1
|
Samraj.S MD, Vadodaria K. Development and optimization of gelatin nanofibrous scaffold for tissue engineering applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Yang Q, Cui S, Song X, Hu J, Zhou Y, Liu Y. An antimicrobial peptide-immobilized nanofiber mat with superior performances than the commercial silver-containing dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111608. [PMID: 33321652 DOI: 10.1016/j.msec.2020.111608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/06/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Silver-containing dressings are widely used for the treatment of infected wounds in clinics, but the potential risks of heavy metals are still a common concern. In this study, we prepared a type of electrospun starch nanofiber mat containing the antimicrobial peptide ε-poly-lysine (Starch-EPL) and compared its relevant properties with a representative silver-containing dressing 3M™ Tegaderm™ Alginate Ag (Alginate-Ag). SEM, FTIR and EDAX results show the two samples have similar fiber structures and are loaded with antibacterial agents. The comparison results indicate that the Starch-EPL nanofiber mat has equivalent permeability and absorbency with Alginate-Ag but higher mechanical property and wettability. Moreover, the Starch-EPL nanofiber mat has comparable antibacterial activity against both Gram-negative and Gram-positive bacteria with Alginate-Ag, but markedly better biocompatibility than that. The Starch-EPL nanofiber mat can inhibit the growth of bacteria for at least 14 days by sustainably releasing EPL, showing great potential as a long-term antibacterial dressing. All these results demonstrate that the Starch-EPL nanofiber mat may be a good candidate to replace the traditional silver-containing dressings.
Collapse
Affiliation(s)
- Qianwen Yang
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Sisi Cui
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiaoyu Song
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| | - Yifa Zhou
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China.
| |
Collapse
|
3
|
Injectable thermoresponsive hydrogel/nanofiber hybrid scaffolds inducing human adipose-derived stem cell chemotaxis. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Gizaw M, Faglie A, Pieper M, Poudel S, Chou SF. The Role of Electrospun Fiber Scaffolds in Stem Cell Therapy for Skin Tissue Regeneration. MED ONE 2019; 4:e190002. [PMID: 30972372 PMCID: PMC6453140 DOI: 10.20900/mo.20190002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy has emerged as one of the topics in tissue engineering where undifferentiated and multipotent cells are strategically placed/ injected in tissue structure for cell regeneration. Over the years, stem cells have shown promising results in skin repairs for non-healing and/or chronic wounds. The addition of the stem cells around the wound site promotes signaling pathways for growth factors that regulate tissue reconstruction. However, injecting stem cells around the wound site has its drawbacks, including cell death due to lack of microenvironment cues. This particular issue is resolved when biomaterial scaffolds are involved in the cultivation and mechanical support of the stem cells. In this review, we describe the current models of stem cell therapy by injections and those that are done through cell cultures using electrospun fiber scaffolds. Electrospun fibers are considered as an ideal candidate for cell cultures due to their surface properties. Through the control of fiber morphology and fiber structure, cells are able to proliferate and differentiate into keratinocytes for skin tissue regeneration. Furthermore, we provide another perspective of using electrospun fibers and stem cells in a layer-by-layer structure for skin substitutes (dressing). Finally, electrospun fibers have the potential to incorporate bioactive agents to achieve controlled release properties, which is beneficial to the survival of the delivered stem cells or the recruitment of the cells. Overall, our work illustrates that electrospun fibers are ideal for stem cell cultures while serving as cell carriers for wound dressing materials.
