleaved AS mRNA sequence in vitro at least 200 times more efficiently than ribozyme M1-AS, which originated from the wild type RNase P catalytic RNA sequence. In cultured MCMV-infected cells, R338-AS exhibited better antiviral activity than M1-AS and decreased viral AS expression by 98-99% and virus production by 15,000 fold. In MCMV-infected mice, R388-AS was more active in inhibiting AS expression, blocking viral replication, and improving animal survival than M1-AS. Conclusions: Our results provide the first direct evidence that novel engineered RNase P ribozyme variants with more active catalytic activity in vitro are also more effective in inhibiting viral gene expression in animals. Moreover, our studies imply the potential of engineering novel RNase P ribozyme variants with unique mutations to improve ribozyme activity for therapeutic application.
Collapse
|
12
|
Sun X, Chen W, He L, Sheng J, Liu Y, Vu GP, Yang Z, Li W, Trang P, Wang Y, Hai R, Zhu H, Lu S, Liu F. Inhibition of human cytomegalovirus immediate early gene expression and growth by a novel RNase P ribozyme variant. PLoS One 2017; 12:e0186791. [PMID: 29059242 PMCID: PMC5653336 DOI: 10.1371/journal.pone.0186791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously engineered new RNase P-based ribozyme variants with improved in vitro catalytic activity. In this study, we employed a novel engineered variant to target a shared mRNA region of human cytomegalovirus (HCMV) immediate early proteins 1 (IE1) and 2 (IE2), which are essential for the expression of viral early and late genes as well as viral growth. Ribozyme F-R228-IE represents a novel variant that possesses three unique base substitution point mutations at the catalytic domain of RNase P catalytic RNA. Compared to F-M1-IE that is the ribozyme derived from the wild type RNase P catalytic RNA sequence, the functional variant F-R228-IE cleaved the target mRNA sequence in vitro at least 100 times more efficiently. In cultured cells, expression of F-R228-IE resulted in IE1/IE2 expression reduction by 98–99% and in HCMV production reduction by 50,000 folds. In contrast, expression of F-M1-IE resulted in IE1/IE2 expression reduction by less than 80% and in viral production reduction by 200 folds. Studies of the ribozyme-mediated antiviral effects in cultured cells suggest that overall viral early and late gene expression and viral growth were inhibited due to the ribozyme-mediated reduction of HCMV IE1 and IE2 expression. Our results provide direct evidence that engineered RNase P ribozymes, such as F-R228-IE, can serve as a novel class of inhibitors for the treatment and prevention of HCMV infection. Moreover, these results suggest that F-R228-IE, with novel and unique mutations at the catalytic domain to enhance ribozyme activity, can be a candidate for the construction of effective agents for anti-HCMV therapy.
Collapse
Affiliation(s)
- Xu Sun
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Weijie Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Lingling He
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jingxue Sheng
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Yujun Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Medicine, St. George’s University, Grenada, West Indies
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA, United States of America
| | - Zhu Yang
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
- Taizhou Institute of Virology, Taizhou, Jiangsu, China
| | - Wei Li
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Phong Trang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yu Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Guangzhou Qinheli Biotechnologies, Inc., Guangzhou, Guangdong, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu, China
| | - Rong Hai
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hua Zhu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| | - Fenyong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- School of Public Health, University of California, Berkeley, CA, United States of America
- * E-mail: (FL); (SL)
| |
Collapse
|
13
|
Li W, Sheng J, Xu M, Vu GP, Yang Z, Liu Y, Sun X, Trang P, Lu S, Liu F. Inhibition of Murine Cytomegalovirus Infection in Animals by RNase P-Associated External Guide Sequences. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 9:322-332. [PMID: 29246310 PMCID: PMC5684469 DOI: 10.1016/j.omtn.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
External guide sequence (EGS) RNAs are associated with ribonuclease P (RNase P), a tRNA processing enzyme, and represent promising agents for gene-targeting applications as they can direct RNase-P-mediated cleavage of a target mRNA. Using murine cytomegalovirus (MCMV) as a model system, we examined the antiviral effects of an EGS variant, which was engineered using in vitro selection procedures. EGSs were used to target the shared mRNA region of MCMV capsid scaffolding protein (mCSP) and assemblin. In vitro, the EGS variant was 60 times more active in directing RNase P cleavage of the target mRNA than the EGS originating from a natural tRNA. In MCMV-infected cells, the variant reduced mCSP expression by 92% and inhibited viral growth by 8,000-fold. In MCMV-infected mice hydrodynamically transfected with EGS-expressing constructs, the EGS variant was more effective in reducing mCSP expression, decreasing viral production, and enhancing animal survival than the EGS originating from a natural tRNA. These results provide direct evidence that engineered EGS variants with higher targeting activity in vitro are also more effective in reducing gene expression in animals. Furthermore, our findings imply the possibility of engineering potent EGS variants for therapy of viral infections.
