1
|
Tumor Radiosensitization by Gene Electrotransfer-Mediated Double Targeting of Tumor Vasculature. Int J Mol Sci 2023; 24:ijms24032755. [PMID: 36769077 PMCID: PMC9917180 DOI: 10.3390/ijms24032755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Targeting the tumor vasculature through specific endothelial cell markers involved in different signaling pathways represents a promising tool for tumor radiosensitization. Two prominent targets are endoglin (CD105), a transforming growth factor β co-receptor, and the melanoma cell adhesion molecule (CD1046), present also on many tumors. In our recent in vitro study, we constructed and evaluated a plasmid for simultaneous silencing of these two targets. In the current study, our aim was to explore the therapeutic potential of gene electrotransfer-mediated delivery of this new plasmid in vivo, and to elucidate the effects of combined therapy with tumor irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice in the syngeneic murine mammary adenocarcinoma tumor model TS/A. Histological analysis of tumors (vascularization, proliferation, hypoxia, necrosis, apoptosis and infiltration of immune cells) was performed to evaluate the therapeutic mechanisms. Additionally, potential activation of the immune response was evaluated by determining the induction of DNA sensor STING and selected pro-inflammatory cytokines using qRT-PCR. The results point to a significant radiosensitization and a good therapeutic potential of this gene therapy approach in an otherwise radioresistant and immunologically cold TS/A tumor model, making it a promising novel treatment modality for a wide range of tumors.
Collapse
|
2
|
Ruiz-Llorente L, Ruiz-Rodríguez MJ, Savini C, González-Muñoz T, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Peinado H, Bernabeu C. Correlation Between Endoglin and Malignant Phenotype in Human Melanoma Cells: Analysis of hsa-mir-214 and hsa-mir-370 in Cells and Their Extracellular Vesicles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:253-272. [PMID: 37093432 DOI: 10.1007/978-3-031-26163-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Endoglin (CD105) is an auxiliary receptor of transforming growth factor (TGF)-β family members that is expressed in human melanomas. It is heterogeneously expressed by primary and metastatic melanoma cells, and endoglin targeting as a therapeutic strategy for melanoma tumors is currently been explored. However, its involvement in tumor development and malignancy is not fully understood. Here, we find that endoglin expression correlates with malignancy of primary melanomas and cultured melanoma cell lines. Next, we have analyzed the effect of ectopic endoglin expression on two miRNAs (hsa-mir-214 and hsa-mir-370), both involved in melanoma tumor progression and endoglin regulation. We show that compared with control cells, overexpression of endoglin in the WM-164 melanoma cell line induces; (i) a significant increase of hsa-mir-214 levels in small extracellular vesicles (EVs) as well as an increased trend in cells; and (ii) significantly lower levels of hsa-mir-370 in the EVs fractions, whereas no significant differences were found in cells. As hsa-mir-214 and hsa-mir-370 are not just involved in melanoma tumor progression, but they can also target endoglin-expressing endothelial cells in the tumor vasculature, these results suggest a complex and differential regulatory mechanism involving the intracellular and extracellular signaling of hsa-mir-214 and hsa-mir-370 in melanoma development and progression.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.
- Biochemistry and Molecular Biology Unit, Department of System Biology, School of Medicine and Health Sciences, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - María Jesús Ruiz-Rodríguez
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Claudia Savini
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Teresa González-Muñoz
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Erica Riveiro-Falkenbach
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - José L Rodríguez-Peralto
- Department of Pathology, Instituto i+12, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| |
Collapse
|
3
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: Targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29:1668-1682. [PMID: 33845199 PMCID: PMC8116634 DOI: 10.1016/j.ymthe.2021.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
Cancer gene therapies are usually designed either to express wild-type copies of tumor suppressor genes or to exploit tumor-associated phenotypic changes to endow selective cytotoxicity. However, these approaches become less relevant to cancers that contain many independent mutations, and the situation is made more complex by our increased understanding of clonal evolution of tumors, meaning that different metastases and even regions of the same tumor mass have distinct mutational and phenotypic profiles. In contrast, the relatively genetically stable tumor microenvironment (TME) therefore provides an appealing therapeutic target, particularly since it plays an essential role in promoting cancer growth, immune tolerance, and acquired resistance to many therapies. Recently, a variety of different TME-targeted gene therapy and armed oncolytic strategies have been explored, with particular success observed in strategies targeting the cancer stroma, reducing tumor vasculature, and repolarizing the immunosuppressive microenvironment. Herein, we review the progress of these TME-targeting approaches and try to highlight those showing the greatest promise.