Collapse
Affiliation(s)
- Mulugeta Gizaw
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Martha Pieper
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Sarju Poudel
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA
| |
Collapse
|
5
|
Allur Subramaniyan S, Sheet S, Balasubramaniam S, Berwin Singh SV, Rampa DR, Shanmugam S, Kang DR, Choe HS, Shim KS. Fabrication of nanofiber coated with l-arginine via electrospinning technique: a novel nanomatrix to counter oxidative stress under crosstalk of co-cultured fibroblasts and satellite cells. ACTA ACUST UNITED AC 2018; 24:19-32. [DOI: 10.1080/15419061.2018.1493107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sivakumar Allur Subramaniyan
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Sunirmal Sheet
- Department of Wood Science and Technology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | | | - Swami Vetha Berwin Singh
- Molecular Imaging and Therapeutic Medicine Research Center, Cyclotron Research Center, Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University, Medical School and Hospital, Jeonju-si, Republic of Korea
| | - Dileep Reddy Rampa
- Department of BIN convergence Technology, College of Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | | | - Da Rae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Ho Sung Choe
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| | - Kwan Seob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Chonbuk National University, Jeonju-si, Republic of Korea
| |
Collapse
|
6
|
Chen S, Li R, Li X, Xie J. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine. Adv Drug Deliv Rev 2018; 132:188-213. [PMID: 29729295 DOI: 10.1016/j.addr.2018.05.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
Electrospinning provides an enabling nanotechnology platform for generating a rich variety of novel structured materials in many biomedical applications including drug delivery, biosensing, tissue engineering, and regenerative medicine. In this review article, we begin with a thorough discussion on the method of producing 1D, 2D, and 3D electrospun nanofiber materials. In particular, we emphasize on how the 3D printing technology can contribute to the improvement of traditional electrospinning technology for the fabrication of 3D electrospun nanofiber materials as drug delivery devices/implants, scaffolds or living tissue constructs. We then highlight several notable examples of electrospun nanofiber materials in specific biomedical applications including cancer therapy, guiding cellular responses, engineering in vitro 3D tissue models, and tissue regeneration. Finally, we finish with conclusions and future perspectives of electrospun nanofiber materials for drug delivery and regenerative medicine.
Collapse
|
7
|
Arbade GK, Jathar S, Tripathi V, Patro TU. Antibacterial, sustained drug release and biocompatibility studies of electrospun poly(
ε
-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac1a4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Hajiali H, Contestabile A, Mele E, Athanassiou A. Influence of topography of nanofibrous scaffolds on functionality of engineered neural tissue. J Mater Chem B 2018; 6:930-939. [PMID: 32254373 DOI: 10.1039/c7tb02969a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Properly engineered scaffolds combined with functional neurons can be instrumental for the effective repair of the neural tissue. In particular, it is essential to investigate how three-dimensional (3D) systems and topographical features can impact on neuronal activity to obtain engineered functional neural tissues. In this study, polyphenylene sulfone (PPSu) scaffolds constituted by randomly distributed or aligned electrospun nanofibers were fabricated to evaluate the neural activity in 3D culture environments for the first time. The obtained results demonstrated that the nanofibers can successfully support the adhesion and growth of neural stem cells (NSCs) and enhance neuronal differentiation compared to 2D substrates. In addition, NSCs could spread and migrate along the aligned fibers. The percentage of active NSC-derived neurons and the overall network activity in the fibrous substrates were also remarkably enhanced. Finally, the data of neuronal activity showed not only that the neurons cultured on the nanofibers are part of a functional network, but also that their activity increases, and the direction of neural signals can be controlled in the aligned 3D scaffolds.