Collapse
Affiliation(s)
- Wei Li
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jingxue Sheng
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mengqiong Xu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhu Yang
- Jiangsu Affynigen Biotechnolgies, Inc., Taizhou, Jiangsu 225300, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Yujun Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; School of Medicine, St. George's University, Grenada, West Indies; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xu Sun
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Guangzhou Qinheli Biotechnolgies, Inc., Guangzhou, Guangdong 510600, China
| | - Phong Trang
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Fenyong Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, China; Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Popkov VA, Zorova LD, Korvigo IO, Silachev DN, Jankauskas SS, Babenko VA, Pevzner IB, Danilina TI, Zorov SD, Plotnikov EY, Zorov DB. Do Mitochondria Have an Immune System? BIOCHEMISTRY (MOSCOW) 2016; 81:1229-1236. [PMID: 27908248 DOI: 10.1134/s0006297916100217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The question if mitochondria have some kind of immune system is not trivial. The basis for raising this question is the fact that bacteria, which are progenitors of mitochondria, do have an immune system. The CRISPR system in bacteria based on the principle of RNA interference serves as an organized mechanism for destroying alien nucleic acids, primarily those of viral origin. We have shown that mitochondria are also a target for viral attacks, probably due to a related organization of genomes in these organelles and bacteria. Bioinformatic analysis performed in this study has not given a clear answer if there is a CRISPR-like immune system in mitochondria. However, this does not preclude the possibility of mitochondrial immunity that can be difficult to decipher or that is based on some principles other than those of CRISPR.
Collapse
Affiliation(s)
- V A Popkov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Targeted inhibition of WRN helicase, replication stress and cancer. Biochim Biophys Acta Rev Cancer 2016; 1867:42-48. [PMID: 27902925 DOI: 10.1016/j.bbcan.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 11/21/2022]
Abstract
WRN helicase has several roles in genome maintenance, such as replication, base excision repair, recombination, DNA damage response and transcription. These processes are often found upregulated in human cancers, many of which display increased levels of WRN. Therefore, directed inhibition of this RecQ helicase could be beneficial to selective cancer therapy. Inhibition of WRN is feasible by the use of small-molecule inhibitors or application of RNA interference and EGS/RNase P targeting systems. Remarkably, helicase depletion leads to a severe reduction in cell viability due to mitotic catastrophe, which is triggered by replication stress induced by DNA repair failure and fork progression arrest. Moreover, we present new evidence that WRN depletion results in early changes of RNA polymerase III and RNase P activities, thereby implicating chromatin-associated tRNA enzymes in WRN-related stress response. Combined with the recently discovered roles of RecQ helicases in cancer, current data support the targeting prospect of these genome guardians, as a means of developing clinical phases aimed at diminishing adaptive resistance to present targeted therapies.
