1
|
Ping W, Tang H, Dou H, Zhu D, Li X, Zhang N. Biomimetic liposome amplifying mitochondrial damage to potential cancer radio-immunotherapy. Colloids Surf B Biointerfaces 2024; 242:114091. [PMID: 39018913 DOI: 10.1016/j.colsurfb.2024.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Radiotherapy, despite its precision and non-invasiveness, often fails due to the resistance of cancer stem cells (CSCs), which are characterized by high self-renewal capabilities and superior DNA repair mechanisms. These cells can evade RT and lead to tumor recurrence and metastasis. To address this challenge, a novel delivery system named PB has been introduced. This system combines liposomes with platelet membranes to encapsulate Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES), thus enhancing its delivery and release specifically at tumor sites. In addition, this system not only targets CSCs effectively but also increases the local concentration of BPTES upon X-ray irradiation, which reduces glutathione levels in tumor cells, thereby increasing oxidative stress and damaging mitochondria. PB-elicited mitochondrial damage as the STING signal initiator, which mediated significant upregulation in the expression of a cGAS-STING pathway-related protein thereby amplifying the STING signal. Systemic intravenous administration of PB remarkably promoted DC maturation and CD8+ T cell infiltration, thus eliciting strong antitumor effects. Overall, this PB system presents a potent method to overcome CSC-related resistance and offers a promising approach for future cancer treatment protocols.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Han Tang
- Key Laboratory of Artificial Micro, and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Haijing Dou
- Department of Central Laboratory and Precision Medicine Center,Department of Nephrology, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223001, China
| | - Daoming Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Xiang Li
- Department of Central Laboratory and Precision Medicine Center,Department of Nephrology, The Affiliated Huai'an Hospital of Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an 223001, China.
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
2
|
Conradt G, Hausser I, Nyström A. Epidermal or Dermal Collagen VII Is Sufficient for Skin Integrity: Insights to Anchoring Fibril Homeostasis. J Invest Dermatol 2024; 144:1301-1310.e7. [PMID: 38007090 DOI: 10.1016/j.jid.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Collagen VII forms anchoring fibrils that are essential for the stability of the skin and other epithelial organs. In addition to such structural functions, it is emerging that collagen VII fills instructive functions. Collagen VII is synthesized by both epithelial cells and fibroblasts. Genetic loss of collagen VII causes dystrophic epidermolysis bullosa, which manifests with chronic skin fragility and fibrosis. Significant progress has been made in developing therapies for dystrophic epidermolysis bullosa; however, such work has also raised questions on the importance of the cellular source of collagen VII for maintenance of tissue integrity and homeostasis. Toward this end, we engineered mice that kept the physiological expression of collagen VII only in epithelial cells or in fibroblasts. Our study revealed that production of collagen VII either by keratinocytes or fibroblasts alone is sufficient for creation of mechanically robust skin. Importantly, we also show tissue-diverse dependence on epithelial and mesenchymal production of collagen VII and provide support for limited amounts of collagen VII being sufficient for tissue protection. Furthermore, a disconnect between collagen VII abundance and anchoring fibril numbers supports the concept that restoration of fully physiological collagen VII levels may not be needed to achieve complete mechanical protection of dystrophic epidermolysis bullosa skin.
Collapse
Affiliation(s)
- Gregor Conradt
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Jia Y, Wang X, Li L, Li F, Zhang J, Liang XJ. Lipid Nanoparticles Optimized for Targeting and Release of Nucleic Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305300. [PMID: 37547955 DOI: 10.1002/adma.202305300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/25/2023] [Indexed: 08/08/2023]
Abstract
Lipid nanoparticles (LNPs) are currently the most promising clinical nucleic acids drug delivery vehicles. LNPs prevent the degradation of cargo nucleic acids during blood circulation. Upon entry into the cell, specific components of the lipid nanoparticles can promote the endosomal escape of nucleic acids. These are the basic properties of lipid nanoparticles as nucleic acid carriers. As LNPs exhibit hepatic aggregation characteristics, enhancing targeting out of the liver is a crucial way to improve LNPs administrated in vivo. Meanwhile, endosomal escape of nucleic acids loaded in LNPs is often considered inadequate, and therefore, much effort is devoted to enhancing the intracellular release efficiency of nucleic acids. Here, different strategies to efficiently deliver nucleic acid delivery from LNPs are concluded and their mechanisms are investigated. In addition, based on the information on LNPs that are in clinical trials or have completed clinical trials, the issues that are necessary to be approached in the clinical translation of LNPs are discussed, which it is hoped will shed light on the development of LNP nucleic acid drugs.