Collapse
Affiliation(s)
- H Hajiali
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | | |
Collapse
|
9
|
Shin HS, Kook YM, Hong HJ, Kim YM, Koh WG, Lim JY. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells. Acta Biomater 2016; 45:121-132. [PMID: 27592814 DOI: 10.1016/j.actbio.2016.08.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023]
Abstract
Development of a tissue-engineered, salivary bio-gland will benefit patients suffering from xerostomia due to loss of fluid-secreting acinar cells. This study was conducted to develop a bioengineering system to induce self-assembly of human parotid epithelial cells (hPECs) cultured on poly ethylene glycol (PEG) hydrogel-micropatterned polycaprolactone (PCL) nanofibrous microwells. Microwells were fabricated by photopatterning of PEG hydrogel in the presence of an electrospun PCL nanofibrous scaffold. hPECs were plated on plastic dishes, Matrigel, PCL nanofibers, or PCL nanofibrous microwells. When the cells were plated onto plastic, they did not form spheres, but aggregated to form 3D acinar-like spheroids when cultured on Matrigel, PCL, and PCL microwells, with the greatest aggregating potency being observed on the PCL microwells. The 3D-assembled spheroids in the PCL microwells expressed higher levels of salivary epithelial markers (α-amylase and AQP5), tight junction proteins (ZO-1 and occludin), adherence protein (E-cadherin), and cytoskeletal protein (F-actin) than those on the Matrigel and PCL. Furthermore, the 3D-assembled spheroids in the PCL microwells showed higher levels of α-amylase secretion and intracellular calcium concentration ([Ca2+]i) than those on the Matrigel and PCL nanofibers, suggesting more functional organization of hPECs. We established a bioengineering 3D culture system to promote robust and functional acinar-like organoids from hPECs. PCL nanofibrous microwells can be applied in the future for bioengineering of an artificial bio-salivary gland for restoration of salivary function. STATEMENT OF SIGNIFICANCE Three dimensional (3D) cultures of salivary glandular epithelial cells using nanofibrous bottom facilitate the formation of acinar-like organoids. In this study, we adapted a PEG hydrogel-micropatterned PCL nanofibrous microwell for the efficient bioengineering of human salivary gland organoids, in which we could easily produce uniform size of 3D organoids. This 3D culture system supports spherical organization, gene and protein expression of acinar markers, TJ proteins, adherence, and cytoskeletal proteins, as well as to promote epithelial structural integrity and acinar secretory functions, and results showed superior efficiency relative to Matrigel and nanofibrous scaffold culture. This 3D culture system has benefits in terms of inert, non-animal and serum-free culture conditions, as well as controllable spheroid size and scalable production of functional SG organoids and is applicable to bioengineering approaches for an artificial bio-gland, as well as to investigations of salivary gland physiology and regeneration.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Yun-Min Kook
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hye Jin Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
10
|
Kan L, Thayer P, Fan H, Ledford B, Chen M, Goldstein A, Cao G, He JQ. Polymer microfiber meshes facilitate cardiac differentiation of c-kit+ human cardiac stem cells. Exp Cell Res 2016; 347:143-152. [DOI: 10.1016/j.yexcr.2016.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/24/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022]
|
11
|
Choi JS, Kim HS, Yoo HS. Electrospinning strategies of drug-incorporated nanofibrous mats for wound recovery. Drug Deliv Transl Res 2016; 5:137-45. [PMID: 25787739 DOI: 10.1007/s13346-013-0148-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Electrospun nanofibrous mats have recently been employed as drug reservoirs for their unique features, such as high surface-to-volume ratios and easy fabrication process. We describe herein various methods of fabricating drug- and gene-encapsulated nanofibrous meshes, which can be prepared by electrospinning. The electrospinning process of nanofibrous mats is affected by many parameters, including viscosity and ejection speeds of the polymeric solutions and the electrical potential applied to the system. Both single- and dual-nozzle systems are widely employed in the preparation of electrospun nanofibers encapsulating drugs and genes, which are usually incorporated into the electrospun mats either by physical mixing with polymeric solutions before electrospinning or by physical incorporation after electrospinning. Various strategies have been tailored to maintain the bioactivity of proteins for tissue regeneration before and after electrospinning. Nucleic acids, such as DNA and siRNA, are also incorporated into nanofibrous meshes to enhance tissue regeneration by expressing transgenes or silencing domestic genes in specific tissues. Drug- or gene-incorporated nanofibrous meshes can greatly increase tissue regeneration rates and reduce scar formation in normal and diabetic wounds. Hybrid nanofibers, with multiple cell layers or hydrogels, have also been used to improve wound healing efficiency by increasing cell infiltration.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Biomedical Materials Engineering, School of Bioscience and Bioengineering, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | | | | |
Collapse
|
12
|
Fabrication and Evaluation of Multilayer Nanofiber-Hydrogel Meshes with a Controlled Release Property. FIBERS 2015. [DOI: 10.3390/fib3030296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Mortier C, Darmanin T, Guittard F. The Major Influences of Substituent Size and Position of 3,4-Propylenedioxythiophene on the Formation of Highly Hydrophobic Nanofibers. Chempluschem 2014. [DOI: 10.1002/cplu.201402187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Rivera-Torres N, Strouse B, Bialk P, Niamat RA, Kmiec EB. The position of DNA cleavage by TALENs and cell synchronization influences the frequency of gene editing directed by single-stranded oligonucleotides. PLoS One 2014; 9:e96483. [PMID: 24788536 PMCID: PMC4006861 DOI: 10.1371/journal.pone.0096483] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
With recent technological advances that enable DNA cleavage at specific sites in the human genome, it may now be possible to reverse inborn errors, thereby correcting a mutation, at levels that could have an impact in a clinical setting. We have been developing gene editing, using single-stranded DNA oligonucleotides (ssODNs), as a tool to direct site specific single base changes. Successful application of this technique has been demonstrated in many systems ranging from bacteria to human (ES and somatic) cells. While the frequency of gene editing can vary widely, it is often at a level that does not enable clinical application. As such, a number of stimulatory factors such as double-stranded breaks are known to elevate the frequency significantly. The majority of these results have been discovered using a validated HCT116 mammalian cell model system where credible genetic and biochemical readouts are available. Here, we couple TAL-Effector Nucleases (TALENs) that execute specific ds DNA breaks with ssODNs, designed specifically to repair a missense mutation, in an integrated single copy eGFP gene. We find that proximal cleavage, relative to the mutant base, is key for enabling high frequencies of editing. A directionality of correction is also observed with TALEN activity upstream from the target base being more effective in promoting gene editing than activity downstream. We also find that cells progressing through S phase are more amenable to combinatorial gene editing activity. Thus, we identify novel aspects of gene editing that will help in the design of more effective protocols for genome modification and gene therapy in natural genes.
Collapse
Affiliation(s)
- Natalia Rivera-Torres
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Bryan Strouse
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Pawel Bialk
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Rohina A. Niamat
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| | - Eric B. Kmiec
- Delaware State University, Department of Chemistry, Dover, Delaware, United States of America
| |
Collapse
|
15
|
Sims-Mourtada J, Niamat RA, Samuel S, Eskridge C, Kmiec EB. Enrichment of breast cancer stem-like cells by growth on electrospun polycaprolactone-chitosan nanofiber scaffolds. Int J Nanomedicine 2014; 9:995-1003. [PMID: 24570583 PMCID: PMC3933718 DOI: 10.2147/ijn.s55720] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A small population of highly tumorigenic breast cancer cells has recently been identified. These cells, known as breast-cancer stem-like cells (BCSC), express markers similar to mammary stem cells, and are highly resistant to chemotherapy. Currently, study of BCSC is hampered by the inability to propagate these cells in tissue culture without inducing differentiation. Recently, it was reported that proliferation and differentiation can be modified by culturing cells on electrospun nanofibers. Here, we sought to characterize the chemoresistance and stem-like properties of breast cancer cell lines grown on nanofiber scaffolds. Cells cultured on three-dimensional templates of electrospun poly(ε-caprolactone)-chitosan nanofibers showed increases in mammary stem cell markers and in sphere-forming ability compared with cells cultured on polystyrene culture dishes. There was no increase in proliferation of stem cell populations, indicating that culture on nanofibers may inhibit differentiation of BCSC. The increase in stemness was accompanied by increases in resistance to docetaxel and doxorubicin. These data indicate that BCSC populations are enriched in cells cultured on electrospun poly(ε-caprolactone)-chitosan nanofibers, scaffolds that may provide a useful system to study BCSC and their response to anticancer drug treatment.
