1
|
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:494-503. [PMID: 37346980 PMCID: PMC10280095 DOI: 10.1016/j.omtn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The cell and gene therapy industry has employed the same plasmid technology for decades in vaccination, cell and gene therapy, and as a raw material in viral vector and RNA production. While canonical plasmids contain antibiotic resistance markers in bacterial backbones greater than 2,000 base pairs, smaller backbones increase expression level and durability and reduce the cell-transfection-associated toxicity and transgene silencing that can occur with canonical plasmids. Therefore, the small backbone and antibiotic-free selection method of Nanoplasmid vectors have proven to be a transformative replacement in a wide variety of applications, offering a greater safety profile and efficiency than traditional plasmids. This review provides an overview of the Nanoplasmid technology and highlights its specific benefits for various applications with examples from recent publications.
Collapse
Affiliation(s)
- James A. Williams
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| | - Patrick A. Paez
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| |
Collapse
|
2
|
Upadhyay A, Cao UMN, Hariharan A, Almansoori A, Tran SD. Gene Therapeutic Delivery to the Salivary Glands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:55-68. [PMID: 36826746 DOI: 10.1007/5584_2023_766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The salivary glands, exocrine glands in our body producing saliva, can be easily damaged by various factors. Radiation therapy and Sjogren's syndrome (a systemic autoimmune disease) are the two main causes of salivary gland damage, leading to a severe reduction in patients' quality of life. Gene transfer to the salivary glands has been considered a promising approach to treating the dysfunction. Gene therapy has long been applied to cure multiple diseases, including cancers, and hereditary and infectious diseases, which are proven to be safe and effective for the well-being of patients. The application of this treatment on salivary gland injuries has been studied for decades, yet its clinical progress is delayed. This chapter provides a coup d'oeil into gene transfer methods and various gene/vector types for salivary glands to help the new scientists and update established scientists on the progress that has been made during the past decades for the treatment of salivary gland disorders.
Collapse
Affiliation(s)
- Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Uyen M N Cao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Arvind Hariharan
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Akram Almansoori
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Wang Z, Benza RL, Zourelias L, Sanguino A, Geguchadze R, Shields KJ, Wu C, Highland KB, Passineau MJ. In vivo Endocrine Secretion of Prostacyclin Following Expression of a Cyclooxygenase-1/Prostacyclin Fusion Protein in the Salivary Glands of Rats Via Nonviral Gene Therapy. Hum Gene Ther 2018; 28:681-689. [PMID: 28530128 DOI: 10.1089/hum.2017.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease that culminates in right heart failure and death. Prostacyclin (PGI2) and its derivatives are effective treatments for PAH when administered as continuous parenteral infusions. This treatment paradigm requires medical sophistication, and patients are at risk for complications from an indewelling catheter; drug interruptions may result in rebound pulmonary hypertension and death. We hypothesized that the salivary gland can be repurposed into an endogenous production site for circulating PGI2 through the expression of a fusion protein embodying cyclooxygenase-1 (Cox1) and prostacyclin synthase (PGIS) domains. We utilized ultrasound-assisted gene transfer, a nonviral gene transfer strategy that achieves robust gene transfer to the salivary gland. We initially found that Cox1-PGIS expression in livers of mice using an adenoviral vector dramatically increased circulating PGI2 relative to untreated rats or rats treated with PGIS alone. We then utilized ultrasound-assisted gene transfer to express Cox1-PGIS in the submandibular glands of rats and showed a significant elevation of circulating PGI2 that corresponded to approximately 30% of that seen in humans undergoing intravenous infusion therapy for PAH. These results suggest the feasibility of gene therapy to drive endogenous biosynthesis of PGI2 as a therapeutic strategy for the treatment of PAH.