Collapse
Affiliation(s)
- Yaru Jia
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Xiuguang Wang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Luwei Li
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
| | - Jinchao Zhang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
| | - Xing-Jie Liang
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of HeBei University, Baoding, 071002, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Mao X, Wang G, Wang Z, Duan C, Wu X, Xu H. Theranostic Lipid Nanoparticles for Renal Cell Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306246. [PMID: 37747365 DOI: 10.1002/adma.202306246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Renal cell carcinoma (RCC) is a common urological malignancy and represents a leading threat to healthcare. Recent years have seen a series of progresses in the early diagnosis and management of RCC. Theranostic lipid nanoparticles (LNPs) are increasingly becoming one of the focuses in this field, because of their suitability for tumor targeting and multimodal therapy. LNPs can be precisely fabricated with desirable chemical compositions and biomedical properties, which closely match the physiological characteristics and clinical needs of RCC. Herein, a comprehensive review of theranostic LNPs is presented, emphasizing the generic tool nature of LNPs in developing advanced micro-nano biomaterials. It begins with a brief overview of the compositions and formation mechanism of LNPs, followed with an introduction to kidney-targeting approaches, such as passive, active, and stimulus responsive targeting. With examples provided, a series of modification strategies for enhancing the tumor targeting and functionality of LNPs are discussed. Thereafter, research advances on applications of these LNPs for RCC including bioimaging, liquid biopsy, drug delivery, physical therapy, and gene therapy are summarized and discussed from an interdisciplinary perspective. The final part highlights the milestone achievements of translation medicine, current challenges as well as future development directions of LNPs for the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Xiongmin Mao
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guanyi Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zijian Wang
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hua Xu
- Department of Urology, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
5
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
6
|
Palamenghi M, De Luca M, De Rosa L. The steep uphill path leading to ex vivo gene therapy for genodermatoses. Am J Physiol Cell Physiol 2022; 323:C896-C906. [PMID: 35912986 DOI: 10.1152/ajpcell.00117.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapy, gene therapy and tissue engineering have the potential to revolutionize the field of regenerative medicine. In particular, gene therapy is understood as the therapeutical correction of mutated genes by addition of a correct copy of the gene or site-specific gene modifications. Gene correction of somatic stem cells sustaining renewing tissues is critical to ensure long-term clinical success of ex vivo gene therapy. To date, remarkable clinical outcomes arose from combined ex vivo cell and gene therapy of different genetic diseases, such as immunodeficiencies and genodermatoses. Despite the efforts of researchers around the world, only few of these advanced approaches has yet made it to routine therapy. In fact, gene therapy poses one of the greatest technical challenges in modern medicine, spanning safety and efficacy issues, regulatory constraints, registration and market access, all of which need to be addressed to make the therapy available to rare disease patients. In this review, we survey at some of the main challenges in the development of combined cell and gene therapy of genetic skin diseases.