Collapse
|
16
|
Liu J, Shao L, Trang P, Yang Z, Reeves M, Sun X, Vu GP, Wang Y, Li H, Zheng C, Lu S, Liu F. Inhibition of herpes simplex virus 1 gene expression and replication by RNase P-associated external guide sequences. Sci Rep 2016; 6:27068. [PMID: 27279482 PMCID: PMC4899697 DOI: 10.1038/srep27068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/06/2016] [Indexed: 02/01/2023] Open
Abstract
An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Luyao Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Phong Trang
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Zhu Yang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu 225300, China
| | - Michael Reeves
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Xu Sun
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Gia-Phong Vu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Yu Wang
- Taizhou Institute of Virology, Taizhou, Jiangsu 225300, China
- Jiangsu Affynigen Biotechnologies, Inc., Taizhou, Jiangsu 225300, China
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hongjian Li
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| | - Congyi Zheng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Sangwei Lu
- School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- School of Public Health, University of California, Berkeley, CA 94720, USA
- College of Life Sciences, Jinan University, Guangzhou, Guangdong 510632, China
| |
Collapse
|
17
|
Hitrik A, Abboud-Jarrous G, Orlovetskie N, Serruya R, Jarrous N. Targeted inhibition of WRN helicase by external guide sequence and RNase P RNA. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:572-80. [PMID: 26808708 DOI: 10.1016/j.bbagrm.2016.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 01/04/2023]
Abstract
Human WRN, a RecQ helicase encoded by the Werner syndrome gene, is implicated in genome maintenance, including replication, recombination, excision repair and DNA damage response. These genetic processes and expression of WRN are concomitantly upregulated in many types of cancers. Therefore, targeted destruction of this helicase could be useful for elimination of cancer cells. Here, we provide a proof of concept for applying the external guide sequence (EGS) approach in directing an RNase P RNA to efficiently cleave the WRN mRNA in cultured human cell lines, thus abolishing translation and activity of this distinctive 3'-5' DNA helicase-nuclease. Remarkably, EGS-directed knockdown of WRN leads to severe inhibition of cell viability. Hence, further assessment of this targeting system could be beneficial for selective cancer therapies, particularly in the light of the recent improvements introduced into EGSs.
Collapse
Affiliation(s)
- Anna Hitrik
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ghada Abboud-Jarrous
- Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel
| | - Natalie Orlovetskie
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Institute for Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
18
|
RNase P-Mediated Sequence-Specific Cleavage of RNA by Engineered External Guide Sequences. Biomolecules 2015; 5:3029-50. [PMID: 26569326 PMCID: PMC4693268 DOI: 10.3390/biom5043029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/16/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
The RNA cleavage activity of RNase P can be employed to decrease the levels of specific RNAs and to study their function or even to eradicate pathogens. Two different technologies have been developed to use RNase P as a tool for RNA knockdown. In one of these, an external guide sequence, which mimics a tRNA precursor, a well-known natural RNase P substrate, is used to target an RNA molecule for cleavage by endogenous RNase P. Alternatively, a guide sequence can be attached to M1 RNA, the (catalytic) RNase P RNA subunit of Escherichia coli. The guide sequence is specific for an RNA target, which is subsequently cleaved by the bacterial M1 RNA moiety. These approaches are applicable in both bacteria and eukaryotes. In this review, we will discuss the two technologies in which RNase P is used to reduce RNA expression levels.
Collapse
|
19
|
Sala CD, Soler-Bistué A, Bonomo R, Zorreguieta A, Tolmasky ME. External guide sequence technology: a path to development of novel antimicrobial therapeutics. Ann N Y Acad Sci 2015; 1354:98-110. [PMID: 25866265 PMCID: PMC4600001 DOI: 10.1111/nyas.12755] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/14/2015] [Accepted: 03/03/2015] [Indexed: 12/11/2022]
Abstract
RNase P is a ribozyme originally identified for its role in maturation of tRNAs by cleavage of precursor tRNAs (pre-tRNAs) at the 5'-end termini. RNase P is a ribonucleoprotein consisting of a catalytic RNA molecule and, depending on the organism, one or more cofactor proteins. The site of cleavage of a pre-tRNA is identified by its tertiary structure; and any RNA molecule can be cleaved by RNase P as long as the RNA forms a duplex that resembles the regional structure in the pre-tRNA. When the antisense sequence that forms the duplex with the strand that is subsequently cleaved by RNase P is in a separate molecule, it is called an external guide sequence (EGS). These fundamental observations are the basis for EGS technology, which consists of inhibiting gene expression by utilizing an EGS that elicits RNase P-mediated cleavage of a target mRNA molecule. EGS technology has been used to inhibit expression of a wide variety of genes, and may help development of novel treatments of diseases, including multidrug-resistant bacterial and viral infections.
