1
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
3
|
van Wijk N, Zohar K, Linial M. Challenging Cellular Homeostasis: Spatial and Temporal Regulation of miRNAs. Int J Mol Sci 2022; 23:16152. [PMID: 36555797 PMCID: PMC9787707 DOI: 10.3390/ijms232416152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded non-coding RNA (ncRNA) molecules that act in post-transcriptional regulation in animals and plants. A mature miRNA is the end product of consecutive, highly regulated processing steps of the primary miRNA transcript. Following base-paring of the mature miRNA with its mRNA target, translation is inhibited, and the targeted mRNA is degraded. There are hundreds of miRNAs in each cell that work together to regulate cellular key processes, including development, differentiation, cell cycle, apoptosis, inflammation, viral infection, and more. In this review, we present an overlooked layer of cellular regulation that addresses cell dynamics affecting miRNA accessibility. We discuss the regulation of miRNA local storage and translocation among cell compartments. The local amounts of the miRNAs and their targets dictate their actual availability, which determines the ability to fine-tune cell responses to abrupt or chronic changes. We emphasize that changes in miRNA storage and compactization occur under induced stress and changing conditions. Furthermore, we demonstrate shared principles on cell physiology, governed by miRNA under oxidative stress, tumorigenesis, viral infection, or synaptic plasticity. The evidence presented in this review article highlights the importance of spatial and temporal miRNA regulation for cell physiology. We argue that limiting the research to mature miRNAs within the cytosol undermines our understanding of the efficacy of miRNAs to regulate cell fate under stress conditions.
Collapse
Affiliation(s)
| | | | - Michal Linial
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
4
|
Roy R, Chacko AR, Abraham T, Korah BK, John BK, Punnoose MS, Mohan C, Mathew B. Recent Advances in Graphitic Carbon Nitrides (g‐C
3
N
4
) as Photoluminescence Sensing Probe: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Richa Roy
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Anu Rose Chacko
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | | | - Binila K Korah
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Bony K John
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Mamatha Susan Punnoose
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Chitra Mohan
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| | - Beena Mathew
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills PO Kottayam Kerala INDIA 686560
| |
Collapse
|
5
|
Hasan MM, Murtaz SB, Islam MU, Sadeq MJ, Uddin J. Robust and efficient COVID-19 detection techniques: A machine learning approach. PLoS One 2022; 17:e0274538. [PMID: 36107971 PMCID: PMC9477266 DOI: 10.1371/journal.pone.0274538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The devastating impact of the Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) pandemic almost halted the global economy and is responsible for 6 million deaths with infection rates of over 524 million. With significant reservations, initially, the SARS-CoV-2 virus was suspected to be infected by and closely related to Bats. However, over the periods of learning and critical development of experimental evidence, it is found to have some similarities with several gene clusters and virus proteins identified in animal-human transmission. Despite this substantial evidence and learnings, there is limited exploration regarding the SARS-CoV-2 genome to putative microRNAs (miRNAs) in the virus life cycle. In this context, this paper presents a detection method of SARS-CoV-2 precursor-miRNAs (pre-miRNAs) that helps to identify a quick detection of specific ribonucleic acid (RNAs). The approach employs an artificial neural network and proposes a model that estimated accuracy of 98.24%. The sampling technique includes a random selection of highly unbalanced datasets for reducing class imbalance following the application of matriculation artificial neural network that includes accuracy curve, loss curve, and confusion matrix. The classical approach to machine learning is then compared with the model and its performance. The proposed approach would be beneficial in identifying the target regions of RNA and better recognising of SARS-CoV-2 genome sequence to design oligonucleotide-based drugs against the genetic structure of the virus.
Collapse
Affiliation(s)
- Md. Mahadi Hasan
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Saba Binte Murtaz
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Muhammad Usama Islam
- School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Muhammad Jafar Sadeq
- Department of Computer Science and Engineering, Asian University of Bangladesh, Ashulia, Dhaka, Bangladesh
| | - Jasim Uddin
- Department of Applied Computing and Engineering, Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Zhang S, Zeng J, Zhou Y, Gao R, Rice S, Guo X, Liu Y, Feng P, Zhao Z. Simultaneous Detection of Herpes Simplex Virus Type 1 Latent and Lytic Transcripts in Brain Tissue. ASN Neuro 2022; 14:17590914211053505. [PMID: 35164537 PMCID: PMC9171132 DOI: 10.1177/17590914211053505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Neurotrophic herpes simplex virus type 1 (HSV-1) establishes lifelong latent infection in humans. Accumulating studies indicate that HSV-1, a risk factor of neurodegenerative diseases, exacerbates the sporadic Alzheimer's disease (AD). The analysis of viral genetic materials via genomic sequencing and quantitative PCR (qPCR) is the current approach used for the detection of HSV-1; however, this approach is limited because of its difficulty in detecting both latent and lytic phases of the HSV-1 life cycle in infected hosts. RNAscope, a novel in situ RNA hybridization assay, enables visualized detection of multiple RNA targets on tissue sections. Here, we developed a fluorescent multiplex RNAscope assay in combination with immunofluorescence to detect neuronal HSV-1 transcripts in various types of mouse brain samples and human brain tissues. Specifically, the RNA probes were designed to separately recognize two transcripts in the same brain section: (1) the HSV-1 latency-associated transcript (LAT) and (2) the lytic-associated transcript, the tegument protein gene of the unique long region 37 (UL37). As a result, both LAT and UL37 signals were detectable in neurons in the hippocampus and trigeminal ganglia (TG). The quantifications of HSV-1 transcripts in the TG and CNS neurons are correlated with the viral loads during lytic and latent infection. Collectively, the development of combinational detection of neuronal HSV-1 transcripts in mouse brains can serve as a valuable tool to visualize HSV-1 infection phases in various types of samples from AD patients and facilitate our understanding of the infectious origin of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jianxiong Zeng
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yuzheng Zhou
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ruoyun Gao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Stephanie Rice
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Xinying Guo
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongzhen Liu
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Zhang Y, Zeng LS, Wang J, Cai WQ, Cui W, Song TJ, Peng XC, Ma Z, Xiang Y, Cui SZ, Xin HW. Multifunctional Non-Coding RNAs Mediate Latent Infection and Recurrence of Herpes Simplex Viruses. Infect Drug Resist 2021; 14:5335-5349. [PMID: 34934329 PMCID: PMC8684386 DOI: 10.2147/idr.s334769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex viruses (HSVs) often cause latent infection for a lifetime, leading to repeated recurrence. HSVs have been engineered as oncolytic HSVs. The mechanism of the latent infection and recurrence remains largely unknown, which brings great challenges and limitations to eliminate HSVs in clinic and engineer safe oHSVs. Here, we systematically reviewed the latest development of the multi-step complex process of HSV latency and reactivation. Significantly, we first summarized the three HSV latent infection pathways, analyzed the structure and expression of the LAT1 and LAT2 of HSV-1 and HSV-2, proposed the regulation of LAT expression by four pathways, and dissected the function of LAT mediated by five LAT products of miRNAs, sRNAs, lncRNAs, sncRNAs and ORFs. We further analyzed that application of HSV LAT deletion mutants in HSV vaccines and oHSVs. Our review showed that deleting LAT significantly reduced the latency and reactivation of HSV, providing new ideas for the future development of safe and effective HSV therapeutics, vaccines and oHSVs. In addition, we proposed that RNA silencing or RNA interference may play an important role in HSV latency and reactivation, which is worth validating in future.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Gastroenterology, Chun’an County First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, Zhejiang Province, 311700, People’s Republic of China
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Li-Si Zeng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, People’s Republic of China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Lianjiang People’s Hospital, Guangdong, 524400, People’s Republic of China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Weiwen Cui
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Tong-Jun Song
- Department of Neurosurgery, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, Guangdong Province, 518104, People’s Republic of China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, People’s Republic of China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
- Department of Molecular Biology and Biochemistry, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, 434023, People’s Republic of China
| |
Collapse
|
8
|
Afshari A, Yaghobi R, Rezaei G. Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World J Stem Cells 2021; 13:985-1004. [PMID: 34567421 PMCID: PMC8422934 DOI: 10.4252/wjsc.v13.i8.985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are well known for post-transcriptional regulatory ability over specific mRNA targets. miRNAs exhibit temporal or tissue-specific expression patterns and regulate the cell and tissue developmental pathways. They also have determinative roles in production and differentiation of multiple lineages of stem cells and might have therapeutic advantages. miRNAs are a part of some viruses' regulatory machinery, not a byproduct. The trace of miRNAs was detected in the genomes of viruses and regulation of cell reprograming and viral pathogenesis. Combination of inter-regulatory systems has been detected for miRNAs during viral infections in stem cells. Contraction between viruses and stem cells may be helpful in therapeutic tactics, pathogenesis, controlling viral infections and defining stem cell developmental strategies that is programmed by miRNAs as a tool. Therefore, in this review we intended to study the inter-regulatory role of miRNAs in the interaction between viruses and stem cells and tried to explain the advantages of miRNA regulatory potentials, which make a new landscape for future studies.