Collapse
Affiliation(s)
- Michele Palamenghi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | - Michele De Luca
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
7
|
Nyström A, Bruckner-Tuderman L, Kiritsi D. Dystrophic Epidermolysis Bullosa: Secondary Disease Mechanisms and Disease Modifiers. Front Genet 2021; 12:737272. [PMID: 34650598 PMCID: PMC8505774 DOI: 10.3389/fgene.2021.737272] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022] Open
Abstract
The phenotypic presentation of monogenetic diseases is determined not only by the nature of the causative mutations but also is influenced by manifold cellular, microenvironmental, and external factors. Here, heritable extracellular matrix diseases, including dystrophic epidermolysis bullosa (DEB), are no exceptions. Dystrophic epidermolysis bullosa is caused by mutations in the COL7A1 gene encoding collagen VII. Deficiency of collagen VII leads to skin and mucosal fragility, which progresses from skin blistering to severe fibrosis and cancer. Clinical and pre-clinical studies suggest that targeting of secondary disease mechanisms or employment of natural disease modifiers can alleviate DEB severity and progression. However, since many of these mechanisms are needed for tissue homeostasis, informed, selective targeting is essential for safe and efficacious treatment. Here, we discuss a selection of key disease modifiers and modifying processes active in DEB, summarize the still scattered knowledge of them, and reflect on ways forward toward their utilization for symptom-relief or enhancement of curative therapies.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Bernasconi R, Thriene K, Romero‐Fernández E, Gretzmeier C, Kühl T, Maler M, Nauroy P, Kleiser S, Rühl‐Muth A, Stumpe M, Kiritsi D, Martin SF, Hinz B, Bruckner‐Tuderman L, Dengjel J, Nyström A. Pro-inflammatory immunity supports fibrosis advancement in epidermolysis bullosa: intervention with Ang-(1-7). EMBO Mol Med 2021; 13:e14392. [PMID: 34459121 PMCID: PMC8495454 DOI: 10.15252/emmm.202114392] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB), a genetic skin blistering disease, is a paradigmatic condition of tissue fragility-driven multi-organ fibrosis. Here, longitudinal analyses of the tissue proteome through the course of naturally developing disease in RDEB mice revealed that increased pro-inflammatory immunity associates with fibrosis evolution. Mechanistically, this fibrosis is a consequence of altered extracellular matrix organization rather than that of increased abundance of major structural proteins. In a humanized system of disease progression, we targeted inflammatory cell fibroblast communication with Ang-(1-7)-an anti-inflammatory heptapeptide of the renin-angiotensin system, which reduced the fibrosis-evoking aptitude of RDEB cells. In vivo, systemic administration of Ang-(1-7) efficiently attenuated progression of multi-organ fibrosis and increased survival of RDEB mice. Collectively, our study shows that selective down-modulation of pro-inflammatory immunity may mitigate injury-induced fibrosis. Furthermore, together with published data, our data highlight molecular diversity among fibrotic conditions. Both findings have direct implications for the design of therapies addressing skin fragility and fibrosis.
Collapse
Affiliation(s)
- Rocco Bernasconi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Kerstin Thriene
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Elena Romero‐Fernández
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Christine Gretzmeier
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Tobias Kühl
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Essen University HospitalEssenGermany
| | - Mareike Maler
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Pauline Nauroy
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Svenja Kleiser
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Anne‐Catherine Rühl‐Muth
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Faculty of BiologyUniversity of FreiburgFreiburgGermany
| | - Michael Stumpe
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Dimitra Kiritsi
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Stefan F Martin
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Boris Hinz
- Laboratory of Tissue Repair and RegenerationFaculty of DentistryUniversity of TorontoTorontoONCanada
| | - Leena Bruckner‐Tuderman
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
| | - Jörn Dengjel
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Alexander Nyström
- Department of DermatologyMedical FacultyMedical Center – University of FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS)University of FreiburgFreiburgGermany
| |
Collapse
|
9
|
Gretzmeier C, Pin D, Kern JS, Chen M, Woodley DT, Bruckner-Tuderman L, de Souza MP, Nyström A. Systemic Collagen VII Replacement Therapy for Advanced Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2021; 142:1094-1102.e3. [PMID: 34606885 DOI: 10.1016/j.jid.2021.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a genetic skin blistering disease associated with progressive multiorgan fibrosis. RDEB is caused by biallelic mutations in COL7A1 encoding the extracellular matrix protein collagen VII (C7), which is necessary for epidermal‒dermal adherence. C7 is not simply a structural protein but also has multiple functions, including the regulation of TGFβ bioavailability and the inhibition of skin scarring. Intravenous (IV) administration of recombinant C7 (rC7) rescues C7-deficient mice from neonatal lethality. However, the effect on established RDEB has not been determined. In this study, we used small and large adult RDEB animal models to investigate the disease-modulating abilities of IV rC7 on established RDEB. In adult RDEB mice, rC7 accumulated at the basement membrane zone in multiple organs after a single infusion. Fortnightly IV injections of rC7 for 7 weeks in adult RDEB mice reduced fibrosis of skin and eye. The fibrosis-delaying effect was associated with a reduction of TGFβ signaling. IV rC7 in adult RDEB dogs incorporated in the dermal‒epidermal junction of skin and improved disease by promoting wound healing and reducing dermal‒epidermal separation. In both species, IV C7 was well-tolerated. These preclinical studies suggest that repeated IV administration of rC7 is an option for systemic treatment of established adult RDEB.