Collapse
Affiliation(s)
| | - Anderson J Ryan
- Department Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
5
|
Ollauri-Ibáñez C, Ayuso-Íñigo B, Pericacho M. Hot and Cold Tumors: Is Endoglin (CD105) a Potential Target for Vessel Normalization? Cancers (Basel) 2021; 13:1552. [PMID: 33800564 PMCID: PMC8038031 DOI: 10.3390/cancers13071552] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/15/2022] Open
Abstract
Tumors are complex masses formed by malignant but also by normal cells. The interaction between these cells via cytokines, chemokines, growth factors, and enzymes that remodel the extracellular matrix (ECM) constitutes the tumor microenvironment (TME). This TME can be determinant in the prognosis and the response to some treatments such as immunotherapy. Depending on their TME, two types of tumors can be defined: hot tumors, characterized by an immunosupportive TME and a good response to immunotherapy; and cold tumors, which respond poorly to this therapy and are characterized by an immunosuppressive TME. A therapeutic strategy that has been shown to be useful for the conversion of cold tumors into hot tumors is vascular normalization. In this review we propose that endoglin (CD105) may be a useful target of this strategy since it is involved in the three main processes involved in the generation of the TME: angiogenesis, inflammation, and cancer-associated fibroblast (CAF) accumulation. Moreover, the analysis of endoglin expression in tumors, which is already used in the clinic to study the microvascular density and that is associated with worse prognosis, could be used to predict a patient's response to immunotherapy.
Collapse
Affiliation(s)
| | | | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Group of Physiopathology of the Vascular Endothelium (ENDOVAS), Biomedical Research Institute of Salamanca (IBSAL), Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain; (C.O.-I.); (B.A.-Í.)
| |
Collapse
|
6
|
Savarin M, Kamensek U, Znidar K, Todorovic V, Sersa G, Cemazar M. Evaluation of a Novel Plasmid for Simultaneous Gene Electrotransfer-Mediated Silencing of CD105 and CD146 in Combination with Irradiation. Int J Mol Sci 2021; 22:ijms22063069. [PMID: 33802812 PMCID: PMC8002395 DOI: 10.3390/ijms22063069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Correspondence: (M.S.); (M.C.)
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
- Correspondence: (M.S.); (M.C.)
| |
Collapse
|
7
|
Wang K, Shang F, Chen D, Cao T, Wang X, Jiao J, He S, Liang X. Protein liposomes-mediated targeted acetylcholinesterase gene delivery for effective liver cancer therapy. J Nanobiotechnology 2021; 19:31. [PMID: 33482834 PMCID: PMC7821407 DOI: 10.1186/s12951-021-00777-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/13/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Effective methods to deliver therapeutic genes to solid tumors and improve their bioavailability are the main challenges of current medical research on gene therapy. The development of efficient non-viral gene vector with tumor-targeting has very important application value in the field of cancer therapy. Proteolipid integrated with tumor-targeting potential of functional protein and excellent gene delivery performance has shown potential for targeted gene therapy. RESULTS Herein, we prepared transferrin-modified liposomes (Tf-PL) for the targeted delivery of acetylcholinesterase (AChE) therapeutic gene to liver cancer. We found that the derived Tf-PL/AChE liposomes exhibited much higher transfection efficiency than the commercial product Lipo 2000 and shown premium targeting efficacy to liver cancer SMMC-7721 cells in vitro. In vivo, the Tf-PL/AChE could effectively target liver cancer, and significantly inhibit the growth of liver cancer xenografts grafted in nude mice by subcutaneous administration. CONCLUSIONS This study proposed a transferrin-modified proteolipid-mediated gene delivery strategy for targeted liver cancer treatment, which has a promising potential for precise personalized cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Tieliu Cao
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China
| | - Xiaowei Wang
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Jianpeng Jiao
- Department of traditional Chinese medicine, Changzheng Hospital, Shanghai, 200001, People's Republic of China
| | - Shengli He
- Department of Hepatobiliary-pancreatic and Integrative Oncology, Minhang Branch, Fudan University Shanghai Cancer Center, Shanghai, 200240, People's Republic of China.
