1
|
Wu X, Zhou X, Wang Y, Wu J, Liang Q, Yang X, Zhang K, Meng S. Development and validation of a droplet digital PCR method for quantifying lentiviral vector infectious titer. Heliyon 2024; 10:e38512. [PMID: 39498040 PMCID: PMC11532291 DOI: 10.1016/j.heliyon.2024.e38512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024] Open
Abstract
Lentiviruses, with their high transduction efficiency and gene expression levels, are widely used as gene delivery vectors in the development of chimeric antigen receptor T cells (CAR-T) and other genetically modified cell therapies. Accurate determination of the lentiviral vector infectious titer is essential to ensure effective transduction and product consistency. In this study, we developed an efficient method for lentiviral vector titration based on digital droplet polymerase chain reaction (ddPCR) technology, enabling absolute quantification of the target gene. Benzonase treatment of non-transduced plasmids substantially shortened the experimental period, reducing cell culture duration from 10-14 days-3 days. The method was rigorously validated by assessing specificity, working range, limit of quantification, precision, accuracy, and robustness. This study demonstrates the feasibility of combining enzymatic digestion with ddPCR to quantify lentiviral vector infectious titer and provides a detailed and readily adaptable methodology for the scientific community.
Collapse
Affiliation(s)
- Xueling Wu
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Xiaoya Zhou
- Beijing Minhai Biotechnology Co., Ltd., Beijing, 102600, China
| | - Yueming Wang
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Jian Wu
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Qian Liang
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Xu Yang
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Kehua Zhang
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| | - Shufang Meng
- National Institutes for Food and Drug Control, Beijing, 100050, China
- State Key Laboratory of Drug Regulatory Science, Beijing, 100050, China
| |
Collapse
|
2
|
Goto A, Moriya Y, Nakayama M, Iwasaki S, Yamamoto S. DMPK perspective on quantitative model analysis for chimeric antigen receptor cell therapy: Advances and challenges. Drug Metab Pharmacokinet 2024; 56:101003. [PMID: 38843652 DOI: 10.1016/j.dmpk.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 06/24/2024]
Abstract
Chimeric antigen receptor (CAR) cells are genetically engineered immune cells that specifically target tumor-associated antigens and have revolutionized cancer treatment, particularly in hematological malignancies, with ongoing investigations into their potential applications in solid tumors. This review provides a comprehensive overview of the current status and challenges in drug metabolism and pharmacokinetics (DMPK) for CAR cell therapy, specifically emphasizing on quantitative modeling and simulation (M&S). Furthermore, the recent advances in quantitative model analysis have been reviewed, ranging from clinical data characterization to mechanism-based modeling that connects in vitro and in vivo nonclinical and clinical study data. Additionally, the future perspectives and areas for improvement in CAR cell therapy translation have been reviewed. This includes using formulation quality considerations, characterization of appropriate animal models, refinement of in vitro models for bottom-up approaches, and enhancement of quantitative bioanalytical methodology. Addressing these challenges within a DMPK framework is pivotal in facilitating the translation of CAR cell therapy, ultimately enhancing the patients' lives through efficient CAR cell therapies.
Collapse
Affiliation(s)
- Akihiko Goto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yuu Moriya
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Miyu Nakayama
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shinji Iwasaki
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Syunsuke Yamamoto
- Center of Excellence for Drug Metabolism, Pharmacokinetics and Modeling, Preclinical and Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan.
| |
Collapse
|
3
|
Yamamoto S, Matsumoto SI, Goto A, Ugajin M, Nakayama M, Moriya Y, Hirabayashi H. Quantitative PCR methodology with a volume-based unit for the sophisticated cellular kinetic evaluation of chimeric antigen receptor T cells. Sci Rep 2020; 10:17884. [PMID: 33087808 PMCID: PMC7578827 DOI: 10.1038/s41598-020-74927-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022] Open
Abstract
Although the cellular kinetics of chimeric antigen receptor T (CAR T) cells are expressed in units of copies/μg gDNA, this notation carries the risk of misrepresentation owing to dramatic changes in blood gDNA levels after lymphocyte-depleting chemotherapy and rapid expansion of CAR T cells. Therefore, we aimed to establish a novel qPCR methodology incorporating a spike-in calibration curve that expresses cellular kinetics in units of copies/μL blood, as is the case for conventional pharmacokinetic studies of small molecules and other biologics. Dog gDNA was used as an external control gene. Our methodology enables more accurate evaluation of in vivo CAR T-cell expansion than the conventional approach; the unit “copies/μL blood” is therefore more appropriate for evaluating cellular kinetics than the unit “copies/μg gDNA.” The results of the present study provide new insights into the relationship between cellular kinetics and treatment efficacy, thereby greatly benefiting patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Syunsuke Yamamoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan.
| | - Shin-Ichi Matsumoto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Akihiko Goto
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Miyuki Ugajin
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Miyu Nakayama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Yuu Moriya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| | - Hideki Hirabayashi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, Japan
| |
Collapse
|
4
|
Poorebrahim M, Sadeghi S, Fakhr E, Abazari MF, Poortahmasebi V, Kheirollahi A, Askari H, Rajabzadeh A, Rastegarpanah M, Linē A, Cid-Arregui A. Production of CAR T-cells by GMP-grade lentiviral vectors: latest advances and future prospects. Crit Rev Clin Lab Sci 2019; 56:393-419. [PMID: 31314617 DOI: 10.1080/10408363.2019.1633512] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) T-cells represent a paradigm shift in cancer immunotherapy and a new milestone in the history of oncology. In 2017, the Food and Drug Administration approved two CD19-targeted CAR T-cell therapies (Kymriah™, Novartis, and Yescarta™, Kite Pharma/Gilead Sciences) that have remarkable efficacy in some B-cell malignancies. The CAR approach is currently being evaluated in multiple pivotal trials designed for the immunotherapy of hematological malignancies as well as solid tumors. To generate CAR T-cells ex vivo, lentiviral vectors (LVs) are particularly appealing due to their ability to stably integrate relatively large DNA inserts, and to efficiently transduce both dividing and nondividing cells. This review discusses the latest advances and challenges in the design and production of CAR T-cells, and the good manufacturing practices (GMP)-grade production process of LVs used as a gene transfer vehicle. New developments in the application of CAR T-cell therapy are also outlined with particular emphasis on next-generation allogeneic CAR T-cells.
Collapse
Affiliation(s)
- Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Solmaz Sadeghi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran
| | - Elham Fakhr
- Department of Translational Immunology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences , Tehran , Iran
| | - Vahdat Poortahmasebi
- Liver and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,Faculty of Medicine, Department of Bacteriology and Virology, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran , Tehran , Iran
| | - Hassan Askari
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Rajabzadeh
- Applied Cell Sciences and Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Malihe Rastegarpanah
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Aija Linē
- Latvian Biomedical Research and Study Centre , Riga , Latvia
| | - Angel Cid-Arregui
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR , Tehran , Iran.,Targeted Tumor Vaccines Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| |
Collapse
|
5
|
Physical Characterization and Stabilization of a Lentiviral Vector Against Adsorption and Freeze-Thaw. J Pharm Sci 2018; 107:2764-2774. [DOI: 10.1016/j.xphs.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
|