Collapse
Affiliation(s)
- Carol Davies Sala
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Alfonso Soler-Bistué
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| | - Robert Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine,
Cleveland, Ohio
| | - Angeles Zorreguieta
- Fundación Instituto Leloir, IIBBA-CONICET, and FCEyN, University of
Buenos Aires, Argentina
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, College of Natural Sciences and
Mathematics, California State University Fullerton, Fullerton, California
| |
Collapse
|
20
|
Progress and Prospects of Anti-HBV Gene Therapy Development. Int J Mol Sci 2015; 16:17589-610. [PMID: 26263978 PMCID: PMC4581210 DOI: 10.3390/ijms160817589] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/11/2022] Open
Abstract
Despite the availability of an effective vaccine against hepatitis B virus (HBV), chronic infection with the virus remains a major global health concern. Current drugs against HBV infection are limited by emergence of resistance and rarely achieve complete viral clearance. This has prompted vigorous research on developing better drugs against chronic HBV infection. Advances in understanding the life cycle of HBV and improvements in gene-disabling technologies have been impressive. This has led to development of better HBV infection models and discovery of new drug candidates. Ideally, a regimen against chronic HBV infection should completely eliminate all viral replicative intermediates, especially covalently closed circular DNA (cccDNA). For the past few decades, nucleic acid-based therapy has emerged as an attractive alternative that may result in complete clearance of HBV in infected patients. Several genetic anti-HBV strategies have been developed. The most studied approaches include the use of antisense oligonucleotides, ribozymes, RNA interference effectors and gene editing tools. This review will summarize recent developments and progress made in the use of gene therapy against HBV.
Collapse
|
21
|
Gebbing M, Bergmann T, Schulz E, Ehrhardt A. Gene therapeutic approaches to inhibit hepatitis B virus replication. World J Hepatol 2015; 7:150-164. [PMID: 25729471 PMCID: PMC4342598 DOI: 10.4254/wjh.v7.i2.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/23/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic hepatitis B virus (HBV) infections remain to present a major global health problem. The infection can be associated with acute symptomatic or asymptomatic hepatitis which can cause chronic inflammation of the liver and over years this can lead to cirrhosis and the development of hepatocellular carcinomas. Currently available therapeutics for chronically infected individuals aim at reducing viral replication and to slow down or stop the progression of the disease. Therefore, novel treatment options are needed to efficiently combat and eradicate this disease. Here we provide a state of the art overview of gene therapeutic approaches to inhibit HBV replication. We discuss non-viral and viral approaches which were explored to deliver therapeutic nucleic acids aiming at reducing HBV replication. Types of delivered therapeutic nucleic acids which were studied since many years include antisense oligodeoxynucleotides and antisense RNA, ribozymes and DNAzymes, RNA interference, and external guide sequences. More recently designer nucleases gained increased attention and were exploited to destroy the HBV genome. In addition we mention other strategies to reduce HBV replication based on delivery of DNA encoding dominant negative mutants and DNA vaccination. In combination with available cell culture and animal models for HBV infection, in vitro and in vivo studies can be performed to test efficacy of gene therapeutic approaches. Recent progress but also challenges will be specified and future perspectives will be discussed. This is an exciting time to explore such approaches because recent successes of gene therapeutic strategies in the clinic to treat genetic diseases raise hope to find alternative treatment options for patients chronically infected with HBV.