Collapse
Affiliation(s)
- Afsoon Afshari
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| | - Ramin Yaghobi
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran.
| | - Ghazal Rezaei
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz 7193711351, Iran
| |
Collapse
|
9
|
Shojaei Jeshvaghani Z, Arefian E, Asgharpour S, Soleimani M. Latency-Associated Transcript-Derived MicroRNAs in Herpes Simplex Virus Type 1 Target SMAD3 and SMAD4 in TGF-β/Smad Signaling Pathway. IRANIAN BIOMEDICAL JOURNAL 2021; 25:169-79. [PMID: 33546553 DOI: 10.29252/ibj.25.3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background During its latent infection, hepatic stellate cell (HSV-1) produces only a micro RNA (miRNA) precursor called latency-associated transcript (LAT), which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs in targeting SMAD3 and SMAD4, as two main mediators in TGF-β/Smad. Methods The selection of LAT-derived miRNAs was based on the search results obtained from an online miRNA prediction tool. HEK293T cells were transfected with each miRNA-expressing lentivector and with the construct-expressing LAT. To survey the effect of LAT on the expression of pro-fibrotic markers, we transfected LX-2 cells with LAT construct. The impact of viral miRNA overexpression on SMADs and fibrotic markers was measured by quantitative PCR and luciferase assays. Results Among the LAT-derived miRNAs, miR-H2, miR-H3, and miR-H4 were selected for the study. Our results demonstrated that while miR-H2 binds to both SMAD mRNAs, miR-H3 and miR-H4 inhibit only the expression of the SMAD4 and SMAD3, respectively. Transfection of the LX-2 with LAT also decreased pro-fibrotic genes expression. Conclusion Our findings display that LAT negatively regulates TGF-β/Smad through targeting SMAD3 and SMAD4 by its miRNAs. These viral miRNAs can also contribute to the development of therapeutic interventions in diseases for which prevention or treatment can be achieved through targeting TGF-β pathway.
Collapse
Affiliation(s)
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Latency-Associated Transcript-Derived MicroRNAs in Herpes Simplex Virus Type 1 Target SMAD3 and SMAD4 in TGF-β/Smad Signaling Pathway. IRANIAN BIOMEDICAL JOURNAL 2021. [PMID: 33546553 PMCID: PMC8183387 DOI: 10.52547/ibj.25.3.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs in targeting SMAD3 and SMAD4, as two main mediators in TGF-β/Smad. Methods: The selection of LAT-derived miRNAs was based on the search results obtained from an online miRNA prediction tool. HEK293T cells were transfected with each miRNA-expressing lentivector and with the construct-expressing LAT. To survey the effect of LAT on the expression of pro-fibrotic markers, we transfected LX-2 cells with LAT construct. The impact of viral miRNA overexpression on SMADs and fibrotic markers was measured by qPCR and luciferase assays. Results: Among the LAT-derived miRNAs, miR-H2, miR-H3, and miR-H4 were selected for the study. Our results demonstrated that while miR-H2 binds to both SMAD mRNAs, miR-H3 and miR-H4 inhibit only the expression of the SMAD4 and SMAD3, respectively. Transfection of the LX-2 with LAT also decreased pro-fibrotic genes expression. Conclusion: Our findings display that LAT negatively regulates TGF-β/Smad through targeting SMAD3 and SMAD4 by its miRNAs. These viral miRNAs can also contribute to the development of therapeutic interventions in diseases for which prevention or treatment can be achieved through targeting TGF-β pathway.
Collapse
|
11
|
Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. COVID-19: fighting the invisible enemy with microRNAs. Expert Rev Anti Infect Ther 2020; 19:137-145. [PMID: 32814446 DOI: 10.1080/14787210.2020.1812385] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The novel coronavirus (CoV) disease 2019 (COVID-19) is a viral infection that causes severe acute respiratory syndrome (SARS). It is believed that early reports of COVID-19 cases were noticed in December 2019 and soon after it became a global public health emergency. It is advised that COVID-19 transmits through human to human contact and in most cases, it remains asymptomatic. Several approaches are being utilized to control the outbreak of this fatal viral disease. microRNAs (miRNAs) are known signature therapeutic tool for the viral diseases; they are small non-coding RNAs that target the mRNAs to inhibit their post-transcriptional expression, therefore, impeding their functions, can serve as watchdogs or micromanagers in the cells. AREAS COVERED This review work delineated COVID-19 and its association with SARS and Middle East respiratory syndrome (MERS), the possible role of miRNAs in the pathogenesis of COVID-19, and therapeutic potential of miRNAs and their effective delivery to treat COVID-19. EXPERT OPINION This review highlighted the importance of various miRNAs and their potential role in fighting with this pandemic as therapeutic molecules utilizing nanotechnology.
Collapse
Affiliation(s)
- Neeraj Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA.,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley , McAllen, Texas, USA
| |
Collapse
|
12
|
Powell-Doherty RD, Abbott ARN, Nelson LA, Bertke AS. Amyloid-β and p-Tau Anti-Threat Response to Herpes Simplex Virus 1 Infection in Primary Adult Murine Hippocampal Neurons. J Virol 2020; 94:e01874-19. [PMID: 32075924 PMCID: PMC7163132 DOI: 10.1128/jvi.01874-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's Disease (AD) is the sixth leading cause of death in the United States. Recent studies have established a potential link between herpes simplex virus 1 (HSV-1) infection and the development of AD. HSV-1 DNA has been detected in AD amyloid plaques in human brains, and treatment with the antiviral acyclovir (ACV) was reported to block the accumulation of the AD-associated proteins beta-amyloid (Aβ) and hyper-phosphorylated tau (p-tau) in Vero and glioblastoma cells. Our goal was to determine whether the accumulation of AD-related proteins is attributable to acute and/or latent HSV-1 infection in mature hippocampal neurons, a region of the brain severely impacted by AD. Primary adult murine hippocampal neuronal cultures infected with HSV-1, with or without antivirals, were assessed for Aβ and p-tau expression over 7 days postinfection. P-tau expression was transiently elevated in HSV-1-infected neurons, as well as in the presence of antivirals alone. Infected neurons, as well as uninfected neurons treated with antivirals, had a greater accumulation of Aβ42 than uninfected untreated neurons. Furthermore, Aβ42 colocalized with HSV-1 latency-associated transcript (LAT) expression. These studies suggest that p-tau potentially acts as an acute response to any perceived danger-associated molecular pattern (DAMP) in primary adult hippocampal neurons, while Aβ aggregation is a long-term response to persistent threats, including HSV-1 infection.IMPORTANCE Growing evidence supports a link between HSV-1 infection and Alzheimer's disease (AD). Although AD is clearly a complex multifactorial disorder, an infectious disease etiology provides alternative therapy opportunities for this devastating disease. Understanding the impact that HSV-1 has on mature neurons and the proteins most strongly associated with AD pathology may identify specific mechanisms that could be manipulated to prevent progression of neurodegeneration and dementia.
