1
|
Lindstrøm CA, Beinortaitė J, Björklund Svensson J, Boulton L, Chappell J, Diederichs S, Foster B, Garland JM, González Caminal P, Loisch G, Peña F, Schröder S, Thévenet M, Wesch S, Wing M, Wood JC, D'Arcy R, Osterhoff J. Emittance preservation in a plasma-wakefield accelerator. Nat Commun 2024; 15:6097. [PMID: 39030170 PMCID: PMC11271607 DOI: 10.1038/s41467-024-50320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/04/2024] [Indexed: 07/21/2024] Open
Abstract
Radio-frequency particle accelerators are engines of discovery, powering high-energy physics and photon science, but are also large and expensive due to their limited accelerating fields. Plasma-wakefield accelerators (PWFAs) provide orders-of-magnitude stronger fields in the charge-density wave behind a particle bunch travelling in a plasma, promising particle accelerators of greatly reduced size and cost. However, PWFAs can easily degrade the beam quality of the bunches they accelerate. Emittance, which determines how tightly beams can be focused, is a critical beam quality in for instance colliders and free-electron lasers, but is particularly prone to degradation. We demonstrate, for the first time, emittance preservation in a high-gradient and high-efficiency PWFA while simultaneously preserving charge and energy spread. This establishes that PWFAs can accelerate without degradation-an essential step toward energy boosters in photon science and multistage facilities for compact high-energy particle colliders.
Collapse
Affiliation(s)
- C A Lindstrøm
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
- Department of Physics, University of Oslo, Oslo, Norway.
| | - J Beinortaitė
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department, University College London, London, UK
| | | | - L Boulton
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow, UK
- The Cockcroft Institute, Daresbury, UK
| | - J Chappell
- Department, University College London, London, UK
| | - S Diederichs
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Universität Hamburg, Hamburg, Germany
| | - B Foster
- John Adams Institute, Department of Physics, University of Oxford, Oxford, UK
| | - J M Garland
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P González Caminal
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Universität Hamburg, Hamburg, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F Peña
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Universität Hamburg, Hamburg, Germany
| | - S Schröder
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M Thévenet
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S Wesch
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - M Wing
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department, University College London, London, UK
| | - J C Wood
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| |
Collapse
|
2
|
Pompili R, Anania MP, Biagioni A, Carillo M, Chiadroni E, Cianchi A, Costa G, Curcio A, Crincoli L, Del Dotto A, Del Giorno M, Demurtas F, Frazzitta A, Galletti M, Giribono A, Lollo V, Opromolla M, Parise G, Pellegrini D, Di Pirro G, Romeo S, Rossi AR, Silvi GJ, Verra L, Villa F, Zigler A, Ferrario M. Guiding of Charged Particle Beams in Curved Plasma-Discharge Capillaries. PHYSICAL REVIEW LETTERS 2024; 132:215001. [PMID: 38856283 DOI: 10.1103/physrevlett.132.215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 06/11/2024]
Abstract
We present a new approach that demonstrates the deflection and guiding of relativistic electron beams over curved paths by means of the magnetic field generated in a plasma-discharge capillary. We experimentally prove that the guiding is much less affected by the beam chromatic dispersion with respect to a conventional bending magnet and, with the support of numerical simulations, we show that it can even be made dispersionless by employing larger discharge currents. This proof-of-principle experiment extends the use of plasma-based devices, that revolutionized the field of particle accelerators enabling the generation of GeV beams in few centimeters. Compared to state-of-the-art technology based on conventional bending magnets and quadrupole lenses, these results provide a compact and affordable solution for the development of next-generation tabletop facilities.
Collapse
Affiliation(s)
- R Pompili
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Biagioni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Carillo
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - E Chiadroni
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - A Cianchi
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Curcio
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - L Crincoli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Del Dotto
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Del Giorno
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Demurtas
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - A Frazzitta
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN Milano, via Celoria 16, 20133 Milan, Italy
| | - M Galletti
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - V Lollo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Opromolla
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G Parise
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - D Pellegrini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A R Rossi
- INFN Milano, via Celoria 16, 20133 Milan, Italy
| | - G J Silvi
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - L Verra
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Zigler
- Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
| | - M Ferrario
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
3
|
Pompili R, Anania MP, Biagioni A, Carillo M, Chiadroni E, Cianchi A, Costa G, Curcio A, Crincoli L, Del Dotto A, Del Giorno M, Demurtas F, Galletti M, Giribono A, Lollo V, Opromolla M, Parise G, Pellegrini D, Di Pirro G, Romeo S, Silvi GJ, Verra L, Villa F, Zigler A, Ferrario M. Acceleration and focusing of relativistic electron beams in a compact plasma device. Phys Rev E 2024; 109:055202. [PMID: 38907494 DOI: 10.1103/physreve.109.055202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 06/24/2024]
Abstract
Plasma wakefield acceleration represented a breakthrough in the field of particle accelerators by pushing beams to gigaelectronvolt energies within centimeter distances. The large electric fields excited by a driver pulse in the plasma can efficiently accelerate a trailing witness bunch paving the way toward the realization of laboratory-scale applications like free-electron lasers. However, while the accelerator size is tremendously reduced, upstream and downstream of it the beams are still handled with conventional magnetic optics with sizable footprints and rather long focal lengths. Here we show the operation of a compact device that integrates two active-plasma lenses with short focal lengths to assist the plasma accelerator stage. We demonstrate the focusing and energy gain of a witness bunch whose phase space is completely characterized in terms of energy and emittance. These results represent an important step toward the accelerator miniaturization and the development of next-generation table-top machines.
Collapse
Affiliation(s)
- R Pompili
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Biagioni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Carillo
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - E Chiadroni
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - A Cianchi
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Curcio
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - L Crincoli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Del Dotto
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Del Giorno
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Demurtas
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - M Galletti
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - V Lollo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Opromolla
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G Parise
- University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - D Pellegrini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G J Silvi
- University of Rome Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - L Verra
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Zigler
- Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
| | - M Ferrario
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
4
|
Nechaeva T, Verra L, Pucek J, Ranc L, Bergamaschi M, Zevi Della Porta G, Muggli P, Agnello R, Ahdida CC, Amoedo C, Andrebe Y, Apsimon O, Apsimon R, Arnesano JM, Bencini V, Blanchard P, Burrows PN, Buttenschön B, Caldwell A, Chung M, Cooke DA, Davut C, Demeter G, Dexter AC, Doebert S, Farmer J, Fasoli A, Fonseca R, Furno I, Granados E, Granetzny M, Graubner T, Grulke O, Gschwendtner E, Guran E, Henderson J, Kedves MÁ, Kim SY, Kraus F, Krupa M, Lefevre T, Liang L, Liu S, Lopes N, Lotov K, Martinez Calderon M, Mazzoni S, Moon K, Morales Guzmán PI, Moreira M, Okhotnikov N, Pakuza C, Pannell F, Pardons A, Pepitone K, Poimenidou E, Pukhov A, Rey S, Rossel R, Saberi H, Schmitz O, Senes E, Silva F, Silva L, Spear B, Stollberg C, Sublet A, Swain C, Topaloudis A, Torrado N, Turner M, Velotti F, Verzilov V, Vieira J, Welsch C, Wendt M, Wing M, Wolfenden J, Woolley B, Xia G, Yarygova V, Zepp M. Hosing of a Long Relativistic Particle Bunch in Plasma. PHYSICAL REVIEW LETTERS 2024; 132:075001. [PMID: 38427892 DOI: 10.1103/physrevlett.132.075001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Experimental results show that hosing of a long particle bunch in plasma can be induced by wakefields driven by a short, misaligned preceding bunch. Hosing develops in the plane of misalignment, self-modulation in the perpendicular plane, at frequencies close to the plasma electron frequency, and are reproducible. Development of hosing depends on misalignment direction, its growth on misalignment extent and on proton bunch charge. Results have the main characteristics of a theoretical model, are relevant to other plasma-based accelerators and represent the first characterization of hosing.