Collapse
|
22
|
Targeting the Achilles heel of the hepatitis B virus: a review of current treatments against covalently closed circular DNA. Drug Discov Today 2015; 20:548-61. [PMID: 25622780 DOI: 10.1016/j.drudis.2015.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/15/2014] [Accepted: 01/14/2015] [Indexed: 01/05/2023]
Abstract
Chronic infection with hepatitis B virus (HBV) often leads to the development of liver cancer and cirrhosis, creating immense sociological, clinical and economic burdens worldwide. Although current anti-HBV medications manage to control the disease progression and help restore normal liver functions, they often fail to eliminate the virus completely. A major reason for this failure is the presence of a stable viral genome in the hepatocyte nucleus: the covalently closed circular DNA (cccDNA). Targeting HBV cccDNA is a promising approach that could lead to a complete cure. Here, we review various research approaches that are directed toward eliminating HBV cccDNA. This is a brief, yet comprehensive, summary of current state-of-the-art developments in this emerging area of interest.
Collapse
|
23
|
Marimani M, Hean J, Bloom K, Ely A, Arbuthnot P. Recent advances in developing nucleic acid-based HBV therapy. Future Microbiol 2014; 8:1489-504. [PMID: 24199806 DOI: 10.2217/fmb.13.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic HBV infection remains an important public health problem and currently licensed therapies rarely prevent complications of viral persistence. Silencing HBV gene expression using gene therapy, particularly with exogenous activators of RNAi, holds promise for developing an HBV gene therapy. However, immune stimulation, off-targeting effects and inefficient delivery of RNAi activators remain problematic. Several new approaches have recently been employed to address these issues. Chemical modifications to anti-HBV synthetic siRNAs have been investigated and a variety of vectors are being developed for delivery of RNAi effectors. In this article, we review the potential utility of gene therapy for treating HBV infection.
Collapse
Affiliation(s)
- Musa Marimani
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
24
|
Chen J, Zhang W, Lin J, Wang F, Wu M, Chen C, Zheng Y, Peng X, Li J, Yuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 2013; 22:303-311. [PMID: 24025750 DOI: 10.1038/mt.2013.212] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/26/2013] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) is a DNA virus that can cause chronic hepatitis B (CHB) in humans. Current therapies for CHB infection are limited in efficacy and do not target the pre-existing viral genomic DNA, which are present in the nucleus as a covalently closed circular DNA (cccDNA) form. The transcription activator-like (TAL) effector nucleases (TALENs) are newly developed enzymes that can cleave sequence-specific DNA targets. Here, TALENs targeting the conserved regions of the viral genomic DNA among different HBV genotypes were constructed. The expression of TALENs in Huh7 cells transfected with monomeric linear full-length HBV DNA significantly reduced the viral production of HBeAg, HBsAg, HBcAg, and pgRNA, resulted in a decreased cccDNA level and misrepaired cccDNAs without apparent cytotoxic effects. The anti-HBV effect of TALENs was further demonstrated in a hydrodynamic injection-based mouse model. In addition, an enhanced antiviral effect with combinations of TALENs and interferon-α (IFN-α) treatment was observed and expression of TALENs restored HBV suppressed IFN-stimulated response element-directed transcription. Taken together, these data indicate that TALENs can specifically target and successfully inactivate the HBV genome and are potently synergistic with IFN-α, thus providing a potential therapeutic strategy for treating CHB infection.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Junyu Lin
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fan Wang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Cuncun Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China
| | - Ye Zheng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiuhua Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Shanghai Public Health Clinical Center, Fudan University, Shanghai, China; Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Zhang Z, Vu GP, Gong H, Xia C, Chen YC, Liu F, Wu J, Lu S. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells. PLoS One 2013; 8:e65268. [PMID: 23776459 PMCID: PMC3680410 DOI: 10.1371/journal.pone.0065268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 01/12/2023] Open
Abstract
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Collapse
Affiliation(s)
- Zhigang Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Gia-Phong Vu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Hao Gong
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yuan-Chuan Chen
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Sangwei Lu
- Program in Comparative Biochemistry, University of California, Berkeley, California, United States of America
- School of Public Health, University of California, Berkeley, California, United States of America
| |
Collapse
|