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
8
|
Zeaxanthin-Rich Extract from Superfood Lycium barbarum Selectively Modulates the Cellular Adhesion and MAPK Signaling in Melanoma versus Normal Skin Cells In Vitro. Molecules 2021; 26:molecules26020333. [PMID: 33440679 PMCID: PMC7827977 DOI: 10.3390/molecules26020333] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/28/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
The concern for implementing bioactive nutraceuticals in antioxidant-related therapies is of great importance for skin homeostasis in benign or malignant diseases. In order to elucidate some novel insights of Lycium barbarum (Goji berry) activity on skin cells, the present study focused on its active compound zeaxanthin. By targeting the stemness markers CD44 and CD105, with deep implications in skin oxidative stress mechanisms, we revealed, for the first time, selectivity in zeaxanthin activity. When applied in vitro on BJ human fibroblast cell line versus the A375 malignant melanoma cells, despite the moderate cytotoxicity, the zeaxanthin-rich extracts 1 and 2 were able to downregulate significantly the CD44 and CD105 membrane expression and extracellular secretion in A375, and to upregulate them in BJ cells. At mechanistic level, the present study is the first to demonstrate that the zeaxanthin-rich Goji extracts are able to influence selectively the mitogen-activated protein kinases (MAPK): ERK, JNK and p38 in normal BJ versus tumor-derived A375 skin cells. These results point out towards the applications of zeaxanthin from L. barbarum as a cytoprotective agent in normal skin and raises questions about its use as an antitumor prodrug alone or in combination with standard therapy.
Collapse
|
9
|
Hu X, Yuan L, Ma T. Mechanisms of JAK-STAT signaling pathway mediated by CXCL8 gene silencing on epithelial-mesenchymal transition of human cutaneous melanoma cells. Oncol Lett 2020; 20:1973-1981. [PMID: 32724443 PMCID: PMC7377181 DOI: 10.3892/ol.2020.11706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Effect of CXCL8 gene silencing-mediated JAK-STAT signaling pathway on epithelial-mesenchymal transition (EMT) of human cutaneous melanoma cells was explored. Eighty patients with cutaneous melanoma were enrolled in the study. Cells were transfected accordingly and divided into five groups: The blank group (human cutaneous melanoma cells), NC group (human cutaneous melanoma cells + blank vector plasmid transfection), CXCL8 siRNA group (human cutaneous melanoma cells + CXCL8 silent expression vector plasmid transfection), AG490 group (human cutaneous melanoma cells + JAK-STAT signal pathway inhibitor transfection), CXCL8 siRNA + AG490 group (human cutaneous melanoma cells + JAK-STAT signaling pathway inhibitor + CXCL8 silent expression vector plasmid transfection). The expression levels of CXCL8, JAK2, STAT3, epithelial cadherin (E-cadherin), neurotrophic cadherin (N-cadherin) and vimentin in tissues and cells were detected by RT-qPCR and western blot analysis. CCK-8 and flow cytometry were used to detect cell proliferation and apoptosis. Compared with adjacent normal tissues, the expression of E-cadherin in human cutaneous melanoma tissues was significantly decreased, whereas the expression of CXCL8, JAK2, STAT3, vimentin and N-cadherin was significantly increased (P<0.05). Compared with the blank group, CXCL8 siRNA group and CXCL8 siRNA + AG490 group had significantly lower expression of CXCL8 (P<0.05). Compared with the blank group, the expression levels of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA group, AG490 group and CXCL8 siRNA + AG490 group were decreased, the expression of E-cadherin was increased, the cell proliferation ability was decreased and apoptosis was increased (P<0.05). Compared with CXCL8 siRNA group, the expression of JAK2, STAT3, vimentin and N-cadherin in CXCL8 siRNA + AG490 group were significantly decreased, the expression of E-cadherin was significantly increased, cell proliferation ability was decreased and apoptosis was increased (P<0.05). In conclusion, CXCL8 gene expression silencing may inhibit EMT and cell proliferation while promoting cell apoptosis of human cutaneous melanoma cells by inhibiting the activation of JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaorui Hu
- Department of Burn and Plastic Surgery, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| | - Lili Yuan