Collapse
Affiliation(s)
- T Nechaeva
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - L Verra
- CERN, 1211 Geneva 23, Switzerland
| | - J Pucek
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - L Ranc
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Bergamaschi
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - G Zevi Della Porta
- Max Planck Institute for Physics, 80805 Munich, Germany
- CERN, 1211 Geneva 23, Switzerland
| | - P Muggli
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - R Agnello
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | | | - C Amoedo
- CERN, 1211 Geneva 23, Switzerland
| | - Y Andrebe
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | - O Apsimon
- University of Manchester M13 9PL, Manchester M13 9PL, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
| | - R Apsimon
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- Lancaster University, Lancaster LA1 4YB, United Kingdom
| | | | - V Bencini
- CERN, 1211 Geneva 23, Switzerland
- John Adams Institute, Oxford University, Oxford OX1 3RH, United Kingdom
| | - P Blanchard
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | - P N Burrows
- John Adams Institute, Oxford University, Oxford OX1 3RH, United Kingdom
| | - B Buttenschön
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - A Caldwell
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Chung
- UNIST, Ulsan 44919, Republic of Korea
| | | | - C Davut
- University of Manchester M13 9PL, Manchester M13 9PL, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
| | - G Demeter
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - A C Dexter
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- Lancaster University, Lancaster LA1 4YB, United Kingdom
| | | | - J Farmer
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - A Fasoli
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | - R Fonseca
- ISCTE - Instituto Universitéario de Lisboa, 1049-001 Lisbon, Portugal
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - I Furno
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | | | - M Granetzny
- University of Wisconsin, Madison, Wisconsin 53706, USA
| | - T Graubner
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | - O Grulke
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
- Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | - E Guran
- CERN, 1211 Geneva 23, Switzerland
| | - J Henderson
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- STFC/ASTeC, Daresbury Laboratory, Warrington WA4 4AD, United Kingdom
| | - M Á Kedves
- Wigner Research Centre for Physics, 1121 Budapest, Hungary
| | - S-Y Kim
- CERN, 1211 Geneva 23, Switzerland
- UNIST, Ulsan 44919, Republic of Korea
| | - F Kraus
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | - M Krupa
- CERN, 1211 Geneva 23, Switzerland
| | | | - L Liang
- University of Manchester M13 9PL, Manchester M13 9PL, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
| | - S Liu
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - N Lopes
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - K Lotov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | | | - K Moon
- UNIST, Ulsan 44919, Republic of Korea
| | | | - M Moreira
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - N Okhotnikov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - C Pakuza
- John Adams Institute, Oxford University, Oxford OX1 3RH, United Kingdom
| | | | | | - K Pepitone
- Angstrom Laboratory, Department of Physics and Astronomy, 752 37 Uppsala, Sweden
| | | | - A Pukhov
- John Adams Institute, Oxford University, Oxford OX1 3RH, United Kingdom
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - S Rey
- CERN, 1211 Geneva 23, Switzerland
| | - R Rossel
- CERN, 1211 Geneva 23, Switzerland
| | - H Saberi
- University of Manchester M13 9PL, Manchester M13 9PL, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
| | - O Schmitz
- University of Wisconsin, Madison, Wisconsin 53706, USA
| | - E Senes
- CERN, 1211 Geneva 23, Switzerland
| | - F Silva
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - L Silva
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - B Spear
- John Adams Institute, Oxford University, Oxford OX1 3RH, United Kingdom
| | - C Stollberg
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland
| | - A Sublet
- CERN, 1211 Geneva 23, Switzerland
| | - C Swain
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | | | - N Torrado
- CERN, 1211 Geneva 23, Switzerland
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - M Turner
- CERN, 1211 Geneva 23, Switzerland
| | | | - V Verzilov
- TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
| | - J Vieira
- GoLP/Instituto de Plasmas e Fusáo Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - C Welsch
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | - M Wendt
- CERN, 1211 Geneva 23, Switzerland
| | - M Wing
- UCL, London WC1 6BT, United Kingdom
| | - J Wolfenden
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
- University of Liverpool, Liverpool L69 7ZE, United Kingdom
| | | | - G Xia
- University of Manchester M13 9PL, Manchester M13 9PL, United Kingdom
- Cockcroft Institute, Warrington WA4 4AD, United Kingdom
| | - V Yarygova
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - M Zepp
- University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Knetsch A, Andriyash IA, Gilljohann M, Kononenko O, Matheron A, Mankovska Y, San Miguel Claveria P, Zakharova V, Adli E, Corde S. High Average Gradient in a Laser-Gated Multistage Plasma Wakefield Accelerator. PHYSICAL REVIEW LETTERS 2023; 131:135001. [PMID: 37831999 DOI: 10.1103/physrevlett.131.135001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/27/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
Plasma wakefield accelerators driven by particle beams are capable of providing accelerating gradient several orders of magnitude higher than currently used radio-frequency technology, which could reduce the length of particle accelerators, with drastic influence on the development of future colliders at TeV energies and the minimization of x-ray free-electron lasers. Since interplasma components and distances are among the biggest contributors to the total accelerator length, the design of staged plasma accelerators is one of the most important outstanding questions in order to render this technology instrumental. Here, we present a novel concept to optimize interplasma distances in a staged beam-driven plasma accelerator by drive-beam coupling in the temporal domain and gating the accelerator via a femtosecond ionization laser.
Collapse
Affiliation(s)
- A Knetsch
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - I A Andriyash
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - M Gilljohann
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - O Kononenko
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - A Matheron
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - Y Mankovska
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - P San Miguel Claveria
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - V Zakharova
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - E Adli
- Department of Physics, University of Oslo, N-0316 Oslo, Norway
| | - S Corde
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| |
Collapse
|
6
|
Baturin SS. Effects of the transversely nonuniform plasma density in a blowout regime of a plasma wakefield accelerator. Phys Rev E 2023; 108:015202. [PMID: 37583132 DOI: 10.1103/physreve.108.015202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/16/2023] [Indexed: 08/17/2023]
Abstract
We present an analytical study on the effects of the transverse plasma gradient in the blowout regime of a plasma wakefield accelerator. The analysis departs from a simple ballistic model of plasma electrons and allows us to derive a complete analytic solution for the pseudopotential and, consequently, for the wakefield. We demonstrate that the transverse plasma gradient modifies the bubble shape and affects the wakefield; namely, the dipole plasma gradient results in a dipole component of the wakefield. Analysis suggests that, despite the asymmetry, the instability due to the fixed transverse plasma gradient is unlikely, as the total wakefield has a single stable point inside the bubble. The only effect that occurs is the shift of the electromagnetic center. We point out that random fluctuation of the transverse plasma gradient could become an issue.
Collapse
Affiliation(s)
- S S Baturin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
7
|
Laser–Plasma Wake Velocity Control by Multi-Mode Beatwave Excitation in a Channel. PLASMA 2023. [DOI: 10.3390/plasma6010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The phase velocity of a laser-driven wakefield can be efficiently controlled in a plasma channel. A beatwave of two long laser pulses is used. The frequency difference between these two laser pulses equals the local plasma frequency, so that the slow resonant excitation of the plasma wave is possible. Because the driver energy is spread over many plasma periods, the interference pattern can run with an arbitrary velocity along the channel and generate the wakefield with the same phase velocity. This velocity is defined by the channel radius and the structure of laser transverse modes excited in the channel. The wake velocity can be matched exactly to the witness velocity. This can be the vacuum speed of light for ultra-relativistic witnesses, or subluminal velocities for low-energy, weakly relativistic witnesses such as muons.