Collapse
Affiliation(s)
- Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark
| | - Rohina A Niamat
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Shani Samuel
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Chris Eskridge
- Department of Chemistry, Delaware State University, Dover, DE, USA
| | - Eric B Kmiec
- Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc, Newark ; Department of Chemistry, Delaware State University, Dover, DE, USA
| |
Collapse
|
16
|
Strouse B, Bialk P, Niamat RA, Rivera-Torres N, Kmiec EB. Combinatorial gene editing in mammalian cells using ssODNs and TALENs. Sci Rep 2014; 4:3791. [PMID: 24445749 PMCID: PMC3896902 DOI: 10.1038/srep03791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/24/2013] [Indexed: 11/09/2022] Open
Abstract
The regulation of gene editing is being elucidated in mammalian cells and its potential as well as its limitations are becoming evident. ssODNs carry out gene editing by annealing to their complimentary sequence at the target site and acting as primers for replication fork extension. To effect a genetic change, a large amount of ssODN molecules must be introduced into cells and as such induce a Reduced Proliferation Phenotype (RPP), a phenomenon in which corrected cells do not proliferate. To overcome this limitation, we have used TAL-Effector Nucleases (TALENs) to increase the frequency, while reducing the amount of ssODN required to direct gene correction. This strategy resolves the problem and averts the serious effects of RPP. The efficiency of gene editing can be increased significantly if cells are targeted while they progress through S phase. Our studies define new reaction parameters that will help guide experimental strategies of gene editing.
Collapse
Affiliation(s)
- Bryan Strouse
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Pawel Bialk
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Rohina A Niamat
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Natalia Rivera-Torres
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| | - Eric B Kmiec
- Department of Chemistry, Delaware State University, 1200 N. DuPont Highway Dover, DE 19901
| |
Collapse
|
17
|
Li Y, Ceylan M, Shrestha B, Wang H, Lu QR, Asmatulu R, Yao L. Nanofibers support oligodendrocyte precursor cell growth and function as a neuron-free model for myelination study. Biomacromolecules 2013; 15:319-26. [PMID: 24304204 DOI: 10.1021/bm401558c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanofiber-based scaffolds may simultaneously provide immediate contact guidance for neural regeneration and act as a vehicle for therapeutic cell delivery to enhance axonal myelination. Additionally, nanofibers can serve as a neuron-free model to study myelination of oligodendrocytes. In this study, we fabricated nanofibers using a polycaprolactone and gelatin copolymer. The ratio of the gelatin component in the fibers was confirmed by energy dispersive X-ray spectroscopy. The addition of gelatin to the polycaprolactone (PCL) for nanofiber fabrication decreased the contact angle of the electrospun fibers. We showed that both polycaprolactone nanofibers as well as polycaprolactone and gelatin copolymer nanofibers can support oligodendrocyte precursor cell (OPC) growth and differentiation. OPCs maintained their phenotype and viability on nanofibers and were induced to differentiate into oligodendrocytes. The differentiated oligodendrocytes extend their processes along the nanofibers and ensheathed the nanofibers. Oligodendrocytes formed significantly more myelinated segments on the PCL and gelatin copolymer nanofibers than those on PCL nanofibers alone.
Collapse
Affiliation(s)
- Yongchao Li
- Departments of †Biological Sciences and §Mechanical Engineering, Wichita State University , Wichita, Kansas, United States
| | | | | | | | | | | | | |
Collapse
|
18
|
Borjigin M, Eskridge C, Niamat R, Strouse B, Bialk P, Kmiec EB. Electrospun fiber membranes enable proliferation of genetically modified cells. Int J Nanomedicine 2013; 8:855-64. [PMID: 23467983 PMCID: PMC3587395 DOI: 10.2147/ijn.s40117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces.
Collapse
Affiliation(s)
- Mandula Borjigin
- Department of Chemistry, Delaware State University, Dover, DE 19901, USA
| | | | | | | | | | | |
Collapse
|