Collapse
Affiliation(s)
- Christine Gretzmeier
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Didier Pin
- UPSP 2016.A104, VetAgro Sup, Univeristy of Lyon, Marcy l'Étoile, France
| | - Johannes S Kern
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Dermatology Department, Faculty of Medicine, Dentistry and Health Sciences, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Mei Chen
- Department of Dermatology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - David T Woodley
- Department of Dermatology, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Jayarajan V, Kounatidou E, Qasim W, Di W. Ex vivo gene modification therapy for genetic skin diseases-recent advances in gene modification technologies and delivery. Exp Dermatol 2021; 30:887-896. [PMID: 33657662 PMCID: PMC8432139 DOI: 10.1111/exd.14314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Genetic skin diseases, also known as genodermatoses, are inherited disorders affecting skin and constitute a large and heterogeneous group of diseases. While genodermatoses are rare with the prevalence rate of less than 1 in 50,000 - 200,000, they frequently occur at birth or early in life and are generally chronic, severe, and could be life-threatening. The quality of life of patients and their families are severely compromised by the negative psychosocial impact of disease, physical manifestations, and the lack or loss of autonomy. Currently, there are no curative treatments for these conditions. Ex vivo gene modification therapy that involves modification or correction of mutant genes in patients' cells in vitro and then transplanted back to patients to restore functional gene expression has being developed for genodermatoses. In this review, the ex vivo gene modification therapy strategies for genodermatoses are reviewed, focusing on current advances in gene modification and correction in patients' cells and delivery of genetically modified cells to patients with discussions on gene therapy trials which have been performed in this area.
Collapse
Affiliation(s)
- Vignesh Jayarajan
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Evangelia Kounatidou
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Waseem Qasim
- Infection, Immunity and Inflammation Research & Teaching Department, Molecular and Cellular Immunology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Wei‐Li Di
- Infection, Immunity and Inflammation Research & Teaching Department, Immunobiology SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| |
Collapse
|
11
|
Ryumina II, Goryunov KV, Silachev DN, Shevtsova YA, Babenko VA, Marycheva NM, Kotalevskaya YY, Zubkov VV, Zubkov GT. Pathogenetic Therapy of Epidermolysis Bullosa: Current State and Prospects. Bull Exp Biol Med 2021; 171:109-121. [PMID: 34050833 DOI: 10.1007/s10517-021-05182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa is a severe hereditary disease caused by mutations in genes encoding cutaneous basement membrane proteins. These mutations lead to dermal-epidermal junction failure and, as a result, to disturbances in the morphological integrity of the skin. Clinically, it manifests in the formation of blisters on the skin or mucosa that in some cases can turn into non-healing chronic wounds, which not only impairs patient's quality of life, but also is a live-threatening condition. Now, the main approaches in the treatment of epidermolysis bullosa are symptomatic therapy and palliative care, though they are little effective and are aimed at reducing the pain, but not to complete recovery. In light of this, the development of new treatment approaches aimed at correction of genetic defects is in progress. Various methods based on genetic engineering technologies, transplantation of autologous skin cells, progenitor skin cells, as well as hematopoietic and mesenchymal stem cells are studied. This review analyzes the pathogenetic methods developed for epidermolysis bullosa treatment based on the latest achievements of molecular genetics and cellular technologies, and discusses the prospects for the use of these technologies for the therapy of epidermolysis bullosa.
Collapse
Affiliation(s)
- I I Ryumina
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - K V Goryunov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - D N Silachev
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia.
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia.