Collapse
Affiliation(s)
- Rebecca D Powell-Doherty
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Amber R N Abbott
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura A Nelson
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Andrea S Bertke
- Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
13
|
Disturbed Yin-Yang balance: stress increases the susceptibility to primary and recurrent infections of herpes simplex virus type 1. Acta Pharm Sin B 2020; 10:383-398. [PMID: 32140387 PMCID: PMC7049575 DOI: 10.1016/j.apsb.2019.06.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/27/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1), a neurotropic herpes virus, is able to establish a lifelong latent infection in the human host. Following primary replication in mucosal epithelial cells, the virus can enter sensory neurons innervating peripheral tissues via nerve termini. The viral genome is then transported to the nucleus where it can be maintained without producing infectious progeny, and thus latency is established in the cell. Yin–Yang balance is an essential concept in traditional Chinese medicine (TCM) theory. Yin represents stable and inhibitory factors, and Yang represents the active and aggressive factors. When the organism is exposed to stress, especially psychological stress caused by emotional stimulation, the Yin–Yang balance is disturbed and the virus can re-engage in productive replication, resulting in recurrent diseases. Therefore, a better understanding of the stress-induced susceptibility to HSV-1 primary infection and reactivation is needed and will provide helpful insights into the effective control and treatment of HSV-1. Here we reviewed the recent advances in the studies of HSV-1 susceptibility, latency and reactivation. We included mechanisms involved in primary infection and the regulation of latency and described how stress-induced changes increase the susceptibility to primary and recurrent infections.
Collapse
Key Words
- 4E-BP, eIF4E-binding protein
- AD, Alzheimer's disease
- AKT, protein kinase B
- AMPK, AMP-dependent kinase
- BCL-2, B-cell lymphoma 2
- CNS, central nervous system
- CORT, corticosterone
- CPE, cytopathic effect
- CTCF, CCCTC-binding factor
- CTL, cytotoxic T lymphocyte
- CoREST, REST corepressor 1
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- DEX, dexamethasone
- GREs, GR response elements
- GRs, glucocorticoid receptors
- H3K9, histone H3 on lysines 9
- HCF-1, host cell factor 1
- HDACs, histone deacetylases
- HPA axis, hypothalamo–pituitary–adrenal axis
- HPK, herpetic simplex keratitis
- HPT axis, hypothalamic–pituitary–thyroid axis
- HSV-1
- HSV-1, herpes simplex virus type 1
- Herpes simplex virus type 1
- ICP, infected cell polypeptide
- IRF3, interferon regulatory factor 3
- KLF15, Krüppel-like transcription factor 15
- LAT, latency-associated transcripts
- LRF, Luman/CREB3 recruitment factor
- LSD1, lysine-specific demethylase 1
- Latency
- MAVS, mitochondrial antiviral-signaling protein
- MOI, multiplicity of infection
- ND10, nuclear domains 10
- NGF, nerve growth factor
- NK cells, natural killer cells
- OCT-1, octamer binding protein 1
- ORFs, open reading frames
- PAMPs, pathogen-associated molecular patterns
- PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1
- PI3K, phosphoinositide 3-kinases
- PML, promyelocytic leukemia protein
- PNS, peripheral nervous system
- PRC1, protein regulator of cytokinesis 1
- PRRs, pattern-recognition receptors
- PTMs, post-translational modifications
- RANKL, receptor activator of NF-κB ligands
- REST, RE1-silencing transcription factor
- ROS, reactive oxygen species
- Reactivation
- SGKs, serum and glucocorticoid-regulated protein kinases
- SIRT1, sirtuin 1
- Stress
- Susceptibility
- T3, thyroid hormone
- TCM, traditional Chinese medicine
- TG, trigeminal ganglia
- TK, thymidine kinase
- TRIM14, tripartite motif-containing 14
- TRKA, tropomyosin receptor kinase A
- TRM, tissue resident memory T cells
- cGAS, cyclic GMP-AMP synthase
- mTOR, mammalian target of rapamycin
- sncRNAs, small non-coding RNAs
Collapse
|
14
|
Label-free detection of microRNA: two-stage signal enhancement with hairpin assisted cascade isothermal amplification and light-up DNA-silver nanoclusters. Mikrochim Acta 2020; 187:141. [PMID: 31965324 DOI: 10.1007/s00604-019-4094-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
Abstract
A method is described for the determination of microRNAs via two-stage signal enhancement. This is attained by combining hairpin (HP) assisted cascade isothermal amplification with light-up DNA-Ag nanoclusters. A rationally designed dual-functional HP is used, and microRNA-21 is chosen as a model analyte. At the first stage, upon the hybridization of the microRNA-21 with HP, microRNA recycling via polymerase-displacement reaction and a circulative nicking-replication process are achieved. This generates numerous G-abundant overhang DNA sequences. In the second stage, the above-released G-abundant overhang DNA sequences hybridize with the dark green Ag NCs, and this results in the appearance of bright red fluorescence. Thanks to the two signal enhancement processes, a linear dependence between the fluorescence intensity at 616 nm and the concentration of microRNA-21 is obtained in the range from 1 pM to 20 pM with a detection limit of 0.7 pM. The strategy clearly discriminates between perfectly-matched and mismatched targets. The method was applied to the determination of microRNA-21 in a spiked serum sample. Graphical abstractSchematic representation of microRNA detection by integrating hairpin assisted cascade isothermal amplification with light-up DNA Ag nanoclusters. With microRNA, G-abundant overhang DNA sequences from amplification reaction hybridize with dark green Ag nanoclusters to produce a concentration-dependent bright red fluorescence.
Collapse
|
15
|
Song YK, Hu BC, Xu L, Liu JQ, Chen X, Zheng Y, Chen MH, Wang JZ, Sun RH, Mo SJ. Productive transcription of miR-124-3p by RelA and RNA polymerase II directs RIP1 ubiquitination-dependent apoptosis resistance during hypoxia. Exp Cell Res 2019; 378:21-31. [DOI: 10.1016/j.yexcr.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
16
|
Zhao Y, Yang J, Liu Y, Fan J, Yang H. HSV-2-encoded miRNA-H4 Regulates Cell Cycle Progression and Act-D-induced Apoptosis in HeLa Cells by Targeting CDKL2 and CDKN2A. Virol Sin 2019; 34:278-286. [PMID: 30953292 DOI: 10.1007/s12250-019-00101-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/25/2019] [Indexed: 11/30/2022] Open
Abstract
MicroRNAs (miRNAs) encoded by latency-associated transcript are associated with both latent and acute stages of herpes simplex virus 2 (HSV-2) infection. In this study, miRNA-H4-5p and miRNA-H4-3p were ectopically expressed in HeLa cells to explore potential cellular targets of viral miRNAs and demonstrate their potential biological functions. The results showed that miRNA-H4-5p could reverse apoptosis induced by actinomycin D (Act-D) and promote cell cycle progression, but miRNA-H4-3p had no such obvious functions. Bioinformatics analysis, luciferase report assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and Western blotting demonstrated that miRNA-H4-5p could bind to the 3'-untranslated region (UTR) of cyclin-dependent kinase inhibitor 2A (CDKN2A) and cyclin-dependent kinase-like 2 (CDKL2) to negatively regulate their expression. We verified that these two targeted genes were associated with cell apoptosis and cell cycle. Furthermore, in HeLa cells infected with HSV-2, we detected significantly reduced expression of CDKN2A and CDKL2 and demonstrated the negative regulation effect of miRNA-H4-5p on these two target genes. Our findings show that viral miRNAs play a vital role in regulating the expression of the host's cellular genes that participate in cell apoptosis and progression to reshape the cellular environment in response to HSV-2 infection, providing further information on the roles of encoded herpesvirus miRNAs in pathogen-host interaction.