- Department of Plastic Surgery, Qingyang People's Hospital of Gansu Province, Qingyang, Gansu 745000, P.R. China
| | - Teng Ma
- Department of Traumatic Orthopaedics, General Hospital of Ningxia Medical University, Yinchuan, Gansu 750001, P.R. China
| |
Collapse
|
10
|
Chen C, Yue D, Lei L, Wang H, Lu J, Zhou Y, Liu S, Ding T, Guo M, Xu L. Promoter-Operating Targeted Expression of Gene Therapy in Cancer: Current Stage and Prospect. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:508-514. [PMID: 29858085 PMCID: PMC5992480 DOI: 10.1016/j.omtn.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/24/2018] [Accepted: 04/09/2018] [Indexed: 02/07/2023]
Abstract
The technique of targeted expression of interesting genes, including distinct delivery systems and specific gene promoter-operating expression, is an important strategy for gene therapy against cancers. Up to now, extensive literature documented the efficacy of distinct delivery systems, such as the liposome system, nano-particle system, polyetherimide (PEI) system, and so on, in cancer gene therapy. However, a related document on the potential value of using a specific gene promoter, such as a tumor suppressor, in cancer gene therapy was still scary. The main obstacle might be that the selection of an ideal gene promoter to operate interesting gene expression in cancer gene therapy is still not fully understood. Therefore, many efforts need to be done in order to make it a real power tool for the human clinical treatment of cancer patients. The purpose of this review is to clarify the current state and some problematics in development of promoter-operating targeted expression of interesting genes and highlight its potential in cancer gene therapy.
Collapse
Affiliation(s)
- Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Dongxu Yue
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Liangyu Lei
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hairong Wang
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jia Lu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Guizhou 563000, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Tao Ding
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| |
Collapse
|
11
|
Lampreht Tratar U, Kos S, Kamensek U, Ota M, Tozon N, Sersa G, Cemazar M. Antitumor effect of antibiotic resistance gene-free plasmids encoding interleukin-12 in canine melanoma model. Cancer Gene Ther 2018; 25:260-273. [PMID: 29593358 DOI: 10.1038/s41417-018-0014-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/13/2018] [Indexed: 12/21/2022]
Abstract
The electrotransfer of interleukin-12 (IL-12) has been demonstrated as an efficient and safe treatment for tumors in veterinary oncology. However, the plasmids used encode human or feline IL-12 and harbor the gene for antibiotic resistance. Therefore, our aim was to construct plasmids encoding canine IL-12 without the antibiotic resistance genes driven by two different promoters: constitutive and fibroblast-specific. The results obtained in vitro in different cell lines showed that following gene electrotransfer, the newly constructed plasmids had cytotoxicity and expression profiles comparable to plasmids with antibiotic resistance genes. Additionally, in vivo studies showed a statistically significant prolonged tumor growth delay of CMeC-1 tumors compared to control vehicle-treated mice after intratumoral gene electrotransfer. Besides the higher gene expression obtained by plasmids with constitutive promoters, the main difference between both plasmids was in the distribution of the transgene expression. Namely, after gene electrotransfer, plasmids with constitutive promoters showed an increase of serum IL-12, whereas the gene expression of IL-12, encoded by plasmids with fibroblast-specific promoters, was restricted to the tumor. Furthermore, after the gene electrotransfer of plasmids with constitutive promoters, granzyme B-positive cells were detected in the tumor and spleen, indicating a systemic effect of the therapy. Therefore, plasmids with different promoters present valuable tools for focused therapy with local or systemic effects. The results of the present study demonstrated that plasmids encoding canine IL-12 under constitutive and fibroblast-specific promoters without the gene for antibiotic resistance provide feasible tools for controlled gene delivery that could be used for the treatment of client-owned dogs.