Collapse
|
8
|
Galletti M, Alesini D, Anania MP, Arjmand S, Behtouei M, Bellaveglia M, Biagioni A, Buonomo B, Cardelli F, Carpanese M, Chiadroni E, Cianchi A, Costa G, Del Dotto A, Del Giorno M, Dipace F, Doria A, Filippi F, Franzini G, Giannessi L, Giribono A, Iovine P, Lollo V, Mostacci A, Nguyen F, Opromolla M, Pellegrino L, Petralia A, Petrillo V, Piersanti L, Di Pirro G, Pompili R, Romeo S, Rossi AR, Selce A, Shpakov V, Stella A, Vaccarezza C, Villa F, Zigler A, Ferrario M. Stable Operation of a Free-Electron Laser Driven by a Plasma Accelerator. PHYSICAL REVIEW LETTERS 2022; 129:234801. [PMID: 36563228 DOI: 10.1103/physrevlett.129.234801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
The breakthrough provided by plasma-based accelerators enabled unprecedented accelerating fields by boosting electron beams to gigaelectronvolt energies within a few centimeters [1-4]. This, in turn, allows the realization of ultracompact light sources based on free-electron lasers (FELs) [5], as demonstrated by two pioneering experiments that reported the observation of self-amplified spontaneous emission (SASE) driven by plasma-accelerated beams [6,7]. However, the lack of stability and reproducibility due to the intrinsic nature of the SASE process (whose amplification starts from the shot noise of the electron beam) may hinder their effective implementation for user purposes. Here, we report a proof-of-principle experiment using plasma-accelerated beams to generate stable and reproducible FEL light seeded by an external laser. FEL radiation is emitted in the infrared range, showing the typical exponential growth of its energy over six consecutive undulators. Compared to SASE, the seeded FEL pulses have energies 2 orders of magnitude larger and stability that is 3 times higher.
Collapse
Affiliation(s)
- M Galletti
- Department of Physics, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy
- INFN-Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - D Alesini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - S Arjmand
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Behtouei
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Bellaveglia
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Biagioni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - B Buonomo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Cardelli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - M Carpanese
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
| | - E Chiadroni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - A Cianchi
- Department of Physics, Università di Roma Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy
- INFN-Tor Vergata, Via Ricerca Scientifica 1, 00133 Rome, Italy
- NAST Center, Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Del Dotto
- ENEA, C.R. Brasimone, 40032, Camugnano, Bologna, Italy
| | - M Del Giorno
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Dipace
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Doria
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
| | - F Filippi
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
| | - G Franzini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - L Giannessi
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - P Iovine
- INFN-Napoli, Via Cintia, 80126 Naples, Italy
| | - V Lollo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Mostacci
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - F Nguyen
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
| | - M Opromolla
- Università degli Studi di Milano, Via Celoria 16 20133 Milano Italy
- INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - L Pellegrino
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Petralia
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
| | - V Petrillo
- Università degli Studi di Milano, Via Celoria 16 20133 Milano Italy
- INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - L Piersanti
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - R Pompili
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A R Rossi
- INFN-Milano, Via Celoria 16, 20133 Milan, Italy
| | - A Selce
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, via Enrico Fermi 45, 00044 Frascati, Italy
- INFN-Roma Tre, Via della Vasca Navale 84, 00146 Roma RM, Italy
| | - V Shpakov
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Stella
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - C Vaccarezza
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - A Zigler
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
- Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
| | - M Ferrario
- Laboratori Nazionali di Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| |
Collapse
|
9
|
The AWAKE Run 2 Programme and Beyond. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. The use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. Protons of energy 400 GeV drove wakefields that accelerated electrons to 2 GeV in under 10 m of plasma. The AWAKE collaboration is now embarking on Run 2 with the main aims to demonstrate stable accelerating gradients of 0.5–1 GV/m, preserve emittance of the electron bunches during acceleration and develop plasma sources scalable to 100s of metres and beyond. By the end of Run 2, the AWAKE scheme should be able to provide electron beams for particle physics experiments and several possible experiments have already been evaluated. This article summarises the programme of AWAKE Run 2 and how it will be achieved as well as the possible application of the AWAKE scheme to novel particle physics experiments.
Collapse
|
10
|
Xu X, Li F, Tsung FS, Miller K, Yakimenko V, Hogan MJ, Joshi C, Mori WB. Generation of ultrahigh-brightness pre-bunched beams from a plasma cathode for X-ray free-electron lasers. Nat Commun 2022; 13:3364. [PMID: 35690617 PMCID: PMC9188572 DOI: 10.1038/s41467-022-30806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/18/2022] [Indexed: 11/23/2022] Open
Abstract
The longitudinal coherence of X-ray free-electron lasers (XFELs) in the self-amplified spontaneous emission regime could be substantially improved if the high brightness electron beam could be pre-bunched on the radiated wavelength-scale. Here, we show that it is indeed possible to realize such current modulated electron beam at angstrom scale by exciting a nonlinear wake across a periodically modulated plasma-density downramp/plasma cathode. The density modulation turns on and off the injection of electrons in the wake while downramp provides a unique longitudinal mapping between the electrons’ initial injection positions and their final trapped positions inside the wake. The combined use of a downramp and periodic modulation of micrometers is shown to be able to produces a train of high peak current (17 kA) electron bunches with a modulation wavelength of 10’s of angstroms - orders of magnitude shorter than the plasma density modulation. The peak brightness of the nano-bunched beam can be O(1021A/m2/rad2) orders of magnitude higher than current XFEL beams. Such prebunched, high brightness electron beams hold the promise for compact and lower cost XEFLs that can produce nanometer radiation with hundreds of GW power in a 10s of centimeter long undulator. Laser-produced plasma can be used for acceleration and tuning of particle beams. Here the authors discuss the generation of a bunched electron beam using simulations and its application to X-ray free-electron laser.
Collapse
Affiliation(s)
- Xinlu Xu
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Fei Li
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Frank S Tsung
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
| | - Kyle Miller
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Mark J Hogan
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Chan Joshi
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Warren B Mori
- Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA, USA.,Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Pompili R, Alesini D, Anania MP, Arjmand S, Behtouei M, Bellaveglia M, Biagioni A, Buonomo B, Cardelli F, Carpanese M, Chiadroni E, Cianchi A, Costa G, Del Dotto A, Del Giorno M, Dipace F, Doria A, Filippi F, Galletti M, Giannessi L, Giribono A, Iovine P, Lollo V, Mostacci A, Nguyen F, Opromolla M, Di Palma E, Pellegrino L, Petralia A, Petrillo V, Piersanti L, Di Pirro G, Romeo S, Rossi AR, Scifo J, Selce A, Shpakov V, Stella A, Vaccarezza C, Villa F, Zigler A, Ferrario M. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 2022; 605:659-662. [PMID: 35614244 DOI: 10.1038/s41586-022-04589-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
The possibility to accelerate electron beams to ultra-relativistic velocities over short distances by using plasma-based technology holds the potential for a revolution in the field of particle accelerators1-4. The compact nature of plasma-based accelerators would allow the realization of table-top machines capable of driving a free-electron laser (FEL)5, a formidable tool to investigate matter at the sub-atomic level by generating coherent light pulses with sub-ångström wavelengths and sub-femtosecond durations6,7. So far, however, the high-energy electron beams required to operate FELs had to be obtained through the use of conventional large-size radio-frequency (RF) accelerators, bound to a sizeable footprint as a result of their limited accelerating fields. Here we report the experimental evidence of FEL lasing by a compact (3-cm) particle-beam-driven plasma accelerator. The accelerated beams are completely characterized in the six-dimensional phase space and have high quality, comparable with state-of-the-art accelerators8. This allowed the observation of narrow-band amplified radiation in the infrared range with typical exponential growth of its intensity over six consecutive undulators. This proof-of-principle experiment represents a fundamental milestone in the use of plasma-based accelerators, contributing to the development of next-generation compact facilities for user-oriented applications9.