Collapse
Affiliation(s)
- Yang Zhao
- Guangzhou School of Clinical Medicine, Southern Medical University, Guangzhou, 510010, China
| | - Jingjing Yang
- Guangzhou School of Clinical Medicine, Southern Medical University, Guangzhou, 510010, China
| | - Yan Liu
- Department of Dermatology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Jianyong Fan
- Department of Dermatology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China
| | - Huilan Yang
- Guangzhou School of Clinical Medicine, Southern Medical University, Guangzhou, 510010, China. .,Department of Dermatology, General Hospital of Southern Theatre Command of PLA, Guangzhou, 510010, China.
| |
Collapse
|
17
|
Viral replication and innate immunity of feline herpesvirus-1 virulence-associated genes in feline respiratory epithelial cells. Virus Res 2019; 264:56-67. [PMID: 30796929 DOI: 10.1016/j.virusres.2019.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/26/2019] [Accepted: 02/19/2019] [Indexed: 11/22/2022]
Abstract
Feline herpesvirus-1 (FHV-1) infection occurs worldwide and is a leading cause of respiratory and ocular diseases in cats. Current vaccines reduce the severity of symptoms but do not prevent infection and, therefore, do not provide defense against an establishment of latency and reactivation. We hypothesize that immunomodulation of FHV-1 is the cause of lack in protection and that deletion of virulence/immune modulatory genes of FHV-1 will enhance safety and immunogenicity. Our objective was to use feline respiratory epithelial cell (FREC) cultures to define in vitro growth characteristics and immunomodulation resulting from infection of FRECs with the virulent FHV-1 strain C27 (WT) and glycoprotein C-deletion (gC-), glycoprotein E-deletion (gE-), serine/threonine protein kinase-deletion (PK-), as well as gE and thymidine kinase-double-deletion (gE-TK-) mutants generated by bacterial artificial chromosome mutagenesis. Differentiated FRECs were mock inoculated or inoculated with WT, gC-, gE-, PK-, or gE-TK- mutants. Virus titration and real-time quantitative PCR assays were performed on samples collected at 1 hpi followed by 24 h intervals between 24 and 96 hpi to determine growth kinetics. Real-time PCR was used to quantitate IFNα, TNFα, IL-1β, IL-10, and TGFβ-specific mRNA levels. Immunoassays were performed to measure the protein levels of subsets of cytokines/chemokines secreted by FRECs. Inoculation of FRECs with gE-TK- resulted in significantly lower end-point titers than inoculation with WT or gE-. Both PK- and gC- inoculated FRECs also produced significantly lower end-point titers at 96 hpi than WT. Overall, intracellular virus titers were higher than those of extracellular virus. PCR results for viral DNA paralleled the virus titration results. Further, in contrast to WT inoculation, an increase in IFNα and IL-10 mRNA expression was not observed following inoculation with gE-TK- and PK-, but inoculation with gE-TK- and PK- did result in increased TGFβ expression in FRECs compared to responses following infection with WT. Moreover, gE-TK- and PK- blocked the inhibition of IL-8 and neutrophil chemoattractant (KC), which was observed following inoculation with WT. In summary, the results obtained in FRECs may be used to predict the safety and immunogenicity characteristics of these mutants in vivo. Our study highlights the value of the FREC system for studying replication kinetics/immune modulation factors of FHV-1 and screening prospective vaccine candidates before their use in experimental cats.
Collapse
|
18
|
Wakabayashi K, Machitani M, Tachibana M, Sakurai F, Mizuguchi H. A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing. J Virol 2019; 93:e01265-18. [PMID: 30355689 PMCID: PMC6321910 DOI: 10.1128/jvi.01265-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The adenovirus (Ad) serotype 5 genome encodes two noncoding small RNAs (virus-associated RNAs I and II [VA-RNAI and -II]), which are approximately 160-nucleotide (nt) RNAs transcribed by RNA polymerase III. It is well known that VA-RNAI supports Ad infection via the inhibition of double-stranded RNA-dependent protein kinase (PKR), which recognizes double-stranded RNA and acts as an antiviral system. Recent studies revealed that VA-RNAs are processed into VA-RNA-derived microRNAs (miRNAs) (mivaRNAI and -II); however, we and another group recently demonstrated that mivaRNAI does not promote Ad replication. On the other hand, the roles of VA-RNAII and mivaRNAII in Ad replication have remained to be clarified. In this study, we demonstrated mivaRNAII-mediated promotion of Ad replication. Transfection with chemically synthesized 3'-mivaRNAII-138, one of the most abundant forms of mivaRNAII, significantly enhanced Ad replication, while the other species of mivaRNAII did not. We identified 8 putative target genes of 3'-mivaRNAII-138 by microarray analysis and in silico analysis. Among the 8 candidates, knockdown of the cullin 4A (CUL4A) gene, which encodes a component of the ubiquitin ligase complex, most significantly enhanced Ad replication. CUL4A expression was significantly suppressed by 3'-mivaRNAII-138 via posttranscriptional gene silencing, indicating that CUL4A is a target gene of 3'-mivaRNAII-138 and mivaRNAII functions as a viral miRNA promoting Ad infection. It has been reported that CUL4A is involved in degradation of c-Jun, which acts as a transcription factor in the Jun-N-terminal kinase (JNK) signaling cascade. Treatment with JNK inhibitors dramatically suppressed Ad replication, suggesting that mivaRNAII-mediated downregulation of CUL4A enhanced JNK signaling and thereby promoted Ad infection.IMPORTANCE Several types of viruses encode viral miRNAs which regulate host and/or viral gene expression via posttranscriptional gene silencing, leading to efficient viral infection. Adenovirus (Ad) expresses miRNAs derived from VA-RNAs (mivaRNAI and -II); however, recent studies have revealed that processing of VA-RNAI into mivaRNAI inhibits Ad replication. Conversely, we demonstrate here that mivaRNAII significantly promotes Ad replication and that mivaRNAII-mediated suppression of CUL4A expression via posttranscriptional gene silencing induces accumulation of c-Jun, leading to promotion of Ad infection. These results exhibited the significance of VA-RNAII for supporting Ad infection through a mechanism complementary to that of VA-RNAI. These observations could provide important clues toward a new perspective on host-virus interaction. Moreover, Ad is widely used as a basic framework for viral vectors and oncolytic viruses. Our findings will help to regulate Ad infection and will promote the development of novel Ad vectors and oncolytic Ad.
Collapse
Affiliation(s)
- K Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - M Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - M Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - F Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - H Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Osaka, Japan
| |
Collapse
|
19
|
Abstract
This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM. Cytopathic effects (CPEs) are a hallmark of infections. CPEs are difficult to observe due to phototoxicity from classical light microscopy. We report distinct patterns of virus infections in live cells using digital holo-tomographic microscopy (DHTM). DHTM is label-free and records the phase shift of low-energy light passing through the specimen on a transparent surface with minimal perturbation. DHTM measures the refractive index (RI) and computes the refractive index gradient (RIG), unveiling optical heterogeneity in cells. We find that vaccinia virus (VACV), herpes simplex virus (HSV), and rhinovirus (RV) infections progressively and distinctly increased RIG. VACV infection, but not HSV and RV infections, induced oscillations of cell volume, while all three viruses altered cytoplasmic membrane dynamics and induced apoptotic features akin to those caused by the chemical compound staurosporine. In sum, we introduce DHTM for quantitative label-free microscopy in infection research and uncover virus type-specific changes and CPE in living cells with minimal interference. IMPORTANCE This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is suitable to observe virus-infected cells and distinguishes virus type-specific signatures under noninvasive conditions. It provides a basis for future studies, where correlative fluorescence microscopy of cell and virus structures annotate distinct RIG values derived from DHTM.
Collapse
|
20
|
Guo L, Smith JA, Abelson M, Vlasova-St. Louis I, Schiff LA, Bohjanen PR. Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling. PLoS One 2018; 13:e0204622. [PMID: 30261045 PMCID: PMC6160134 DOI: 10.1371/journal.pone.0204622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Reovirus infection induces dramatic changes in host mRNA expression. We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability. Our analysis detected a subset of cellular transcripts that were coordinately induced and stabilized following infection with the reovirus isolates c87 and c8, strains that led to an inhibition of cellular translation, but not following infection with Dearing, a reovirus isolate that did not negatively impact cellular translation. The induced and stabilized transcripts encode multiple regulators of TGF- β signaling, including components of the Smad signaling network and apoptosis/survival pathways. The coordinate induction, through mRNA stabilization, of multiple genes that encode components of TGF-β signaling pathways represents a novel mechanism by which the host cell responds to reovirus infection.