| | - Yu A Shevtsova
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - V A Babenko
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
- A. N. Belozersky Research Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - N M Marycheva
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - Yu Yu Kotalevskaya
- M. F. Vladimirskiy Moscow Regional Research Clinical Institute, Moscow, Russia
| | - V V Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - G T Zubkov
- V. I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Schaly S, Ghebretatios M, Prakash S. Baculoviruses in Gene Therapy and Personalized Medicine. Biologics 2021; 15:115-132. [PMID: 33953541 PMCID: PMC8088983 DOI: 10.2147/btt.s292692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/22/2021] [Indexed: 12/18/2022]
Abstract
This review will outline the role of baculoviruses in gene therapy and future potential in personalized medicine. Baculoviruses are a safe, non-toxic, non-integrative vector with a large cloning capacity. Baculoviruses are also a highly adaptable, low-cost vector with a broad tissue and host tropism due to their ability to infect both quiescent and proliferating cells. Moreover, they only replicate in insect cells, not mammalian cells, improving their biosafety. The beneficial properties of baculoviruses make it an attractive option for gene delivery. The use of baculoviruses in gene therapy has advanced significantly, contributing to vaccine production, anti-cancer therapies and regenerative medicine. Currently, baculoviruses are primarily used for recombinant protein production and vaccines. This review will also discuss methods to optimize baculoviruses protein production and mammalian cell entry, limitations and potential for gene therapy and personalized medicine. Limitations such as transient gene expression, complement activation and virus fragility are discussed in details as they can be overcome through further genetic modifications and other methods. This review concludes that baculoviruses are an excllent candidate for gene therapy, personalized medicine and other biotherapeutic applications.
Collapse
Affiliation(s)
- Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, H3A 2B4, Canada
| |
Collapse
|
13
|
De Rosa L, Latella MC, Secone Seconetti A, Cattelani C, Bauer JW, Bondanza S, De Luca M. Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harb Perspect Biol 2020; 12:a035667. [PMID: 31653644 PMCID: PMC7197428 DOI: 10.1101/cshperspect.a035667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 200 monogenic, often devastating, skin diseases have been described. Because of unmet medical needs, development of long-lasting and curative therapies has been consistently attempted, with the aim of correcting the underlying molecular defect. In this review, we will specifically address the few combined cell and gene therapy strategies that made it to the clinics. Based on these studies, what can be envisioned for the future is a patient-oriented strategy, built on the specific features of the individual in need. Most likely, a combination of different strategies, approaches, and advanced therapies will be required to reach the finish line at the end of the long and winding road hampering the achievement of definitive treatments for genodermatoses.
Collapse
Affiliation(s)
- Laura De Rosa
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Maria Carmela Latella
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Alessia Secone Seconetti
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Cecilia Cattelani
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Johann W Bauer
- EB House Austria and Department of Dermatology, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sergio Bondanza
- Holostem Terapie Avanzate S.r.l., Center for Regenerative Medicine "Stefano Ferrari," 41125 Modena, Italy
| | - Michele De Luca
- Center for Regenerative Medicine "Stefano Ferrari," Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
14
|
Bornert O, Kocher T, Gretzmeier C, Liemberger B, Hainzl S, Koller U, Nyström A. Generation of rabbit polyclonal human and murine collagen VII monospecific antibodies: A useful tool for dystrophic epidermolysis bullosa therapy studies. Matrix Biol Plus 2019; 4:100017. [PMID: 33543014 PMCID: PMC7852329 DOI: 10.1016/j.mbplus.2019.100017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 01/16/2023] Open
Abstract
High conservation of extracellular matrix proteins often makes the generation of potent species-specific antibodies challenging. For collagen VII there is a particular preclinical interest in the ability to discriminate between human and murine collagen VII. Deficiency of collagen VII causes dystrophic epidermolysis bullosa (DEB) – a genetic skin blistering disease, which in its most severe forms is highly debilitating. Advances in gene and cell therapy approaches have made curative therapies for genetic diseases a realistic possibility. DEB is one disorder for which substantial progress has been made toward curative therapies and improved management of the disease. However, to increase their efficacy further preclinical studies are needed. The early neonatal lethality of complete collagen VII deficient mice, have led researches to resort to using models maintaining residual collagen VII expression or grafting of DEB model skin on wild-type mice for preclinical therapy studies. These approaches are challenged by collagen VII expression by the murine host. Thus, the ability to selectively visualize human and murine collagen VII would be a substantial advantage. Here, we describe a novel resource toward this end. By immunization with homologous peptides we generated rabbit polyclonal antibodies that recognize either human or murine collagen VII. Testing on additional species, including rat, sheep, dog, and pig, combined sequence alignment and peptide competition binding assays enabled identification of the major antisera recognizing epitopes. The species-specificity was maintained after denaturation and the antibodies allowed us to simultaneously, specifically visualize human and murine collagen VII in situ. High sequence conservation of murine and human collagen VII makes development of species-specific antibodies challenging. Divergence in the immune epitope of a conserved peptide allowed for generation of species-specific collagen VII antibodies. The antibodies allow strong, simultaneous visualization of human and murine collagen VII in immunocompetent hosts.