Collapse
Affiliation(s)
- R Pompili
- Laboratori Nazionali di Frascati, Frascati, Italy.
| | - D Alesini
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - S Arjmand
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - M Behtouei
- Laboratori Nazionali di Frascati, Frascati, Italy
| | | | - A Biagioni
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - B Buonomo
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - F Cardelli
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - M Carpanese
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | - E Chiadroni
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Cianchi
- University of Rome Tor Vergata, Rome, Italy.,INFN Tor Vergata, Rome, Italy.,NAST Center, Rome, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Del Dotto
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - M Del Giorno
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - F Dipace
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Doria
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | - F Filippi
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | - M Galletti
- University of Rome Tor Vergata, Rome, Italy.,INFN Tor Vergata, Rome, Italy.,NAST Center, Rome, Italy
| | - L Giannessi
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Frascati, Italy
| | | | - V Lollo
- Laboratori Nazionali di Frascati, Frascati, Italy
| | | | - F Nguyen
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | | | - E Di Palma
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | - L Pellegrino
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Petralia
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | | | - L Piersanti
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Frascati, Italy
| | | | - J Scifo
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Selce
- ENEA Fusion and Technology for Nuclear Safety and Security Department (FSN), C.R. Frascati, Frascati, Italy
| | - V Shpakov
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Stella
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - C Vaccarezza
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Frascati, Italy
| | - A Zigler
- Laboratori Nazionali di Frascati, Frascati, Italy.,Racah Institute of Physics, Hebrew University, Jerusalem, Israel
| | - M Ferrario
- Laboratori Nazionali di Frascati, Frascati, Italy
| |
Collapse
|
12
|
Energy loss reduction of a charge moving through an anisotropic plasma-like medium. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Abstract
Towards the next generation of compact plasma-based accelerators, useful in several fields, such as basic research, medicine and industrial applications, a great effort is required to control the plasma creation, the necessity of producing a time-jitter free channel, and its stability namely uniformity and reproducibility. In this Letter, we describe an experimental campaign adopting a gas-filled discharge-capillary where the plasma and its generation are stabilized by triggering its ignition with an external laser pulse or an innovative technique based on the primary dark current (DC) in the accelerating structure of a linear accelerator (LINAC). The results show an efficient stabilization of the discharge pulse and plasma density with both pre-ionizing methods turning the plasma device into a symmetrical stable accelerating environment, especially when the external voltage is lowered near the breakdown value of the gas. The development of tens of centimeter long capillaries is enabled and, in turn, longer acceleration lengths can be adopted in a wide range of plasma-based acceleration experiments.
Collapse
|
14
|
Abstract
EuPRAXIA@SPARC_LAB is a new Free Electron Laser (FEL) facility that is currently under construction at the Laboratori Nazionali di Frascati of the INFN. The electron beam driving the FEL will be delivered by an X-band normal conducting LINAC followed by a plasma wakefield acceleration stage. It will be characterized by a small footprint and will deliver ultra-bright photon pulses for experiments in the water window to the user community. In addition to the soft-X-rays beamline already planned in the project, we propose the installation of a second photon beamline with seeded FEL pulses in the range between 50 and 180 nm. Here, we will present the FEL generation scheme, the layout of the dedicated beamline and the potential applications of the FEL radiation source in this low energy range.
Collapse
|
15
|
Zhou S, Hua J, An W, Mori WB, Joshi C, Gao J, Lu W. High Efficiency Uniform Wakefield Acceleration of a Positron Beam Using Stable Asymmetric Mode in a Hollow Channel Plasma. PHYSICAL REVIEW LETTERS 2021; 127:174801. [PMID: 34739290 DOI: 10.1103/physrevlett.127.174801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasistatic particle-in-cell simulations show that an over 30% energy extraction efficiency from the wake to the positrons and a 1% level energy spread can be simultaneously obtained. Further optimization is feasible.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Jianfei Hua
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Weiming An
- Beijing Normal University, Beijing 100875, China
| | - Warren B Mori
- University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chan Joshi
- University of California Los Angeles, Los Angeles, California 90095, USA
| | - Jie Gao
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
16
|
Boyle GJ, Thévenet M, Chappell J, Garland JM, Loisch G, Osterhoff J, D'Arcy R. Reduced model of plasma evolution in hydrogen discharge capillary plasmas. Phys Rev E 2021; 104:015211. [PMID: 34412295 DOI: 10.1103/physreve.104.015211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 11/07/2022]
Abstract
A model describing the evolution of the average plasma temperature inside a discharge capillary device including Ohmic heating, heat loss to the capillary wall, and ionization and recombination effects is developed. Key to this approach is an analytic quasistatic description of the radial temperature variation which, under local thermal equilibrium conditions, allows the radial behavior of both the plasma temperature and the electron density to be specified directly from the average temperature evolution. In this way, the standard set of coupled partial differential equations for magnetohydrodynamic (MHD) simulations is replaced by a single ordinary differential equation, with a corresponding gain in simplicity and computational efficiency. The on-axis plasma temperature and electron density calculations are benchmarked against existing one-dimensional MHD simulations for hydrogen plasmas under a range of discharge conditions and initial gas pressures, and good agreement is demonstrated. The success of this simple model indicates that it can serve as a quick and easy tool for evaluating the plasma conditions in discharge capillary devices, particularly for computationally expensive applications such as simulating long-term plasma evolution, performing detailed input parameter scans, or for optimization using machine-learning techniques.
Collapse
Affiliation(s)
- G J Boyle
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M Thévenet
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Chappell
- University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - J M Garland
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
17
|
Tang H, Zhao L, Zhu P, Zou X, Qi J, Cheng Y, Qiu J, Hu X, Song W, Xiang D, Zhang J. Stable and Scalable Multistage Terahertz-Driven Particle Accelerator. PHYSICAL REVIEW LETTERS 2021; 127:074801. [PMID: 34459641 DOI: 10.1103/physrevlett.127.074801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Particle accelerators that use electromagnetic fields to increase a charged particle's energy have greatly advanced the development of science and industry since invention. However, the enormous cost and size of conventional radio-frequency accelerators have limited their accessibility. Here, we demonstrate a miniaccelerator powered by terahertz pulses with wavelengths 100 times shorter than radio-frequency pulses. By injecting a short relativistic electron bunch to a 30-mm-long dielectric-lined waveguide and tuning the frequency of a 20-period terahertz pulse to the phase-velocity-matched value, precise and sustained acceleration for nearly 100% of the electrons is achieved with the beam energy spread essentially unchanged. Furthermore, by accurately controlling the phase of two terahertz pulses, the beam is stably accelerated successively in two dielectric waveguides with close to 100% charge coupling efficiency. Our results demonstrate stable and scalable beam acceleration in a multistage miniaccelerator and pave the way for functioning terahertz-driven high-energy accelerators.
Collapse
Affiliation(s)
- Heng Tang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingrong Zhao
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Zhu
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao Zou
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Qi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Ya Cheng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jiaqi Qiu
- Nuctech Company Limited, Beijing 100084, China
| | - Xianggang Hu
- Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shanxi 710024, China
| | - Wei Song
- Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an, Shanxi 710024, China
| | - Dao Xiang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
|
19
|
Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams. Nat Commun 2021; 12:2895. [PMID: 34001874 PMCID: PMC8129089 DOI: 10.1038/s41467-021-23000-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/08/2021] [Indexed: 11/08/2022] Open
Abstract
Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m−1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers. Particle accelerators based on laser- or electron-driven plasma waves promise compact sources for relativistic electron bunches. Here, Kurz and Heinemann et al. demonstrate a hybrid two-stage configuration, combining the individual features of both accelerating schemes.