Collapse
Affiliation(s)
- Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Maja Ota
- Department of Pathology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Natasa Tozon
- Clinic for Surgery and Small Animals, University of Ljubljana, Veterinary Faculty, Cesta v mestni log 47, 1000, Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia. .,Faculty of Health Sciences, University of Primorska, Polje 42, Izola, 6310, Slovenia.
| |
Collapse
|
12
|
Ollauri-Ibáñez C, López-Novoa JM, Pericacho M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther 2017; 17:1053-1063. [PMID: 28656781 DOI: 10.1080/14712598.2017.1346607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Alterations in the process of angiogenesis, either by excess or by defect, are present in different common pathologies. For this reason, great efforts are being made toward the development of pro- and anti-angiogenic therapies. Since endoglin levels are enhanced in tissues undergoing angiogenesis, and changes in its expression lead to alterations in vessel formation, endoglin has become an ideal target for these types of therapies. Areas covered: In this review, the role of endoglin in angiogenesis is summarized. In addition, the authors review pro- and anti-angiogenic therapies that are currently being used and new approaches that target endoglin. The article includes therapies that are both in preclinical and clinical development. Expert opinion: Endoglin is a very good target for anti-angiogenic therapy, as demonstrated by the positive results obtained with anti-endoglin antibodies. However, although endoglin in pro-angiogenic therapies has been successful in vitro, its use has not yet reached clinical settings. Moreover, the authors believe that establishing the exact role of endoglin in angiogenesis is essential and that this should be the next step in this field in the coming years.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - José M López-Novoa
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - Miguel Pericacho
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| |
Collapse
|
13
|
Savarin M, Kamensek U, Cemazar M, Heller R, Sersa G. Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response. Radiol Oncol 2017; 51:30-39. [PMID: 28265230 PMCID: PMC5330176 DOI: 10.1515/raon-2017-0011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/18/2017] [Indexed: 01/14/2023] Open
Abstract
Background Tumor irradiation combined with adjuvant treatments, either vascular targeted or immunomodulatory, is under intense investigation. Gene electrotransfer of therapeutic genes is one of these approaches. The aim of this study was to determine, whether gene electrotransfer of plasmid encoding shRNA for silencing endoglin, with vascular targeted effectiveness, can radiosensitize melanoma B16F10 tumors. Materials and methods The murine melanoma B16F10 tumors, growing on the back of C57Bl/6 mice, were treated by triple gene electrotransfer and irradiation. The antitumor effect was evaluated by determination of tumor growth delay and proportion of tumor free mice. Furthermore, histological analysis of tumors (necrosis, apoptosis, proliferation, vascularization, presence of hypoxia and infiltration of immune cells,) was used to evaluate the therapeutic mechanisms. Results Gene electrotransfer of plasmid silencing endoglin predominantly indicated vascular targeted effects of the therapy, since significant tumor growth delay and 44% of tumor free mice were obtained. In addition, irradiation had minor effects on radioresistant melanoma, with 11% of mice tumor free. The combined treatment resulted in excellent effectiveness with 88% of mice tumor free, with more than half resistant to secondary tumor challenge, which was observed also with the plasmid devoid of the therapeutic gene. Histological analysis of tumors in the combined treatment group, demonstrated similar mode of action of the gene electrotransfer of plasmid encoding shRNA for silencing endoglin and devoid of it, both through the induction of an immune response. Conclusions The results of this study indicate that irradiation can in radioresistant melanoma tumors, by release of tumor associated antigens, serve as activator of the immune response, besides directly affecting tumor cells and vasculature. The primed antitumor immune response can be further boosted by gene electrotransfer of plasmid, regardless of presence of the therapeutic gene, which was confirmed by the high radiosensitization, resulting in prolonged tumor growth delay and 89% of tumor free mice that were up to 63% resistant to secondary challenge of tumor. In addition, gene electrotransfer of therapeutic plasmid for silencing endoglin has also a direct effect on tumor vasculature and tumors cells; however in combination with radiotherapy this effect was masked by pronounced immune response.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, USA
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
14
|
Electrotransfer parameters as a tool for controlled and targeted gene expression in skin. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e356. [PMID: 27574782 PMCID: PMC5023408 DOI: 10.1038/mtna.2016.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Skin is an attractive target for gene electrotransfer. It consists of different cell types that can be transfected, leading to various responses to gene electrotransfer. We demonstrate that these responses could be controlled by selecting the appropriate electrotransfer parameters. Specifically, the application of low or high electric pulses, applied by multi-electrode array, provided the possibility to control the depth of the transfection in the skin, the duration and the level of gene expression, as well as the local or systemic distribution of the transgene. The influence of electric pulse type was first studied using a plasmid encoding a reporter gene (DsRed). Then, plasmids encoding therapeutic genes (IL-12, shRNA against endoglin, shRNA against melanoma cell adhesion molecule) were used, and their effects on wound healing and cutaneous B16F10 melanoma tumors were investigated. The high-voltage pulses resulted in gene expression that was restricted to superficial skin layers and induced a local response. In contrast, the low-voltage electric pulses promoted transfection into the deeper skin layers, resulting in prolonged gene expression and higher transgene production, possibly with systemic distribution. Therefore, in the translation into the clinics, it will be of the utmost importance to adjust the electrotransfer parameters for different therapeutic approaches and specific mode of action of the therapeutic gene.