Collapse
Affiliation(s)
- Zhimin Wang
- 1 Cardiovascular Institute, Pittsburgh, Pennsylvania.,2 Gene Therapy Program, Pittsburgh, Pennsylvania
| | | | - Lee Zourelias
- 1 Cardiovascular Institute, Pittsburgh, Pennsylvania.,2 Gene Therapy Program, Pittsburgh, Pennsylvania
| | - Angela Sanguino
- 3 Department of Pathology, Allegheny Health Network, Pittsburgh, Pennsylvania.,4 Autoimmunity Institute, Lupus Center of Excellence , Pittsburgh, Pennsylvania
| | - Ramaz Geguchadze
- 1 Cardiovascular Institute, Pittsburgh, Pennsylvania.,2 Gene Therapy Program, Pittsburgh, Pennsylvania
| | - Kelly J Shields
- 4 Autoimmunity Institute, Lupus Center of Excellence , Pittsburgh, Pennsylvania
| | - Changgong Wu
- 5 Center for Advanced Proteomics Research , New Jersey Medical School, Newark, New Jersey
| | - Kristin B Highland
- 6 Department of Pulmonary, Critical Care Medicine , Cleveland Clinic Foundation, Cleveland, Ohio
| | - Michael J Passineau
- 1 Cardiovascular Institute, Pittsburgh, Pennsylvania.,2 Gene Therapy Program, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Wang Z, Pradhan-Bhatt S, Farach-Carson MC, Passineau MJ. Artificial Induction of Native Aquaporin-1 Expression in Human Salivary Cells. J Dent Res 2017; 96:444-449. [PMID: 28072927 DOI: 10.1177/0022034516685045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene therapy for dry mouth disorders has transitioned in recent years from theoretical to clinical proof of principle with the publication of a first-in-man phase I/II dose escalation clinical trial in patients with radiation-induced xerostomia. This trial used a prototype adenoviral vector to express aquaporin-1 (AQP1), presumably in the ductal cell layer and/or in surviving acinar cells, to drive transcellular flux of interstitial fluid into the labyrinth of the salivary duct. As the development of this promising gene therapy continues, safety considerations are a high priority, particularly those that remove nonhuman agents (i.e., viral vectors and genetic sequences of bacterial origin). In this study, we applied 2 emerging technologies, artificial transcriptional complexes and epigenetic editing, to explore whether AQP1 expression could be achieved by activating the native gene locus in a human salivary ductal cell line and primary salivary human stem/progenitor cells (hS/PCs), as opposed to the conventional approach of cytomegalovirus promoter-driven expression from an episomal vector. In our first study, we used a cotransfection strategy to express the components of the dCas9-SAM system to create an artificial transcriptional complex at the AQP1 locus in A253 and hS/PCs. We found that AQP1 expression was induced at a magnitude comparable to adenoviral infection, suggesting that AQP1 is primarily silenced through pretranscriptional mechanisms. Because earlier literature suggested that pretranscriptional silencing of AQP1 in salivary glands is mediated by methylation of the promoter, in our second study, we performed global, chemical demethylation of A253 cells and found that demethylation alone induced robust AQP1 expression. These results suggest the potential for success by inducing AQP1 expression in human salivary ductal cells through epigenetic editing of the native promoter.
Collapse
Affiliation(s)
- Z Wang
- 1 Gene Therapy Program, Allegheny Health Network, Pittsburgh, PA, USA
| | - S Pradhan-Bhatt
- 2 Department of Biological Sciences, University of Delaware, Newark, DE, USA.,3 Center for Translational Cancer Research, Helen F. Graham Cancer Center & Research Institute, Newark, DE, USA
| | - M C Farach-Carson
- 4 The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - M J Passineau
- 1 Gene Therapy Program, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Baum BJ. Radiation-induced salivary hypofunction may become a thing of the past. Oral Dis 2016; 22:81-4. [DOI: 10.1111/odi.12388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Wu C, Wang Z, Zourelias L, Thakker H, Passineau MJ. IL-17 sequestration via salivary gland gene therapy in a mouse model of Sjogren's syndrome suppresses disease-associated expression of the putative autoantigen Klk1b22. Arthritis Res Ther 2015; 17:198. [PMID: 26245278 PMCID: PMC4527205 DOI: 10.1186/s13075-015-0714-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/10/2015] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION IL-17 has a putative role in the pathophysiology of Sjogren's syndrome (SS) and has been shown to be upregulated in the salivary glands of affected individuals. Sequestration of IL-17 with Adenoviral-mediated gene therapy has previously shown a benefit upon the SS-like phenotype in the Aec1/Aec2 mouse model. We sought to understand the proteomic consequences of IL-17 sequestration in the salivary gland of this mouse model as a means of illuminating the role of IL-17 in SS-like disease. METHODS Ultrasound-assisted gene transfer (UAGT) was utilized to express a fusion protein composed of the extracellular portion of the IL-17 receptor fused to fragment of crystallization (Fc) in the submandibular glands of Aec1/Aec2 mice at 8 weeks of age. After confirming expression of the fusion protein and local and systemic sequestration of IL-17, proteomic profiling was performed on submandibular glands of a treated cohort of Aec1/Aec2 animals relative to the background strain and sham-treated animals. RESULTS The most notable proteomic signatures of IL-17 sequestration on SS-like disease-related proteins were Kallikrein-related peptidases, including the putative autoantigen Klk1b22. IL-17 sequestration also notably led to an isoelectric shift, but not a molecular weight shift, of Kallikrein-1, attributed to phosphorylation. CONCLUSION Non-viral IL-17 sequestration gene therapy in the salivary gland is feasible and downregulates expression of a putative SS autoantigen in the Aec1/Aec2 mouse.