Collapse
|
20
|
Valialshchikov MA, Kharin VY, Rykovanov SG. Narrow Bandwidth Gamma Comb from Nonlinear Compton Scattering Using the Polarization Gating Technique. PHYSICAL REVIEW LETTERS 2021; 126:194801. [PMID: 34047575 DOI: 10.1103/physrevlett.126.194801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/05/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Nonlinear Compton scattering is a promising source of bright gamma rays. Using readily available intense laser pulses to scatter off the energetic electrons, on the one hand, allows us to significantly increase the total photon yield, but on the other hand, leads to a dramatic spectral broadening of the fundamental emission line as well as its harmonics due to the laser pulse shape induced ponderomotive effects. In this Letter we propose to avoid ponderomotive broadening in harmonics by using the polarization gating technique-a well-known method to construct a laser pulse with temporally varying polarization. We show that by restricting harmonic emission only to the region near the peak of the pulse, where the polarization is linear, it is possible to generate a bright narrow bandwidth comb in the gamma region.
Collapse
Affiliation(s)
- M A Valialshchikov
- High Performance Computing and Big Data Laboratory, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - V Yu Kharin
- Genity LLC, 444 W. Lake Street, Chicago, Illinois 60606, USA
| | - S G Rykovanov
- High Performance Computing and Big Data Laboratory, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| |
Collapse
|
21
|
Bowman AL, Williams RL. Filamentation and focusing of electron beams due to interactions with plasma waves. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:053510. [PMID: 34243268 DOI: 10.1063/5.0043828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Results of numerical modeling of the interaction of an electron beam propagating across relativistic plasma waves indicate that electron beam filamentation and focusing may occur under certain conditions. The model is based on solving the relativistic equation of motion in three dimensions for the individual electrons in a tenuous Gaussian beam, as they pass through a relativistic plasma wave. Several electron beam and plasma wave parameters were varied, and the results are summarized. One of the results is that the spacing of the electron beam filaments correlates with the wavelength of the plasma wave. The electron beam filaments appear as vertical slabs after the beam exits the plasma waves. The electron beam also compresses to a focus after it exits the plasma, and the focal distance depends on several parameters including the electron beam energy and phase velocity of the relativistic plasma wave. It is suggested that these focusing and filamentation phenomena may be the basis for diagnostics schemes for laser plasma interactions. The parameters used in the model were electron beam energies in the 5-50 keV range and plasma wave properties typical for the beat-wave produced by CO2 lasers, which correspond to the facilities available in our laboratory. The limitations of these results to lower energy density beam and plasma regimes and to higher energy density regimes will be discussed.
Collapse
Affiliation(s)
- A L Bowman
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, USA
| | - R L Williams
- Department of Physics, Florida A&M University, Tallahassee, Florida 32307, USA
| |
Collapse
|
22
|
Batsch F, Muggli P, Agnello R, Ahdida CC, Amoedo Goncalves MC, Andrebe Y, Apsimon O, Apsimon R, Bachmann AM, Baistrukov MA, Blanchard P, Braunmüller F, Burrows PN, Buttenschön B, Caldwell A, Chappell J, Chevallay E, Chung M, Cooke DA, Damerau H, Davut C, Demeter G, Deubner HL, Doebert S, Farmer J, Fasoli A, Fedosseev VN, Fiorito R, Fonseca RA, Friebel F, Furno I, Garolfi L, Gessner S, Gorgisyan I, Gorn AA, Granados E, Granetzny M, Graubner T, Grulke O, Gschwendtner E, Hafych V, Helm A, Henderson JR, Hüther M, Kargapolov IY, Kim SY, Kraus F, Krupa M, Lefevre T, Liang L, Liu S, Lopes N, Lotov KV, Martyanov M, Mazzoni S, Medina Godoy D, Minakov VA, Moody JT, Moon K, Morales Guzmán PI, Moreira M, Nechaeva T, Nowak E, Pakuza C, Panuganti H, Pardons A, Perera A, Pucek J, Pukhov A, Ramjiawan RL, Rey S, Rieger K, Schmitz O, Senes E, Silva LO, Speroni R, Spitsyn RI, Stollberg C, Sublet A, Topaloudis A, Torrado N, Tuev PV, Turner M, Velotti F, Verra L, Verzilov VA, Vieira J, Vincke H, Welsch CP, Wendt M, Wing M, Wiwattananon P, Wolfenden J, Woolley B, Xia G, Zepp M, Zevi Della Porta G. Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma. PHYSICAL REVIEW LETTERS 2021; 126:164802. [PMID: 33961468 DOI: 10.1103/physrevlett.126.164802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
We use a relativistic ionization front to provide various initial transverse wakefield amplitudes for the self-modulation of a long proton bunch in plasma. We show experimentally that, with sufficient initial amplitude [≥(4.1±0.4) MV/m], the phase of the modulation along the bunch is reproducible from event to event, with 3%-7% (of 2π) rms variations all along the bunch. The phase is not reproducible for lower initial amplitudes. We observe the transition between these two regimes. Phase reproducibility is essential for deterministic external injection of particles to be accelerated.
Collapse
Affiliation(s)
- F Batsch
- Max Planck Institute for Physics, Munich, Germany
| | - P Muggli
- Max Planck Institute for Physics, Munich, Germany
| | - R Agnello
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | | | | | - Y Andrebe
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | - O Apsimon
- Cockcroft Institute, Daresbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - R Apsimon
- Cockcroft Institute, Daresbury, United Kingdom
- Lancaster University, Lancaster, United Kingdom
| | - A-M Bachmann
- Max Planck Institute for Physics, Munich, Germany
| | - M A Baistrukov
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - P Blanchard
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | | | - P N Burrows
- John Adams Institute, Oxford University, Oxford, United Kingdom
| | - B Buttenschön
- Max Planck Institute for Plasma Physics, Greifswald, Germany
| | - A Caldwell
- Max Planck Institute for Physics, Munich, Germany
| | - J Chappell
- University College London, London, United Kingdom
| | | | - M Chung
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - D A Cooke
- University College London, London, United Kingdom
| | | | - C Davut
- Cockcroft Institute, Daresbury, United Kingdom
- University of Manchester, Manchester, United Kingdom
| | - G Demeter
- Wigner Research Center for Physics, Budapest, Hungary
| | - H L Deubner
- Philipps-Universität Marburg, Marburg, Germany
| | | | - J Farmer
- Max Planck Institute for Physics, Munich, Germany
- CERN, Geneva, Switzerland
| | - A Fasoli
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | | | - R Fiorito
- Cockcroft Institute, Daresbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - R A Fonseca
- ISCTE-Instituto Universitéario de Lisboa, Portugal
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - I Furno
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | | | - S Gessner
- CERN, Geneva, Switzerland
- SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | | | - A A Gorn
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | | | - M Granetzny
- University of Wisconsin, Madison, Wisconsin, USA
| | - T Graubner
- Philipps-Universität Marburg, Marburg, Germany
| | - O Grulke
- Max Planck Institute for Plasma Physics, Greifswald, Germany
- Technical University of Denmark, Lyngby, Denmark
| | | | - V Hafych
- Max Planck Institute for Physics, Munich, Germany
| | - A Helm
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - J R Henderson
- Cockcroft Institute, Daresbury, United Kingdom
- Accelerator Science and Technology Centre, ASTeC, STFC Daresbury Laboratory, Warrington, United Kingdom
| | - M Hüther
- Max Planck Institute for Physics, Munich, Germany
| | - I Yu Kargapolov
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - S-Y Kim
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - F Kraus
- Philipps-Universität Marburg, Marburg, Germany
| | | | | | - L Liang
- Cockcroft Institute, Daresbury, United Kingdom
- University of Manchester, Manchester, United Kingdom
| | - S Liu
- TRIUMF, Vancouver, Canada
| | - N Lopes
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - K V Lotov
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - M Martyanov
- Max Planck Institute for Physics, Munich, Germany
| | | | | | - V A Minakov
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - J T Moody
- Max Planck Institute for Physics, Munich, Germany
| | - K Moon
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | | | - M Moreira
- CERN, Geneva, Switzerland
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - T Nechaeva
- Max Planck Institute for Physics, Munich, Germany
| | | | - C Pakuza
- John Adams Institute, Oxford University, Oxford, United Kingdom
| | | | | | - A Perera
- Cockcroft Institute, Daresbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - J Pucek
- Max Planck Institute for Physics, Munich, Germany
| | - A Pukhov
- Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - R L Ramjiawan
- CERN, Geneva, Switzerland
- John Adams Institute, Oxford University, Oxford, United Kingdom
| | - S Rey
- CERN, Geneva, Switzerland
| | - K Rieger
- Max Planck Institute for Physics, Munich, Germany
| | - O Schmitz
- University of Wisconsin, Madison, Wisconsin, USA
| | - E Senes
- CERN, Geneva, Switzerland
- John Adams Institute, Oxford University, Oxford, United Kingdom
| | - L O Silva
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - R I Spitsyn
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - C Stollberg
- Ecole Polytechnique Federale de Lausanne (EPFL), Swiss Plasma Center (SPC), Lausanne, Switzerland
| | | | | | - N Torrado
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - P V Tuev
- Novosibirsk State University, Novosibirsk, Russia
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - M Turner
- CERN, Geneva, Switzerland
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - L Verra
- Max Planck Institute for Physics, Munich, Germany
- CERN, Geneva, Switzerland
- Technical University Munich, Munich, Germany
| | | | - J Vieira
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | | | - C P Welsch
- Cockcroft Institute, Daresbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | | | - M Wing
- University College London, London, United Kingdom
| | | | - J Wolfenden
- Cockcroft Institute, Daresbury, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | | | - G Xia
- Cockcroft Institute, Daresbury, United Kingdom
- University of Manchester, Manchester, United Kingdom
| | - M Zepp
- University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
23
|
Daoud H, Miller RJD. Utilizing relativistic time dilation for time-resolved studies. J Chem Phys 2021; 154:111107. [PMID: 33752362 DOI: 10.1063/5.0037862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Time-resolved studies have so far relied on rapidly triggering a photo-induced dynamic in chemical or biological ions or molecules and subsequently probing them with a beam of fast moving photons or electrons that crosses the studied samples in a short period of time. Hence, the time resolution of the signal is mainly set by the pulse duration of the pump and probe pulses. In this paper, we propose a different approach to this problem that has the potential to consistently achieve orders of magnitude higher time resolutions than what is possible with laser technology or electron beam compression methods. Our proposed approach relies on accelerating the sample to a high speed to achieve relativistic time dilation. Probing the time-dilated sample would open up previously inaccessible time resolution domains.
Collapse
Affiliation(s)
- Hazem Daoud
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| | - R J Dwayne Miller
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
24
|
Xu X, Cesar DB, Corde S, Yakimenko V, Hogan MJ, Joshi C, Marinelli A, Mori WB. Generation of Terawatt Attosecond Pulses from Relativistic Transition Radiation. PHYSICAL REVIEW LETTERS 2021; 126:094801. [PMID: 33750158 DOI: 10.1103/physrevlett.126.094801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/04/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
When a femtosecond duration and hundreds of kiloampere peak current electron beam traverses the vacuum and high-density plasma interface, a new process, that we call relativistic transition radiation (RTR), generates an intense ∼100 as pulse containing ∼1 terawatt power of coherent vacuum ultraviolet (VUV) radiation accompanied by several smaller femtosecond duration satellite pulses. This pulse inherits the radial polarization of the incident beam field and has a ring intensity distribution. This RTR is emitted when the beam density is comparable to the plasma density and the spot size much larger than the plasma skin depth. Physically, it arises from the return current or backward relativistic motion of electrons starting just inside the plasma that Doppler up shifts the emitted photons. The number of RTR pulses is determined by the number of groups of plasma electrons that originate at different depths within the first plasma wake period and emit coherently before phase mixing.
Collapse
Affiliation(s)
- Xinlu Xu
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - David B Cesar
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sébastien Corde
- LOA, ENSTA Paris, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91762 Palaiseau, France
| | - Vitaly Yakimenko
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mark J Hogan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Chan Joshi
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
| | | | - Warren B Mori
- Department of Electrical Engineering, University of California, Los Angeles, California 90095, USA
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
25
|
Lindstrøm CA, Garland JM, Schröder S, Boulton L, Boyle G, Chappell J, D'Arcy R, Gonzalez P, Knetsch A, Libov V, Loisch G, Martinez de la Ossa A, Niknejadi P, Põder K, Schaper L, Schmidt B, Sheeran B, Wesch S, Wood J, Osterhoff J. Energy-Spread Preservation and High Efficiency in a Plasma-Wakefield Accelerator. PHYSICAL REVIEW LETTERS 2021; 126:014801. [PMID: 33480753 DOI: 10.1103/physrevlett.126.014801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Energy-efficient plasma-wakefield acceleration of particle bunches with low energy spread is a promising path to realizing compact free-electron lasers and particle colliders. High efficiency and low energy spread can be achieved simultaneously by strong beam loading of plasma wakefields when accelerating bunches with carefully tailored current profiles [M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.145002]. We experimentally demonstrate such optimal beam loading in a nonlinear electron-driven plasma accelerator. Bunches with an initial energy of 1 GeV were accelerated by 45 MeV with an energy-transfer efficiency of (42±4)% at a gradient of 1.3 GV/m while preserving per-mille energy spreads with full charge coupling, demonstrating wakefield flattening at the few-percent level.
Collapse
Affiliation(s)
- C A Lindstrøm
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J M Garland
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - S Schröder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - L Boulton
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
- The Cockcroft Institute, Daresbury, United Kingdom
| | - G Boyle
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Chappell
- University College London, London, United Kingdom
| | - R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - P Gonzalez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Knetsch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Libov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | | | - P Niknejadi
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - K Põder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - L Schaper
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - B Schmidt
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - B Sheeran
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S Wesch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Wood
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
26
|
Garland JM, Tauscher G, Bohlen S, Boyle GJ, D'Arcy R, Goldberg L, Põder K, Schaper L, Schmidt B, Osterhoff J. Combining laser interferometry and plasma spectroscopy for spatially resolved high-sensitivity plasma density measurements in discharge capillaries. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013505. [PMID: 33514233 DOI: 10.1063/5.0021117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Precise characterization and tailoring of the spatial and temporal evolution of plasma density within plasma sources are critical for realizing high-quality accelerated beams in plasma wakefield accelerators. The simultaneous use of two independent diagnostics allowed the temporally and spatially resolved detection of plasma density with unprecedented sensitivity and enabled the characterization of the plasma temperature in discharge capillaries for times later than 0.5 µs after the initiation of the discharge, at which point the plasma is at local thermodynamic equilibrium. A common-path two-color laser interferometer for obtaining the average plasma density with a sensitivity of 2 × 1015 cm-2 was developed together with a plasma emission spectrometer for analyzing spectral line broadening profiles with a resolution of 5 × 1015 cm-3. Both diagnostics show good agreement when applying the spectral line broadening analysis methodology of Gigosos and Cardeñoso in the temperature range of 0.5 eV-5.0 eV. For plasma with densities of 0.5-2.5 × 1017 cm-3, temperatures of 1 eV-7 eV were indirectly measured by combining the diagnostic information. Measured longitudinally resolved plasma density profiles exhibit a clear temporal evolution from an initial flat-top to a Gaussian-like shape in the first microseconds as material is ejected out from the capillary. These measurements pave the way for highly detailed parameter tuning in plasma sources for particle accelerators and beam optics.