Collapse
Affiliation(s)
- Liang Guo
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jennifer A. Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michelle Abelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Irina Vlasova-St. Louis
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie A. Schiff
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paul R. Bohjanen
- Program in Infection and Immunity, Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Institute for Molecular Virology Training Program, Graduate Program in Comparative and Molecular Bioscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
21
|
Qian RC, Lv J, Long YT. Controllable Aggregation-Induced Exocytosis Inhibition (CAIEI) of Plasmonic Nanoparticles in Cancer Cells Regulated by MicroRNA. Mol Pharm 2018; 15:4031-4037. [DOI: 10.1021/acs.molpharmaceut.8b00465] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Zheng K, Liu Q, Wang S, Ren Z, Kitazato K, Yang D, Wang Y. HSV-1-encoded microRNA miR-H1 targets Ubr1 to promote accumulation of neurodegeneration-associated protein. Virus Genes 2018. [DOI: 10.1007/s11262-018-1551-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Dai W, Dong H, Guo K, Zhang X. Near-infrared triggered strand displacement amplification for MicroRNA quantitative detection in single living cells. Chem Sci 2017; 9:1753-1759. [PMID: 29732111 PMCID: PMC5909124 DOI: 10.1039/c7sc04243d] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Two hairpin functionalized AuNRs were designed for NIR-laser triggered strand displacement amplification for microRNA quantitative analysis in single living cells.
As an important modulator of gene expression, microRNA (miRNA) has been described as a promising biomarker for the early diagnosis of cancers. A non-invasive method for real-time sensitive imaging and monitoring of miRNA in living cells is in urgent demand. Although some amplified methods have been developed, few can be programmed to assemble single intelligent nanostructures to realize sensitive intracellular miRNA detection without extra addition of an enzyme or catalytic fuel. Herein, two programmable oligonucleotide hairpin probe functionalized gold nanorods (THP-AuNRs) were designed to develop a near-infrared (NIR) laser triggered target strand displacement amplification (SDA) approach for sensitive miRNA imaging quantitative analysis in single living cells and multicellular tumor spheroids (MCTSs). Such a NIR-triggered SDA strategy achieves facile and sensitive monitoring of a model oncogenic miRNA-373 in various cancer lines and MCTS simulated tumor tissue. Notably, using a linear regression equation derived from miRNA mimics, a quantitative method of miRNA in single living cells was realized due to the high sensitivity. This provides a new way for sensitive real-time monitoring of intracellular miRNA, and may be promising for miRNA-based biomedical applications.
Collapse
Affiliation(s)
- Wenhao Dai
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ; .,National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ; .,National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Keke Guo
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ; .,National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology , School of Chemistry and Bioengineering , University of Science & Technology Beijing , Beijing 100083 , P. R. China . ; .,National Institute of Precision Medicine & Health , Beijing , 100083 , P. R. China
| |
Collapse
|
24
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
25
|
Gai P, Gu C, Li H, Sun X, Li F. Ultrasensitive Ratiometric Homogeneous Electrochemical MicroRNA Biosensing via Target-Triggered Ru(III) Release and Redox Recycling. Anal Chem 2017; 89:12293-12298. [DOI: 10.1021/acs.analchem.7b03268] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Panpan Gai
- College of Chemistry and Pharmaceutical
Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Chengcheng Gu
- College of Chemistry and Pharmaceutical
Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical
Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinzhi Sun
- College of Chemistry and Pharmaceutical
Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical
Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
26
|
Wang Z, Zhao Y, Zhang Y. Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Res 2017; 2:38-44. [PMID: 30159419 PMCID: PMC6096409 DOI: 10.1016/j.ncrna.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are found not only in mammals but also in other organisms, including viruses. Recent findings suggest that lncRNAs play various regulatory roles in multiple major biological and pathological processes. During viral life cycles, lncRNAs are involved in a series of steps, including enhancing viral gene expression, promoting viral replication and genome packaging, boosting virion release, maintaining viral latency and assisting viral transformation; additionally, lncRNAs antagonize host antiviral innate immune responses. In contrast to proteins that function in viral infection, lncRNAs are expected to be novel targets for the modulation of all types of biochemical processes due to their broad characteristics and profound influence. This review highlights our current understanding of the regulatory roles of lncRNAs during viral infection processes with an emphasis on the potential usefulness of lncRNAs as a target for viral intervention strategies, which could have therapeutic implications for the application of a clinical approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China.,Open FIESTA Center, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
27
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
28
|
Hodzic J, Sie D, Vermeulen A, van Beusechem VW. Functional Screening Identifies Human miRNAs that Modulate Adenovirus Propagation in Prostate Cancer Cells. Hum Gene Ther 2017; 28:766-780. [PMID: 28114818 DOI: 10.1089/hum.2016.143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncolytic adenoviruses represent a novel class of anticancer agents. Their efficacy in killing cancer cells is variable, suggesting that there is room for improvement. Host miRNAs have been shown to play important roles in susceptibility of cells to replication of different viruses. This study investigated if adenovirus replication in human prostate cancer cells is influenced by host cell miRNA expression. To this end, human miRNA expression in response to adenovirus infection was analyzed, and functional screens for lytic adenovirus replication were performed using synthetic miRNA mimic and inhibitor libraries. Adenovirus infection generally reduced miRNA expression. On top of this nonspecific interference with miRNA biogenesis, a set of miRNAs, including in particular miR-222, was found specifically reduced. Another set of miRNAs was found to promote adenovirus-induced death of prostate cancer cells. In most cases, this did not stimulate adenovirus propagation. The exception was miR-26b. Overexpression of miR-26b inhibited adenovirus-induced NF-κB activation, augmented adenovirus-mediated cell death, increased adenovirus progeny release, and promoted adenovirus propagation and spread in several human prostate cancer cell lines. This suggests that miR-26b is particularly useful to be combined with oncolytic adenovirus for more effective treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmina Hodzic
- 1 Department of Medical Oncology, VU University Medical Center , Amsterdam, Netherlands
| | - Daoud Sie
- 2 Department of Pathology, VU University Medical Center , Amsterdam, Netherlands
| | | | | |
Collapse
|
29
|
Bhadra U, Patra P, Chhatai J, Pal-Bhadra M. Pigmy MicroRNA: surveillance cops in Therapies kingdom. Mol Med 2016; 22:759-775. [PMID: 27704139 PMCID: PMC5193465 DOI: 10.2119/molmed.2016.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are well preserved in every animal. These pigmy sized non-coding RNAs (21-23 nt), scattered in genome, are responsible for micromanaging the versatile gene regulations. Involvement of miRNAs was surveillance cops in all human diseases including cardiovascular defects, tumor formation, reproductive pathways, and neurological and autoimmune disorders. The effective functional role of miRNA can be reduced by chemical entities of antisense oligonucleotides and versatile small molecules that support the views of novel therapy of different human diseases. In this study, we have updated our current understanding for designing and synthesizing miRNA-controlling therapeutic chemicals. We have also proposed various in-vivo delivery strategies and their ongoing challenges to combat the incorporation hurdles in live cells and animals. Lastly, we have demonstrated the current progress of miRNA modulation in the treatment of different human diseases that provides an alternative approach of gene therapy.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Pradipta Patra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Jagamohan Chhatai
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India
| |
Collapse
|
30
|
Wang R, Wang L, Zhao H, Jiang W. A split recognition mode combined with cascade signal amplification strategy for highly specific, sensitive detection of microRNA. Biosens Bioelectron 2016; 86:834-839. [DOI: 10.1016/j.bios.2016.07.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/14/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
|
31
|
Qian RC, Cao Y, Long YT. Binary System for MicroRNA-Targeted Imaging in Single Cells and Photothermal Cancer Therapy. Anal Chem 2016; 88:8640-7. [DOI: 10.1021/acs.analchem.6b01804] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ruo-Can Qian
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| | - Yue Cao
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| | - Yi-Tao Long
- Key Laboratory for Advanced
Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
32
|
The Expression of Human Cytomegalovirus MicroRNA MiR-UL148D during Latent Infection in Primary Myeloid Cells Inhibits Activin A-triggered Secretion of IL-6. Sci Rep 2016; 6:31205. [PMID: 27491954 PMCID: PMC4974560 DOI: 10.1038/srep31205] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/28/2022] Open
Abstract
The successful establishment and maintenance of human cytomegalovirus (HCMV) latency is dependent on the expression of a subset of viral genes. Whilst the exact spectrum and functions of these genes are far from clear, inroads have been made for protein-coding genes. In contrast, little is known about the expression of non-coding RNAs. Here we show that HCMV encoded miRNAs are expressed de novo during latent infection of primary myeloid cells. Furthermore, we demonstrate that miR-UL148D, one of the most highly expressed viral miRNAs during latent infection, directly targets the cellular receptor ACVR1B of the activin signalling axis. Consistent with this, we observed upregulation of ACVR1B expression during latent infection with a miR-UL148D deletion virus (ΔmiR-UL148D). Importantly, we observed that monocytes latently infected with ΔmiR-UL148D are more responsive to activin A stimulation, as demonstrated by their increased secretion of IL-6. Collectively, our data indicates miR-UL148D inhibits ACVR1B expression in latently infected cells to limit proinflammatory cytokine secretion, perhaps as an immune evasion strategy or to postpone cytokine-induced reactivation until conditions are more favourable. This is the first demonstration of an HCMV miRNA function during latency in primary myeloid cells, implicating that small RNA species may contribute significantly to latent infection.