Collapse
Affiliation(s)
- Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Christine Gretzmeier
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Bernadette Liemberger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Supp DM, Hahn JM, Combs KA, McFarland KL, Schwentker A, Boissy RE, Boyce ST, Powell HM, Lucky AW. Collagen VII Expression Is Required in Both Keratinocytes and Fibroblasts for Anchoring Fibril Formation in Bilayer Engineered Skin Substitutes. Cell Transplant 2019; 28:1242-1256. [PMID: 31271052 PMCID: PMC6767893 DOI: 10.1177/0963689719857657] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022] Open
Abstract
The blistering disease recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in the gene encoding collagen VII (COL7), which forms anchoring fibrils that attach the epidermis to the dermis. Cutaneous gene therapy to restore COL7 expression in RDEB patient cells has been proposed, and cultured epithelial autograft containing COL7-modified keratinocytes was previously tested in clinical trials. Because COL7 in normal skin is expressed in both fibroblasts and keratinocytes, cutaneous gene therapy using a bilayer skin substitute may enable faster restoration of anchoring fibrils. Hypothetically, COL7 expression in either dermal fibroblasts or epidermal keratinocytes might be sufficient for functional anchoring fibril formation in a bilayer skin substitute. To test this, engineered skin substitutes (ESS) were prepared using four combinations of normal + RDEB cells: (1) RDEB fibroblasts + RDEB keratinocytes; (2) RDEB fibroblasts + normal keratinocytes; (3) normal fibroblasts + RDEB keratinocytes; and (4) normal fibroblasts + normal keratinocytes. ESS were incubated in vitro for 2 weeks prior to grafting to full-thickness wounds in immunodeficient mice. Biopsies were analyzed in vitro and at 1, 2, or 3 weeks after grafting. COL7 was undetectable in ESS prepared using all RDEB cells (group 1), and macroscopic blistering was observed by 2 weeks after grafting in ESS containing RDEB cells. COL7 was expressed, in vitro and in vivo, in ESS prepared using combinations of normal + RDEB cells (groups 2 and 3) or all normal cells (group 4). However, transmission electron microscopy revealed structurally normal anchoring fibrils, in vitro and by week 2 in vivo, only in ESS prepared using all normal cells (group 4). The results suggest that although COL7 protein is produced in engineered skin when cells in only one layer express the COL7 gene, formation of structurally normal anchoring fibrils appears to require expression of COL7 in both dermal fibroblasts and epidermal keratinocytes.
Collapse
Affiliation(s)
- Dorothy M. Supp
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
- Department of Surgery, College of Medicine, University of Cincinnati,
Cincinnati, OH, USA
| | - Jennifer M. Hahn
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
| | - Kelly A. Combs
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
| | - Kevin L. McFarland
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
| | - Ann Schwentker
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center,
Cincinnati, OH, USA
| | - Raymond E. Boissy
- Department of Dermatology, College of Medicine, University of Cincinnati,
Cincinnati, OH, USA
| | - Steven T. Boyce
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
- Department of Surgery, College of Medicine, University of Cincinnati,
Cincinnati, OH, USA
| | - Heather M. Powell
- Research Department, Shriners Hospitals for Children – Cincinnati,
Cincinnati, OH, USA
- Department of Materials Science and Engineering, The Ohio State University,
Columbus, OH, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus,
OH, USA
| | - Anne W. Lucky
- Division of Dermatology, Cincinnati Children’s Hospital Medical Center,
Cincinnati, OH, USA
| |
Collapse
|
16
|
Has C, Nyström A, Saeidian AH, Bruckner-Tuderman L, Uitto J. Epidermolysis bullosa: Molecular pathology of connective tissue components in the cutaneous basement membrane zone. Matrix Biol 2018; 71-72:313-329. [PMID: 29627521 DOI: 10.1016/j.matbio.2018.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/13/2023]
Abstract
Epidermolysis bullosa (EB), a group of heritable skin fragility disorders, is characterized by blistering, erosions and chronic ulcers in the skin and mucous membranes. In some forms, the blistering phenotype is associated with extensive mutilating scarring and development of aggressive squamous cell carcinomas. The skin findings can be associated with extracutaneous manifestations in the ocular as well as gastrointestinal and vesico-urinary tracts. The phenotypic heterogeneity reflects the presence of mutations in as many as 20 different genes expressed in the cutaneous basement membrane zone, and the types and combinations of the mutations and their consequences at the mRNA and protein levels contribute to the spectrum of severity encountered in different subtypes of EB. This overview highlights the molecular genetics of EB based on mutations in the genes encoding type VII and XVII collagens as well as laminin-332. The mutations identified in these protein components of the extracellular matrix attest to their critical importance in providing stability to the cutaneous basement membrane zone, with implications for heritable and acquired diseases.