Collapse
Affiliation(s)
- J M Garland
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G Tauscher
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - S Bohlen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - G J Boyle
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - L Goldberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - K Põder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - L Schaper
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - B Schmidt
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
27
|
High-resolution sampling of beam-driven plasma wakefields. Nat Commun 2020; 11:5984. [PMID: 33239645 PMCID: PMC7689520 DOI: 10.1038/s41467-020-19811-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
Plasma-wakefield accelerators driven by intense particle beams promise to significantly reduce the size of future high-energy facilities. Such applications require particle beams with a well-controlled energy spectrum, which necessitates detailed tailoring of the plasma wakefield. Precise measurements of the effective wakefield structure are therefore essential for optimising the acceleration process. Here we propose and demonstrate such a measurement technique that enables femtosecond-level (15 fs) sampling of longitudinal electric fields of order gigavolts-per-meter (0.8 GV m-1). This method-based on energy collimation of the incoming bunch-made it possible to investigate the effect of beam and plasma parameters on the beam-loaded longitudinally integrated plasma wakefield, showing good agreement with particle-in-cell simulations. These results open the door to high-quality operation of future plasma accelerators through precise control of the acceleration process.
Collapse
|
28
|
Horný V, Krůs M, Yan W, Fülöp T. Attosecond betatron radiation pulse train. Sci Rep 2020; 10:15074. [PMID: 32934289 PMCID: PMC7493897 DOI: 10.1038/s41598-020-72053-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
High-intensity X-ray sources are essential diagnostic tools for science, technology and medicine. Such X-ray sources can be produced in laser-plasma accelerators, where electrons emit short-wavelength radiation due to their betatron oscillations in the plasma wake of a laser pulse. Contemporary available betatron radiation X-ray sources can deliver a collimated X-ray pulse of duration on the order of several femtoseconds from a source size of the order of several micrometres. In this paper we demonstrate, through particle-in-cell simulations, that the temporal resolution of such a source can be enhanced by an order of magnitude by a spatial modulation of the emitting relativistic electron bunch. The modulation is achieved by the interaction of the that electron bunch with a co-propagating laser beam which results in the generation of a train of equidistant sub-femtosecond X-ray pulses. The distance between the single pulses of a train is tuned by the wavelength of the modulation laser pulse. The modelled experimental setup is achievable with current technologies. Potential applications include stroboscopic sampling of ultrafast fundamental processes.
Collapse
Affiliation(s)
- Vojtěch Horný
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden. .,Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Praha 8, Czech Republic.
| | - Miroslav Krůs
- Institute of Plasma Physics, Czech Academy of Sciences, Za Slovankou 1782/3, 182 00, Praha 8, Czech Republic
| | - Wenchao Yan
- Institute of Physics, Czech Academy of Sciences, ELI BEAMLINES, Na Slovance 1999/2, 182 21, Praha 8, Czech Republic.,Key Laboratory for Laser Plasmas (MOE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tünde Fülöp
- Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
29
|
Roussel R, Andonian G, Lynn W, Sanwalka K, Robles R, Hansel C, Deng A, Lawler G, Rosenzweig JB, Ha G, Seok J, Power JG, Conde M, Wisniewski E, Doran DS, Whiteford CE. Single Shot Characterization of High Transformer Ratio Wakefields in Nonlinear Plasma Acceleration. PHYSICAL REVIEW LETTERS 2020; 124:044802. [PMID: 32058730 DOI: 10.1103/physrevlett.124.044802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Plasma wakefields can enable very high accelerating gradients for frontier high energy particle accelerators, in excess of 10 GeV/m. To overcome limits on single stage acceleration, specially shaped drive beams can be used in both linear and nonlinear plasma wakefield accelerators (PWFA), to increase the transformer ratio, implying that the drive beam deceleration is minimized relative to acceleration obtained in the wake. In this Letter, we report the results of a nonlinear PWFA, high transformer ratio experiment using high-charge, longitudinally asymmetric drive beams in a plasma cell. An emittance exchange process is used to generate variable drive current profiles, in conjunction with a long (multiple plasma wavelength) witness beam. The witness beam is energy modulated by the wakefield, yielding a response that contains detailed spectral information in a single-shot measurement. Using these methods, we generate a variety of beam profiles and characterize the wakefields, directly observing transformer ratios up to R=7.8. Furthermore, a spectrally based reconstruction technique, validated by 3D particle-in-cell simulations, is introduced to obtain the drive beam current profile from the decelerating wake data.
Collapse
Affiliation(s)
- R Roussel
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - G Andonian
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - W Lynn
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - K Sanwalka
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - R Robles
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - C Hansel
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - A Deng
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - G Lawler
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - J B Rosenzweig
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - G Ha
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Seok
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J G Power
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - M Conde
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - E Wisniewski
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D S Doran
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - C E Whiteford
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
30
|
Wu Y, Ji L, Geng X, Yu Q, Wang N, Feng B, Guo Z, Wang W, Qin C, Yan X, Zhang L, Thomas J, Hützen A, Pukhov A, Büscher M, Shen B, Li R. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection. Phys Rev E 2019; 100:043202. [PMID: 31770946 DOI: 10.1103/physreve.100.043202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Indexed: 11/07/2022]
Abstract
We investigate the precession of electron spins during beam-driven plasma-wakefield acceleration based on density down-ramp injection by means of full three-dimensional (3D) particle-in-cell (PIC) simulations. A relativistic electron beam generated via, e.g., laser wakefield acceleration, serves as the driving source. It traverses the prepolarized gas target and accelerates polarized electrons via the excited wakefield. We derive the criteria for the driving beam parameters and the limitation on the injected beam flux to preserve a high degree of polarization for the accelerated electrons, which are confirmed by our 3D PIC simulations and single-particle modeling. The electron-beam driver is free of the prepulse issue associated with a laser driver, thus eliminating possible depolarization of the prepolarized gas due to ionization by the prepulse. These results provide guidance for future experiments towards generating a source of polarized electrons based on wakefield acceleration.