Collapse
|
33
|
Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124:20-30. [PMID: 26818259 DOI: 10.1111/apm.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 01/05/2023]
Abstract
A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses in the origin of the mammalian placenta. It is argued that virus-host persistence is a key determinant of host survival and the various ERVs involved have directly affected virus-host persistence.
Collapse
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M, Mizuguchi H. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep 2016; 6:27598. [PMID: 27273616 PMCID: PMC4895142 DOI: 10.1038/srep27598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
35
|
Franchini P, Xiong P, Fruciano C, Meyer A. The Role of microRNAs in the Repeated Parallel Diversification of Lineages of Midas Cichlid Fish from Nicaragua. Genome Biol Evol 2016; 8:1543-55. [PMID: 27189980 PMCID: PMC4898811 DOI: 10.1093/gbe/evw097] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cichlid fishes are an ideal model system for studying biological diversification because they provide textbook examples of rapid speciation. To date, there has been little focus on the role of gene regulation during cichlid speciation. However, in recent years, gene regulation has been recognized as a powerful force linking diversification in gene function to speciation. Here, we investigated the potential role of miRNA regulation in the diversification of six cichlid species of the Midas cichlid lineage (Amphilophus spp.) inhabiting the Nicaraguan crater lakes. Using several genomic resources, we inferred 236 Midas miRNA genes that were used to predict the miRNA target sites on 8,232 Midas 3′-UTRs. Using population genomic calculations of SNP diversity, we found the miRNA genes to be more conserved than protein coding genes. In contrast to what has been observed in other cichlid fish, but similar to what has been typically found in other groups, we observed genomic signatures of purifying selection on the miRNA targets by comparing these sites with the less conserved nontarget portion of the 3′-UTRs. However, in one species pair that has putatively speciated sympatrically in crater Lake Apoyo, we recovered a different pattern of relaxed purifying selection and high genetic divergence at miRNA targets. Our results suggest that sequence evolution at miRNA binding sites could be a critical genomic mechanism contributing to the rapid phenotypic evolution of Midas cichlids.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany School of Earth Environmental & Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
36
|
Nelli RK, Maes R, Kiupel M, Hussey GS. Use of a feline respiratory epithelial cell culture system grown at the air-liquid interface to characterize the innate immune response following feline herpesvirus 1 infection. Virus Res 2016; 214:39-48. [PMID: 26795546 DOI: 10.1016/j.virusres.2016.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/11/2016] [Accepted: 01/13/2016] [Indexed: 12/24/2022]
Abstract
Infection with feline herpesvirus-1 (FHV-1) accounts for 50% of viral upper respiratory diseases in domestic cats and is a significant cause of ocular diseases. Despite the clinical significance and high prevalence of FHV-1 infection, currently available vaccines cannot completely protect cats from infection and lifelong latency. FHV-1 infects via the mucous membranes and replicates in respiratory epithelial cells, but very little is known about the early innate immunity at this site. To address questions about immunity to FHV-1, feline respiratory epithelial cells cultured at air-liquid interface (ALI-FRECs) were established by collecting respiratory tracts from 6 healthy cats after euthanasia. Cells were isolated, cultured and characterized histologically and immunologically before infection with FHV-1. The expression of Toll-like receptors (TLRs), cytokine and chemokine responses were measured by real time PCR. ALI-FRECs morphologically resembled the natural airways of cats with multilayered columnar epithelial cells and cilia. Immunological properties of the natural airways were maintained in ALI-FRECs, as evidenced by the expression of TLRs, cytokines, chemokines, interferons, beta-defensins, and other regulatory genes. Furthermore, ALI-FRECs were able to support infection and replication of FHV-1, as well as modulate transcriptional regulation of various immune genes in response to infection. IL-1β and TNFα were increased in ALI-FRECs by 24hpi, whereas expression levels of IFN-α and TLR9 were not increased until 36hpi. In contrast, TLR3, GM-CSF and TGF-1β expression was down-regulated at 36hpi. The data presented show the development of a system ideal for investigating the molecular pathogenesis and immunity of FHV-1 or other respiratory pathogens.
Collapse
Affiliation(s)
- Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 784 Wilson Road, East Lansing, MI 48824, USA.
| | - Roger Maes
- Diagnostic Center for Population and Animal Health, 4125 Beaumont Road, Building 0215, Lansing, MI 48910, USA.
| | - Matti Kiupel
- Diagnostic Center for Population and Animal Health, 4125 Beaumont Road, Building 0215, Lansing, MI 48910, USA.
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 784 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
37
|
Liao X, Ju H. In situ quantitation of intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe. Chem Commun (Camb) 2015; 51:2141-4. [PMID: 25553789 DOI: 10.1039/c4cc09097g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A method was designed for in situ quantitation and monitoring of the change in intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe.
Collapse
Affiliation(s)
- Xianjiu Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China.
| | | |
Collapse
|
38
|
Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, Chen R, Li J, Fan GC, Lacefield JC, Peng T. Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 2015; 58:1949-58. [PMID: 25994075 PMCID: PMC4499474 DOI: 10.1007/s00125-015-3622-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/14/2015] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS MicroRNAs (miRs) have been suggested as potential therapeutic targets for heart diseases. Inhibition of miR-195 prevents apoptosis in cardiomyocytes stimulated with palmitate and transgenic overexpression of miR-195 induces cardiac hypertrophy and heart failure. We investigated whether silencing of miR-195 reduces diabetic cardiomyopathy in a mouse model of streptozotocin (STZ)-induced type 1 diabetes. METHODS Type 1 diabetes was induced in C57BL/6 mice (male, 2 months old) by injections of STZ. RESULTS MiR-195 expression was increased and levels of its target proteins (B cell leukaemia/lymphoma 2 and sirtuin 1) were decreased in STZ-induced type 1 and db/db type 2 diabetic mouse hearts. Systemically delivering an anti-miR-195 construct knocked down miR-195 expression in the heart, reduced caspase-3 activity, decreased oxidative stress, attenuated myocardial hypertrophy and improved myocardial function in STZ-induced mice with a concurrent upregulation of B cell leukaemia/lymphoma 2 and sirtuin 1. Diabetes reduced myocardial capillary density and decreased maximal coronary blood flow in mice. Knockdown of miR-195 increased myocardial capillary density and improved maximal coronary blood flow in diabetic mice. Upregulation of miR-195 sufficiently induced apoptosis in cardiomyocytes and attenuated the angiogenesis of cardiac endothelial cells in vitro. Furthermore, inhibition of miR-195 prevented apoptosis in cardiac endothelial cells in response to NEFA, an important feature of diabetes. CONCLUSIONS/INTERPRETATION Therapeutic silencing of miR-195 reduces myocardial hypertrophy and improves coronary blood flow and myocardial function in diabetes, at least in part by reducing oxidative damage, inhibiting apoptosis and promoting angiogenesis. Thus, miR-195 may represent an alternative therapeutic target for diabetic heart diseases.