Collapse
Affiliation(s)
- Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Amir Hossein Saeidian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Nyström A, Bruckner-Tuderman L. Matrix molecules and skin biology. Semin Cell Dev Biol 2018; 89:136-146. [PMID: 30076963 DOI: 10.1016/j.semcdb.2018.07.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
An extracellular matrix (ECM) is a prerequisite for multicellular life. It is adapted to tissues and constantly undergoes changes to preserve microenvironmental homeostasis. The ECM acts as a structural scaffold that establishes tissue architecture and provides tensile strength. It has cell-instructive functions by serving as a reservoir and presenter of soluble agents, being directly signaling, integrating transmission of mechanical and biological cues, or serving as a co-factor potentiating signaling. The skin contains a highly developed, mechanically tough, but yet flexible ECM. The tissue-specific features of this ECM are largely attributed by minor ECM components. A large number of genetic and acquired ECM diseases with skin manifestations, provide an illustrative testament to the importance of correct assembly of the ECM for dermal homeostasis. Here, we will present the composition and features of the skin ECM during homeostasis and regeneration. We will discuss genetic and acquired ECM diseases affecting skin, and provide a short outlook to therapeutic strategies for them.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous skin fragility disorder characterized by trauma-induced skin dissociation and the development of painful wounds. So far, mutations in 20 genes have been described as being associated with more than 30 clinical EB subtypes. The era of whole-exome sequencing has revolutionized EB diagnostics with gene panels being developed in several EB centers and allowing quicker diagnosis and prognostication. With the advances of gene editing, more focus has been placed on gene editing-based therapies for targeted treatment. However, their implementation in daily care will still take time. Thus, a significant focus is currently being placed on achieving a better understanding of the pathogenetic mechanisms of each subtype and using this knowledge for the design of symptom-relief therapies, i.e. treatment options aimed at ameliorating and not curing the disease.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Peking P, Koller U, Murauer EM. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv Drug Deliv Rev 2018; 129:330-343. [PMID: 29248480 DOI: 10.1016/j.addr.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 12/09/2017] [Indexed: 12/20/2022]
Abstract
Chronic wounding as a result of recurrent skin blistering in the painful genetic skin disease epidermolysis bullosa, may lead to life-threatening infections, increased risk of tumor formation, and other serious medical complications. Therefore, epidermolysis bullosa patients have an urgent need for optimal wound care and tissue regeneration. Therapeutic strategies using gene-, protein-, and cell-therapies are being developed to improve clinical symptoms, and some of them have already been investigated in early clinical trials. The most favorable options of functional therapies include gene replacement, gene editing, RNA targeting, and harnessing natural gene therapy. This review describes the current progress of the different approaches targeting autologous skin cells, and will discuss the benefits and challenges of their application.
Collapse
|
20
|
Therapies for genetic extracellular matrix diseases of the skin. Matrix Biol 2017; 71-72:330-347. [PMID: 29274938 DOI: 10.1016/j.matbio.2017.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A specialized, highly developed dermal extracellular matrix (ECM) provides the skin with its unique mechano-resilient properties and is vital for organ function. Accordingly, genetically acquired deficiency of dermal ECM proteins or proteins essential for the post-translational modification and homeostasis of the dermal ECM, results in diseases affecting the skin. Some of these diseases are lethal or lead to severe complications for the affected individuals. At present limited efficient and evidence-based treatment options exist for genetic ECM diseases of the skin. There is thus a high unmet medical need, creating an urgent demand to develop improved care for these diseases. Here, by drawing examples from the wealth of research on epidermolysis bullosa, we present the current status of biological and small molecule therapies for genetic ECM diseases with skin manifestations. We discuss challenges, and using existing data to propose strategies and future directions allowing development of more efficacious therapies and advancement of them into clinical practice.
Collapse
|