Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept.
Nat Commun 2015;
6:6960. [PMID:
25907970 PMCID:
PMC4421820 DOI:
10.1038/ncomms7960]
[Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/18/2015] [Indexed: 11/24/2022] Open
Abstract
The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15–20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.
The classic mantle plume concept explains large igneous provinces and hotspot magmatism, but often contradicts observed surface uplift and plume morphology. Here, the authors present a plume model that better supports observations by considering low-buoyancy plumes containing up to 15% of recycled oceanic crust.
Collapse