Collapse
Affiliation(s)
- Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China 215123
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, Canada N6A 4G5
- Department of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Jian Ma
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, Canada N6A 4G5
- Department of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Yong Yu
- Zhongshan Hospital of Fudan University, Shanghai, China
| | - Minghui Li
- Zhongshan Hospital of Fudan University, Shanghai, China
| | - Rui Ni
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, Canada N6A 4G5
- Department of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Grace Wang
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Ruizhen Chen
- Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C. Lacefield
- Electrical and Computer Engineering, Medical Biophysics, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province, China 215123
- Critical Illness Research, Lawson Health Research Institute, VRL 6th Floor, A6-140, 800 Commissioners Road, London, ON, Canada N6A 4G5
- Department of Medicine, The University of Western Ontario, London, ON, Canada
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
39
|
Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou SF, Zhang Y, Zhang X. Multifunctional Poly(L-lactide)-Polyethylene Glycol-Grafted Graphene Quantum Dots for Intracellular MicroRNA Imaging and Combined Specific-Gene-Targeting Agents Delivery for Improved Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11015-23. [PMID: 25942410 DOI: 10.1021/acsami.5b02803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoluminescent (PL) graphene quantum dots (GQDs) with large surface area and superior mechanical flexibility exhibit fascinating optical and electronic properties and possess great promising applications in biomedical engineering. Here, a multifunctional nanocomposite of poly(l-lactide) (PLA) and polyethylene glycol (PEG)-grafted GQDs (f-GQDs) was proposed for simultaneous intracellular microRNAs (miRNAs) imaging analysis and combined gene delivery for enhanced therapeutic efficiency. The functionalization of GQDs with PEG and PLA imparts the nanocomposite with super physiological stability and stable photoluminescence over a broad pH range, which is vital for cell imaging. Cell experiments demonstrate the f-GQDs excellent biocompatibility, lower cytotoxicity, and protective properties. Using the HeLa cell as a model, we found the f-GQDs effectively delivered a miRNA probe for intracellular miRNA imaging analysis and regulation. Notably, the large surface of GQDs was capable of simultaneous adsorption of agents targeting miRNA-21 and survivin, respectively. The combined conjugation of miRNA-21-targeting and survivin-targeting agents induced better inhibition of cancer cell growth and more apoptosis of cancer cells, compared with conjugation of agents targeting miRNA-21 or survivin alone. These findings highlight the promise of the highly versatile multifunctional nanocomposite in biomedical application of intracellular molecules analysis and clinical gene therapeutics.
Collapse
Affiliation(s)
| | | | - Huangxian Ju
- ‡State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | | | | | | | - Shu-Feng Zhou
- ⊥Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida 33612, United States
| | | | | |
Collapse
|
40
|
Liao X, Wang Q, Ju H. A peptide nucleic acid-functionalized carbon nitride nanosheet as a probe for in situ monitoring of intracellular microRNA. Analyst 2015; 140:4245-52. [PMID: 25923049 DOI: 10.1039/c5an00128e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel probe for recognition of both cancer cells and intracellular microRNA (miRNA) is designed by functionalizing a carbon nitride nanosheet (f-CNNS) with a Cy5-labeled peptide nucleic acid (Cy5-PNA) and folate. The interaction between Cy5-PNA and CNNS quenches the fluorescence of Cy5, and the presence of folate endows the probe with good specificity to folate acceptor overexpressed cells. The probe can be specifically taken up by cancer cells with an incubation step. Upon the recognition of the PNA to complementary miRNA, the hybridization product is released from the CNNS surface, which leads to the fluorescence recovery and provides a specific method for sensing of miRNA. Thus, this probe can be used for cell-specific intracellular miRNA sensing with a confocal microscope. Using miRNA-18a as a target model, the dynamic changes of its expression level inside living cells can be monitored with the proposed method. This method possesses promising applications in the study of miRNA related bioprocesses and biomedicine.
Collapse
Affiliation(s)
- Xianjiu Liao
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | | | |
Collapse
|
41
|
Zhang BC, Zhang J, Sun L. In-depth profiling and analysis of host and viral microRNAs in Japanese flounder (Paralichthys olivaceus) infected with megalocytivirus reveal involvement of microRNAs in host-virus interaction in teleost fish. BMC Genomics 2014; 15:878. [PMID: 25297525 PMCID: PMC4200114 DOI: 10.1186/1471-2164-15-878] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Background MicroRNAs (miRNAs) regulate gene expression by binding to mRNA transcripts in various biological processes. In mammals and birds, miRNAs are known to play vital parts in both host immune defense and viral infection. However, in lower vertebrates such as teleost, systematic investigations on host and viral miRNAs are lacking. Results In this study, we applied high-throughput sequencing technology to identify and analyze both host and viral miRNAs in Japanese flounder (Paralichthys olivaceus), an economically important teleost fish farmed widely in the world, infected with megalocytivirus at a timescale of 14 days divided into five different time points. The results showed that a total of 381 host miRNAs and 9 viral miRNAs were identified, the latter being all novel miRNAs that have no homologues in the currently available databases. Of the host miRNAs, 251 have been reported previously in flounder and other species, and 130 were discovered for the first time. The expression levels of 121 host miRNAs were significantly altered at 2 d to 14 d post-viral infection (pi), and these miRNAs were therefore classified as differentially expressed host miRNAs. The expression levels of all 9 viral miRNAs increased from 0 d pi to 10 d pi and then dropped from 10 d pi to 14 d pi. For the 121 differentially expressed host miRNAs and the 9 viral miRNAs, 243 and 48 putative target genes, respectively, were predicted in flounder. GO and KEGG enrichment analysis revealed that the putative target genes of both host and viral miRNAs were grouped mainly into the categories of immune response, signal transduction, and apoptotic process. Conclusions The results of our study provide the first evidences that indicate existence in teleost fish (i) infection-responsive host and viral miRNAs that exhibit dynamic changes in expression profiles during the course of viral infection, and (ii) potential involvement of miRNAs in host-viral interaction. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-878) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
42
|
Liao X, Wang Q, Ju H. Simultaneous sensing of intracellular microRNAs with a multi-functionalized carbon nitride nanosheet probe. Chem Commun (Camb) 2014; 50:13604-7. [DOI: 10.1039/c4cc05768f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Babu SG, Pandeya A, Verma N, Shukla N, Kumar RV, Saxena S. Role of HCMV miR-UL70-3p and miR-UL148D in overcoming the cellular apoptosis. Mol Cell Biochem 2014; 393:89-98. [PMID: 24737391 DOI: 10.1007/s11010-014-2049-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
Abstract
The studies into the pathophysiology of viral miRNAs are still in infancy; the interspecies regulation at the miRNA level fuels the spark of the investigation into the repertoire of virus-host interactions. Reports pertaining to the viral miRNAs role in modulating/evading the host immune response are surging up; we initiated this in silico study to speculate the role of human cytomegalovirus (HCMV)-encoded miRNAs on human antiviral mechanisms such as apoptosis and autophagy. The results indicate that both the above mechanisms were targeted by the HCMV miRNAs, located in the unique long region of the HCMV genome. The proapoptotic genes MOAP1, PHAP, and ERN1 are identified to be the potential targets for the miR-UL70-3p and UL148D, respectively. The ERN1 gene plays a role in the initiation of Endoplasmic reticulum stress-induced apoptosis as well as autophagosome formation. This study shows that HCMV employs its miRNA repertoire for countering the cellular apoptosis and autophagy, particularly the mitochondrial-dependent intrinsic pathway of apoptosis. In addition, the homology studies reveal no HCMV miRNA bears sequence homology with human miRNAs.
Collapse
Affiliation(s)
- Sunil G Babu
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226 025, India,
| | | | | | | | | | | |
Collapse
|
44
|
Giurato G, De Filippo MR, Rinaldi A, Hashim A, Nassa G, Ravo M, Rizzo F, Tarallo R, Weisz A. iMir: an integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by smallRNA-Seq. BMC Bioinformatics 2013; 14:362. [PMID: 24330401 PMCID: PMC3878829 DOI: 10.1186/1471-2105-14-362] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/10/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Qualitative and quantitative analysis of small non-coding RNAs by next generation sequencing (smallRNA-Seq) represents a novel technology increasingly used to investigate with high sensitivity and specificity RNA population comprising microRNAs and other regulatory small transcripts. Analysis of smallRNA-Seq data to gather biologically relevant information, i.e. detection and differential expression analysis of known and novel non-coding RNAs, target prediction, etc., requires implementation of multiple statistical and bioinformatics tools from different sources, each focusing on a specific step of the analysis pipeline. As a consequence, the analytical workflow is slowed down by the need for continuous interventions by the operator, a critical factor when large numbers of datasets need to be analyzed at once. RESULTS We designed a novel modular pipeline (iMir) for comprehensive analysis of smallRNA-Seq data, comprising specific tools for adapter trimming, quality filtering, differential expression analysis, biological target prediction and other useful options by integrating multiple open source modules and resources in an automated workflow. As statistics is crucial in deep-sequencing data analysis, we devised and integrated in iMir tools based on different statistical approaches to allow the operator to analyze data rigorously. The pipeline created here proved to be efficient and time-saving than currently available methods and, in addition, flexible enough to allow the user to select the preferred combination of analytical steps. We present here the results obtained by applying this pipeline to analyze simultaneously 6 smallRNA-Seq datasets from either exponentially growing or growth-arrested human breast cancer MCF-7 cells, that led to the rapid and accurate identification, quantitation and differential expression analysis of ~450 miRNAs, including several novel miRNAs and isomiRs, as well as identification of the putative mRNA targets of differentially expressed miRNAs. In addition, iMir allowed also the identification of ~70 piRNAs (piwi-interacting RNAs), some of which differentially expressed in proliferating vs growth arrested cells. CONCLUSION The integrated data analysis pipeline described here is based on a reliable, flexible and fully automated workflow, useful to rapidly and efficiently analyze high-throughput smallRNA-Seq data, such as those produced by the most recent high-performance next generation sequencers. iMir is available at http://www.labmedmolge.unisa.it/inglese/research/imir.