Collapse
Affiliation(s)
- Changgong Wu
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Zhimin Wang
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Lee Zourelias
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Hiteshi Thakker
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| | - Michael J Passineau
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Room 841, South Tower, 320 East North Avenue, Pittsburgh, PA, 15212-4772, USA.
| |
Collapse
|
7
|
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy - oral and systemic implications. Expert Opin Biol Ther 2015; 15:1443-54. [PMID: 26149284 DOI: 10.1517/14712598.2015.1064894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Much research demonstrates the feasibility and efficacy of gene transfer to salivary glands. Recently, the first clinical trial targeting a salivary gland was completed, yielding positive safety and efficacy results. AREAS COVERED There are two major disorders affecting salivary glands: radiation damage following treatment for head and neck cancers and Sjögren's syndrome (SS). Salivary gland gene transfer has also been employed in preclinical studies using transgenic secretory proteins for exocrine (upper gastrointestinal tract) and endocrine (systemic) applications. EXPERT OPINION Salivary gland gene transfer is safe and can be beneficial in humans. Applications to treat and prevent radiation damage show considerable promise. A first-in-human clinical trial for the former was recently successfully completed. Studies on SS suffer from an inadequate understanding of its etiology. Proof of concept in animal models has been shown for exocrine and endocrine disorders. Currently, the most promising exocrine application is for the management of obesity. Endocrine applications are limited, as it is currently impossible to predict if systemically required transgenic proteins will be efficiently secreted into the bloodstream. This results from not understanding how secretory proteins are sorted. Future studies will likely employ ultrasound-assisted and pseudotyped adeno-associated viral vector-mediated gene transfer.
Collapse
Affiliation(s)
- Bruce J Baum
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ilias Alevizos
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - John A Chiorini
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Ana P Cotrim
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| | - Changyu Zheng
- a National Institute of Dental and Craniofacial Research, National Institutes of Health, Molecular Physiology and Therapeutics Branch , Bethesda, MD 20892-1190, USA
| |
Collapse
|
8
|
Wang Z, Zourelias L, Wu C, Edwards PC, Trombetta M, Passineau MJ. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Ther 2015; 22:739-49. [PMID: 25871828 PMCID: PMC4560616 DOI: 10.1038/gt.2015.36] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/17/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
Rationale Xerostomia is a common side effect of ionizing radiation used to treat head and neck cancer. A groundbreaking Phase I human clinical trial utilizing Adenoviral gene transfer of Aquaporin-1 (AQP1) to a single salivary gland of individuals suffering from radiation-induced xerostomia has recently been reported. Unfortunately, the limitations of the Adenoviral vector system utilized in this pioneering trial preclude its advancement to a Phase II trial and we have thus undertaken to evaluate the therapeutic potential of ultrasound-assisted non-viral gene transfer (UAGT) as an alternative means of delivering AQP1 gene therapy to the salivary gland by comparing head-to-head with the canonical Adenoviral vector in a swine model. Findings Swine irradiated unilaterally with a 10Gy electron beam targeted at the parotid gland suffered from significant, sustained hyposalivation that was bilateral, despite irradiation being confined to the targeted gland. Unilateral AQP1 gene therapy with UAGT resulted in bilateral restoration of stimulated salivary flow at 48 hours and one week post-treatment (1.62+/−0.48ml, 1.87+/−0.45ml) to pre-injury levels (1.34+/−0.14ml) in a manner comparable to Adenoviral delivery (2.32+/−0.6ml, 1.33+/−0.97ml). Conclusions UAGT can replace the Adenoviral vector as a means of delivering AQP1 gene therapy in the irradiated swine model and is a candidate for advancement to a Phase I human clinical trial.
Collapse
Affiliation(s)
- Z Wang
- Gene Therapy Program, Division of Cardiovascular Medicine, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - L Zourelias
- Gene Therapy Program, Division of Cardiovascular Medicine, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - C Wu
- Gene Therapy Program, Division of Cardiovascular Medicine, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - P C Edwards
- Department of Oral Pathology, Medicine and Radiology, University of Indiana School of Dentistry, Indianapolis, IN, USA
| | - M Trombetta
- Division of Radiation Oncology, Department of Oncology, Allegheny Health Network, Pittsburgh, PA, USA
| | - M J Passineau
- Gene Therapy Program, Division of Cardiovascular Medicine, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|