Collapse
|
15
|
Tumor radiosensitization by gene therapy against endoglin. Cancer Gene Ther 2016; 23:214-20. [PMID: 27199221 DOI: 10.1038/cgt.2016.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Gene electrotransfer of plasmid encoding shRNA against endoglin exerts antitumor efficacy, predominantly by vascular targeted effect. As vascular targeting therapies can promote radiosensitization, the aim of this study was to explore this gene therapy approach with single and split dose of irradiation in an endoglin non-expressing TS/A mammary adenocarcinoma tumor model to specifically study the vascular effects. Intratumoral gene electrotransfer of plasmids encoding shRNA against endoglin, under the control of a constitutive or tissue-specific promoter for endothelial cells, combined with a single or three split doses of irradiations was evaluated for the antitumor efficacy and histologically. Both plasmids proved to be equally effective in tumor radiosensitization with 40-47% of tumor cures. The combined treatment induced a significant decrease in the number of blood vessels and proliferating cells, and an increase in levels of necrosis, apoptosis and hypoxia; therefore, the antitumor efficacy was ascribed to the interaction of vascular targeted effect of gene therapy with irradiation. Endoglin silencing by the shRNA technology, combined with electrotransfer and the use of a tissue-specific promoter for endothelial cells, proved to be a feasible and effective therapeutic approach that can be used in combined treatment with tumor irradiation.
Collapse
|
16
|
Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, Cemazar M. Electrotransfer of Plasmid DNA Encoding an Anti-Mouse Endoglin (CD105) shRNA to B16 Melanoma Tumors with Low and High Metastatic Potential Results in Pronounced Anti-Tumor Effects. Cancers (Basel) 2015; 8:cancers8010003. [PMID: 26712792 PMCID: PMC4728450 DOI: 10.3390/cancers8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Endoglin overexpression is associated with highly proliferative tumor endothelium and also with some tumors, including melanoma. Its targeting has anti-tumor effectiveness, which can also be obtained by RNA interference. The aim of our study was to explore the anti-tumor effectiveness of endoglin silencing by electrotransfer of plasmid DNA encoding short hairpin RNA against endoglin in two murine B16 melanoma variants with different metastatic potential on cells, spheroids and subcutaneous tumors in mice. The results demonstrate that endoglin silencing with gene electrotransfer reduces the proliferation, survival and migration of melanoma cells and also has anti-tumor effectiveness, as the therapy resulted in a high percentage of tumor cures (23% and 58% on B16F1 and B16F10 tumors, respectively). The effectiveness of the therapy correlated with endoglin expression in melanoma cells; in vitro the effects were more pronounced in B16F1 cells, which express more endoglin than B16F10. However, the opposite was observed in vivo in tumors, where there was a higher expression of endoglin and better anti-tumor effectiveness in the B16F10 tumor. In conclusion, targeting endoglin for the treatment of melanoma seems to be a concept worthy of further exploration due to the increased therapeutic effect of the therapy based on simultaneous vascular targeting and its direct effect on tumor cells.
Collapse
Affiliation(s)
- Tanja Dolinsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Lara Prosen
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Masa Bosnjak
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Monika Stimac
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Urska Razborsek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia.
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia.
| |
Collapse
|