Collapse
Affiliation(s)
- Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | | | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Adnan Hashim
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, via Allende, 1, Salerno, Baronissi, Italy
- Division of Molecular Pathology and Medical Genomics, “SS. Giovanni di Dio e Ruggi d’Aragona – Schola Medica Salernitana” University of Salerno Hospital, Salerno, Italy
| |
Collapse
|
45
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
46
|
Adenovirus death protein (ADP) is required for lytic infection of human lymphocytes. J Virol 2013; 88:903-12. [PMID: 24198418 DOI: 10.1128/jvi.01675-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus death protein (ADP) is expressed at late times during a lytic infection of species C adenoviruses. ADP promotes the release of progeny virus by accelerating the lysis and death of the host cell. Since some human lymphocytes survive while maintaining a persistent infection with species C adenovirus, we compared ADP expression in these cells with ADP expression in lymphocytes that proceed with a lytic infection. Levels of ADP were low in KE37 and BJAB cells, which support a persistent infection. In contrast, levels of ADP mRNA and protein were higher in Jurkat cells, which proceed with a lytic infection. Epithelial cells infected with an ADP-overexpressing virus died more quickly than epithelial cells infected with an ADP-deleted virus. However, KE37, and BJAB cells remained viable after infection with the ADP-overexpressing virus. Although the levels of ADP mRNA increased in KE37 and BJAB cells infected with the ADP-overexpressing virus, the fraction of cells with detectable ADP was unchanged, suggesting that the control of ADP expression differs between epithelial and lymphocytic cells. When infected with an ADP-deleted adenovirus, Jurkat cells survived and maintained viral DNA for greater than 1 month. These findings are consistent with the notion that the level of ADP expression determines whether lymphocytic cells proceed with a lytic or a persistent adenovirus infection.
Collapse
|
47
|
Wei C, Li L, Gupta S. NF-κB-mediated miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2. Mol Cell Biochem 2013; 387:135-41. [PMID: 24178239 DOI: 10.1007/s11010-013-1878-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
Abstract
Angiotensin II(Ang II)-stimulated cardiomyocytes hypertrophy and apoptosis are associated with nuclear factor-κB (NF-κB) activation. NF-κB, a redox-sensitive transcription factor, contributes a critical role in cell death, but, Ang II-stimulated NF-κB-mediated cardiomyocytes apoptosis remains less understood. Recently, microRNAs (miRNAs) have been shown to be critical regulators in various cardiac remodeling processes; however, NF-κB-mediated miRNA's role in cardiomyocytes apoptosis remains undetermined. The miR-30b has been implicated in diverse cardiac remodeling; but, NF-κB-mediated miR-30b modulation in Ang II-induced cardiomyocytes death is currently unknown. In the present study, neonatal cardiomyocytes were pretreated with SN50, a selective cell permeable peptide inhibitor of NF-κB, or transfected with miR-30b mimetic and inhibitors separately, and then challenged with Ang II. The target gene, Bcl-2, and NF-κB transcriptional activity were analyzed. Our results demonstrated that NF-κB positively regulated miR-30b expression in Ang II-induced cardiomyocytes apoptosis, and Bcl-2 was a direct target for miR-30b. NF-κB further regulated the expression of Bcl-2 in the above setting. Furthermore, Ang II-induced cardiomyocytes apoptosis rescued by inhibiting either NF-κB or miR-30b provided an important role in cardiomyocytes cell death. We evaluated a critical role of NF-κB-mediated miR-30b modulation in Ang II-stimulated cardiomyocytes targeting Bcl-2. Our data may provide a new insight of miR-30b's role in myocardial infarction or ischemia.
Collapse
Affiliation(s)
- Chuanyu Wei
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Temple, TX, USA
| | | | | |
Collapse
|
48
|
Yang HJ, Huang TJ, Yang CF, Peng LX, Liu RY, Yang GD, Chu QQ, Huang JL, Liu N, Huang HB, Zhu ZY, Qian CN, Huang BJ. Comprehensive profiling of Epstein-Barr virus-encoded miRNA species associated with specific latency types in tumor cells. Virol J 2013; 10:314. [PMID: 24161012 PMCID: PMC4231337 DOI: 10.1186/1743-422x-10-314] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an etiological cause of many human lymphocytic and epithelial malignancies. EBV expresses different genes that are associated with three latency types. To date, as many as 44 EBV-encoded miRNA species have been found, but their comprehensive profiles in the three types of latent infection that are associated with various types of tumors are not well documented. METHODS In the present study, we utilized poly (A)-tailed quantitative real-time RT-PCR in combination with microarray analysis to measure the relative abundances of viral miRNA species in a subset of representative lymphoid and epithelial tumor cells with various EBV latency types. RESULTS Our findings showed that the miR-BHRF1 and miR-BART families were expressed differentially in a tissue- and latency type-dependent manner. Specifically, in nasopharyngeal carcinoma (NPC) tissues and the EBV-positive cell line C666-1, the miR-BART family accounted for more than 10% of all detected miRNAs, suggesting that these miRNAs have important roles in maintaining latent EBV infections and in driving NPC tumorigenesis. In addition, EBV miRNA-based clustering analysis clearly distinguished between the three distinct EBV latency types, and our results suggested that a switch from type I to type III latency might occur in the Daudi BL cell line. CONCLUSIONS Our data provide a comprehensive profiling of the EBV miRNA transcriptome that is associated with specific tumor cells in the three types of latent EBV infection states. EBV miRNA species represent a cluster of non-encoding latency biomarkers that are differentially expressed in tumor cells and may help to distinguish between the different latency types.
Collapse
Affiliation(s)
- Hong-Jie Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, the second People’s Hospital of Shenzhen, Shenzhen 518038, China
| | - Chang-Fu Yang
- Department of Cancer Chemotherapy, the People’s Hospital of Gaozhou, Guangzhou, Guangdong province 525200, China
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou Guangdong province, P.R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Guang-Da Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiao-Qiao Chu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou People’s Republic of China
| | - Jia-Ling Huang
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong-Bing Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhen-Yu Zhu
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou Guangdong province, P.R. China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
49
|
Abstract
The majority of viral vectors currently used possess modest cargo capability (up to 40 kb) being based on retroviruses, lentiviruses, adenoviruses, and adenoassociated viruses. These vectors have made the most rapid transition from laboratory to clinic because their small genomes have simplified their characterization and modification. However, there is now an increasing need both in research and therapy to complement this repertoire with larger capacity vectors able to deliver multiple transgenes or to encode complex regulatory regions, constructs which can easily span more than 100 kb. Herpes Simplex Virus Type I (HSV-1) is a well-characterized human virus which is able to package about 150 kb of DNA, and several vector systems are currently in development for gene transfer applications, particularly in neurons where other systems have low efficiency. However, to reach the same level of versatility and ease of use as that of smaller genome viral vectors, simple systems for high-titer production must be developed. This paper reviews the major HSV-1 vector systems and analyses the common elements which may be most important to manipulate to achieve this goal.
Collapse
Affiliation(s)
- Filip Lim
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
50
|
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: Function, Detection, and Bioanalysis. Chem Rev 2013; 113:6207-33. [PMID: 23697835 DOI: 10.1021/cr300362f] [Citation(s) in RCA: 883] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|