1
|
Watts CA, Haupt A, Smith J, Welch E, Malik A, Giacomino R, Walter D, Mavundza N, Shemery A, Caldwell HK, Novak CM. Measuring Skeletal Muscle Thermogenesis in Mice and Rats. J Vis Exp 2022:10.3791/64264. [PMID: 35969093 PMCID: PMC9969793 DOI: 10.3791/64264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Skeletal muscle thermogenesis provides a potential avenue for better understanding metabolic homeostasis and the mechanisms underlying energy expenditure. Surprisingly little evidence is available to link the neural, myocellular, and molecular mechanisms of thermogenesis directly to measurable changes in muscle temperature. This paper describes a method in which temperature transponders are utilized to retrieve direct measurements of mouse and rat skeletal muscle temperature. Remote transponders are surgically implanted within the muscle of mice and rats, and the animals are given time to recover. Mice and rats must then be repeatedly habituated to the testing environment and procedure. Changes in muscle temperature are measured in response to pharmacological or contextual stimuli in the home cage. Muscle temperature can also be measured during prescribed physical activity (i.e., treadmill walking at a constant speed) to factor out changes in activity as contributors to the changes in muscle temperature induced by these stimuli. This method has been successfully used to elucidate mechanisms underlying muscle thermogenic control at the level of the brain, sympathetic nervous system, and skeletal muscle. Provided are demonstrations of this success using predator odor (PO; ferret odor) as a contextual stimulus and injections of oxytocin (Oxt) as a pharmacological stimulus, where predator odor induces muscle thermogenesis, and Oxt suppresses muscle temperature. Thus, these datasets display the efficacy of this method in detecting rapid changes in muscle temperature.
Collapse
Affiliation(s)
| | - Alexandra Haupt
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Jordan Smith
- College of Public Health, Kent State University, Kent, OH, USA
| | - Emily Welch
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Aalia Malik
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Roman Giacomino
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Dinah Walter
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | | | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Heather K. Caldwell
- School of Biomedical Sciences, Kent State University, Kent, OH, USA,Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA,Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
2
|
Metzger S, Dupont C, Voss AA, Rich MM. Central Role of Subthreshold Currents in Myotonia. Ann Neurol 2019; 87:175-183. [PMID: 31725924 DOI: 10.1002/ana.25646] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023]
Abstract
It is generally thought that muscle excitability is almost exclusively controlled by currents responsible for generation of action potentials. We propose that smaller ion channel currents that contribute to setting the resting potential and to subthreshold fluctuations in membrane potential can also modulate excitability in important ways. These channels open at voltages more negative than the action potential threshold and are thus termed subthreshold currents. As subthreshold currents are orders of magnitude smaller than the currents responsible for the action potential, they are hard to identify and easily overlooked. Discovery of their importance in regulation of excitability opens new avenues for improved therapy for muscle channelopathies and diseases of the neuromuscular junction. ANN NEUROL 2020;87:175-183.
Collapse
Affiliation(s)
- Sabrina Metzger
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Chris Dupont
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| | - Andrew A Voss
- Department of Biology, Wright State University, Dayton, OH
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH
| |
Collapse
|
3
|
Bradford BJ, Cooper CA, Tizard ML, Doran TJ, Hinton TM. RNA interference-based technology: what role in animal agriculture? ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal agriculture faces a broad array of challenges, ranging from disease threats to adverse environmental conditions, while attempting to increase productivity using fewer resources. RNA interference (RNAi) is a biological phenomenon with the potential to provide novel solutions to some of these challenges. Discovered just 20 years ago, the mechanisms underlying RNAi are now well described in plants and animals. Intracellular double-stranded RNA triggers a conserved response that leads to cleavage and degradation of complementary mRNA strands, thereby preventing production of the corresponding protein product. RNAi can be naturally induced by expression of endogenous microRNA, which are critical in the regulation of protein synthesis, providing a mechanism for rapid adaptation of physiological function. This endogenous pathway can be co-opted for targeted RNAi either through delivery of exogenous small interfering RNA (siRNA) into target cells or by transgenic expression of short hairpin RNA (shRNA). Potentially valuable RNAi targets for livestock include endogenous genes such as developmental regulators, transcripts involved in adaptations to new physiological states, immune response mediators, and also exogenous genes such as those encoded by viruses. RNAi approaches have shown promise in cell culture and rodent models as well as some livestock studies, but technical and market barriers still need to be addressed before commercial applications of RNAi in animal agriculture can be realised. Key challenges for exogenous delivery of siRNA include appropriate formulation for physical delivery, internal transport and eventual cellular uptake of the siRNA; additionally, rigorous safety and residue studies in target species will be necessary for siRNA delivery nanoparticles currently under evaluation. However, genomic incorporation of shRNA can overcome these issues, but optimal promoters to drive shRNA expression are needed, and genetic engineering may attract more resistance from consumers than the use of exogenous siRNA. Despite these hurdles, the convergence of greater understanding of RNAi mechanisms, detailed descriptions of regulatory processes in animal development and disease, and breakthroughs in synthetic chemistry and genome engineering has created exciting possibilities for using RNAi to enhance the sustainability of animal agriculture.
Collapse
|
4
|
A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca 2+ Uptake Machinery of Skeletal Muscle. Mol Cell 2016; 64:760-773. [PMID: 27818145 DOI: 10.1016/j.molcel.2016.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023]
Abstract
Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.
Collapse
|
5
|
Vivaudou M, Terzic A. Antiobesity strategy targets energy economy safeguards. Mol Ther 2016; 23:615-6. [PMID: 25849426 DOI: 10.1038/mt.2015.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Michel Vivaudou
- 1] Université Grenoble Alpes, Institut de Biologie Structurale, Grenoble, France [2] Centre National de la Recherche Scientifique, Institut de Biologie Structurale, Grenoble, France [3] CEA, Institut de Biologie Structurale, Grenoble, France
| | - André Terzic
- Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Sierra A, Subbotina E, Zhu Z, Gao Z, Koganti SRK, Coetzee WA, Goldhamer DJ, Hodgson-Zingman DM, Zingman LV. Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin. Biochem Biophys Res Commun 2016; 471:129-34. [PMID: 26828268 PMCID: PMC4815902 DOI: 10.1016/j.bbrc.2016.01.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
Abstract
Sarcolemmal ATP-sensitive potassium (KATP) channels control skeletal muscle energy use through their ability to adjust membrane excitability and related cell functions in accordance with cellular metabolic status. Mice with disrupted skeletal muscle KATP channels exhibit reduced adipocyte size and increased fatty acid release into the circulation. As yet, the molecular mechanisms underlying this link between skeletal muscle KATP channel function and adipose mobilization have not been established. Here, we demonstrate that skeletal muscle-specific disruption of KATP channel function in transgenic (TG) mice promotes production and secretion of musclin. Musclin is a myokine with high homology to atrial natriuretic peptide (ANP) that enhances ANP signaling by competing for elimination. Augmented musclin production in TG mice is driven by a molecular cascade resulting in enhanced acetylation and nuclear exclusion of the transcription factor forkhead box O1 (FOXO1) - an inhibitor of transcription of the musclin encoding gene. Musclin production/secretion in TG is paired with increased mobilization of fatty acids and a clear trend toward increased circulating ANP, an activator of lipolysis. These data establish KATP channel-dependent musclin production as a potential mechanistic link coupling "local" skeletal muscle energy consumption with mobilization of bodily resources from fat. Understanding such mechanisms is an important step toward designing interventions to manage metabolic disorders including those related to excess body fat and associated co-morbidities.
Collapse
Affiliation(s)
- Ana Sierra
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Ekaterina Subbotina
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Zhiyong Zhu
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Zhan Gao
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Siva Rama Krishna Koganti
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, USA.
| | - David J Goldhamer
- Center for Regenerative Biology, Department of Molecular and Cell Biology, Advanced Technology Laboratory, University of Connecticut, 1392 Storrs Road Unit 4243, Storrs, Connecticut 06269, USA.
| | - Denice M Hodgson-Zingman
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Leonid V Zingman
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, Iowa City, IA 52242, USA; Department of Veterans Affairs, Medical Center, Iowa City, IA 52242, USA.
| |
Collapse
|
7
|
Subbotina E, Koganti SRK, Hodgson-Zingman DM, Zingman LV. Morpholino-driven gene editing: A new horizon for disease treatment and prevention. Clin Pharmacol Ther 2015; 99:21-5. [PMID: 26474085 DOI: 10.1002/cpt.276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/22/2015] [Accepted: 10/09/2015] [Indexed: 11/10/2022]
Affiliation(s)
- E Subbotina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - S R K Koganti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - D M Hodgson-Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - L V Zingman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA.,Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Gibbons DD, Kutschke WJ, Weiss RM, Benson CJ. Heart failure induces changes in acid-sensing ion channels in sensory neurons innervating skeletal muscle. J Physiol 2015; 593:4575-87. [PMID: 26314284 DOI: 10.1113/jp270690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/13/2015] [Indexed: 12/19/2022] Open
Abstract
Heart failure is associated with diminished exercise capacity, which is driven, in part, by alterations in exercise-induced autonomic reflexes triggered by skeletal muscle sensory neurons (afferents). These overactive reflexes may also contribute to the chronic state of sympathetic excitation, which is a major contributor to the morbidity and mortality of heart failure. Acid-sensing ion channels (ASICs) are highly expressed in muscle afferents where they sense metabolic changes associated with ischaemia and exercise, and contribute to the metabolic component of these reflexes. Therefore, we tested if ASICs within muscle afferents are altered in heart failure. We used whole-cell patch clamp to study the electrophysiological properties of acid-evoked currents in isolated, labelled muscle afferent neurons from control and heart failure (induced by myocardial infarction) mice. We found that the percentage of muscle afferents that displayed ASIC-like currents, the current amplitudes, and the pH dose-response relationships were not altered in mice with heart failure. On the other hand, the biophysical properties of ASIC-like currents were significantly different in a subpopulation of cells (40%) from heart failure mice. This population displayed diminished pH sensitivity, altered desensitization kinetics, and very fast recovery from desensitization. These unique properties define these channels within this subpopulation of muscle afferents as being heteromeric channels composed of ASIC2a and -3 subunits. Heart failure induced a shift in the subunit composition of ASICs within muscle afferents, which significantly altered their pH sensing characteristics. These results might, in part, contribute to the changes in exercise-mediated reflexes that are associated with heart failure.
Collapse
Affiliation(s)
- David D Gibbons
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Christopher J Benson
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.,The Department of Veterans Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|