Collapse
Affiliation(s)
- Yitong Wu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangliang Ji
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Xuesong Geng
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qin Yu
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Nengwen Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bo Feng
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhao Guo
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Weiqing Wang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chengyu Qin
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xue Yan
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lingang Zhang
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Johannes Thomas
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Anna Hützen
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Pukhov
- Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Büscher
- Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 52425 Jülich, Germany.,Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Baifei Shen
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China.,Shanghai Normal University, Shanghai 200234, China
| | - Ruxin Li
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China.,CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China.,Shanghai Tech University, Shanghai 201210, China
| |
Collapse
|
31
|
D'Arcy R, Aschikhin A, Bohlen S, Boyle G, Brümmer T, Chappell J, Diederichs S, Foster B, Garland MJ, Goldberg L, Gonzalez P, Karstensen S, Knetsch A, Kuang P, Libov V, Ludwig K, Martinez de la Ossa A, Marutzky F, Meisel M, Mehrling TJ, Niknejadi P, Põder K, Pourmoussavi P, Quast M, Röckemann JH, Schaper L, Schmidt B, Schröder S, Schwinkendorf JP, Sheeran B, Tauscher G, Wesch S, Wing M, Winkler P, Zeng M, Osterhoff J. FLASHForward: plasma wakefield accelerator science for high-average-power applications. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180392. [PMID: 31230573 PMCID: PMC6602913 DOI: 10.1098/rsta.2018.0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
The FLASHForward experimental facility is a high-performance test-bed for precision plasma wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionized gas. The plasma is created by ionizing gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases, the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma wakefield facility in the world with the immediate capability to develop, explore and benchmark high-average-power plasma wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
- R. D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. Aschikhin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S. Bohlen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G. Boyle
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - T. Brümmer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J. Chappell
- University College London, Gower Street, London WC1E 6BT, UK
| | - S. Diederichs
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - B. Foster
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- University of Oxford, Wellington Square, Oxford OX1 2JD, UK
| | - M. J. Garland
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - L. Goldberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P. Gonzalez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S. Karstensen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. Knetsch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - P. Kuang
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V. Libov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - K. Ludwig
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A. Martinez de la Ossa
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F. Marutzky
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M. Meisel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - T. J. Mehrling
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - P. Niknejadi
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - K. Põder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - P. Pourmoussavi
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M. Quast
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J. -H. Röckemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - L. Schaper
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - B. Schmidt
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - S. Schröder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J. -P. Schwinkendorf
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - B. Sheeran
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G. Tauscher
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S. Wesch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M. Wing
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- University College London, Gower Street, London WC1E 6BT, UK
| | - P. Winkler
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M. Zeng
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J. Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
32
|
Wing M. Particle physics experiments based on the AWAKE acceleration scheme. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180185. [PMID: 31230578 PMCID: PMC6602917 DOI: 10.1098/rsta.2018.0185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
New particle acceleration schemes open up exciting opportunities, potentially providing more compact or higher-energy accelerators. The AWAKE experiment at CERN is currently taking data to establish the method of proton-driven plasma wakefield acceleration. A second phase aims to demonstrate that bunches of about 109 electrons can be accelerated to high energy, preserving emittance and that the process is scalable with length. With this, an electron beam of [Formula: see text](50 GeV) could be available for new fixed-target or beam-dump experiments searching for the hidden sector, like dark photons. The rate of electrons on target could be increased by a factor of more than 1000 compared to that currently available, leading to a corresponding increase in sensitivity to new physics. Such a beam could also be brought into collision with a high-power laser and thereby probe the completely unmeasured region of strong fields at values of the Schwinger critical field. An ultimate goal is to produce an electron beam of [Formula: see text](3 TeV) and collide with an Large Hadron Collider proton beam. This very high-energy electron-proton collider would probe a new regime in which the structure of matter is completely unknown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
|
33
|
Martinez de la Ossa A, Assmann RW, Bussmann M, Corde S, Couperus Cabadağ JP, Debus A, Döpp A, Ferran Pousa A, Gilljohann MF, Heinemann T, Hidding B, Irman A, Karsch S, Kononenko O, Kurz T, Osterhoff J, Pausch R, Schöbel S, Schramm U. Hybrid LWFA-PWFA staging as a beam energy and brightness transformer: conceptual design and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180175. [PMID: 31230579 PMCID: PMC6602909 DOI: 10.1098/rsta.2018.0175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
| | - R. W. Assmann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - M. Bussmann
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Corde
- LOA, ENSTA ParisTech - CNRS - École Polytechnique - Université Paris-Saclay, France
| | | | - A. Debus
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - A. Döpp
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - A. Ferran Pousa
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - M. F. Gilljohann
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - T. Heinemann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, UK
| | - B. Hidding
- Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG, UK
| | - A. Irman
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Karsch
- Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
| | - O. Kononenko
- LOA, ENSTA ParisTech - CNRS - École Polytechnique - Université Paris-Saclay, France
| | - T. Kurz
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - J. Osterhoff
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - R. Pausch
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - S. Schöbel
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| | - U. Schramm
- Helmholtz-Zentrum Dresden-Rossendorf HZDR, 01328 Dresden, Germany
| |
Collapse
|
34
|
Vafaei-Najafabadi N, Amorim LD, Adli E, An W, Clarke CI, Clayton CE, Corde S, Gessner S, Green SZ, Hogan MJ, Joshi C, Kononenko O, Lindstrøm CA, Litos M, Lu W, Marsh KA, Mori WB, San Miguel Claveria P, O'Shea B, Raj G, Storey D, White G, Xu X, Yakimenko V. Producing multi-coloured bunches through beam-induced ionization injection in plasma wakefield accelerator. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180184. [PMID: 31230576 PMCID: PMC6602915 DOI: 10.1098/rsta.2018.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. The physics of the processes of ionization and injection are explored through OSIRIS simulations. Experimental evidence showing similar features are presented from the data obtained in the E217 experiment at the FACET facility of the SLAC National Laboratory. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
| | - L. D. Amorim
- Stony Brook University, Stony Brook, NY 11794, USA
| | - E. Adli
- University of Oslo, Oslo 0316, Norway
| | - W. An
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - C. I. Clarke
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - C. E. Clayton
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - S. Corde
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91762, France
| | | | - S. Z. Green
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M. J. Hogan
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - C. Joshi
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - O. Kononenko
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91762, France
| | | | - M. Litos
- University of Colorado Boulder, Boulder, CO 80309, USA
| | - W. Lu
- Tsinghua University, Beijing 10084, People's Republic of China
| | - K. A. Marsh
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - W. B. Mori
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - P. San Miguel Claveria
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91762, France
| | - B. O'Shea
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - G. Raj
- LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, Palaiseau 91762, France
| | - D. Storey
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - G. White
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Xinlu Xu
- University of California Los Angeles, Los Angeles, CA 90095, USA
| | - V. Yakimenko
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
35
|
Manahan GG, Habib AF, Scherkl P, Ullmann D, Beaton A, Sutherland A, Kirwan G, Delinikolas P, Heinemann T, Altuijri R, Knetsch A, Karger O, Cook NM, Bruhwiler DL, Sheng ZM, Rosenzweig JB, Hidding B. Advanced schemes for underdense plasma photocathode wakefield accelerators: pathways towards ultrahigh brightness electron beams. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180182. [PMID: 31230572 PMCID: PMC6602916 DOI: 10.1098/rsta.2018.0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
The 'Trojan Horse' underdense plasma photocathode scheme applied to electron beam-driven plasma wakefield acceleration has opened up a path which promises high controllability and tunability and to reach extremely good quality as regards emittance and five-dimensional beam brightness. This combination has the potential to improve the state-of-the-art in accelerator technology significantly. In this paper, we review the basic concepts of the Trojan Horse scheme and present advanced methods for tailoring both the injector laser pulses and the witness electron bunches and combine them with the Trojan Horse scheme. These new approaches will further enhance the beam qualities, such as transverse emittance and longitudinal energy spread, and may allow, for the first time, to produce ultrahigh six-dimensional brightness electron bunches, which is a necessary requirement for driving advanced radiation sources. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
- G. G. Manahan
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - A. F. Habib
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - P. Scherkl
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - D. Ullmann
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - A. Beaton
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - A. Sutherland
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - G. Kirwan
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - P. Delinikolas
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - T. Heinemann
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - R. Altuijri
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
- Physics Department, Princess Nora Bint Abd Ulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - A. Knetsch
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - O. Karger
- Department of Experimental Physics, University of Hamburg, Hamburg, Germany
| | | | | | - Z.-M. Sheng
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
- Laboratory for Laser Plasmas and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - J. B. Rosenzweig
- Particle Beam Physics Laboratory, University of California, Los Angeles, CA, USA
| | - B. Hidding
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| |
Collapse
|
36
|
Hidding B, Foster B, Hogan MJ, Muggli P, Rosenzweig JB. Directions in plasma wakefield acceleration. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190215. [PMID: 31230575 PMCID: PMC6602912 DOI: 10.1098/rsta.2019.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
This introductory article is a synopsis of the status and prospects of particle-beam-driven plasma wakefield acceleration (PWFA). Conceptual and experimental breakthroughs obtained over the last years have initiated a rapid growth of the research field, and increased maturity of underlying technology allows an increasing number of research groups to engage in experimental R&D. We briefly describe the fundamental mechanisms of PWFA, from which its chief attractions arise. Most importantly, this is the capability of extremely rapid acceleration of electrons and positrons at gradients many orders of magnitude larger than in conventional accelerators. This allows the size of accelerator units to be shrunk from the kilometre to metre scale, and possibly the quality of accelerated electron beam output to be improved by orders of magnitude. In turn, such compact and high-quality accelerators are potentially transformative for applications across natural, material and life sciences. This overview provides contextual background for the manuscripts of this issue, resulting from a Theo Murphy meeting held in the summer of 2018. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
- B. Hidding
- Scottish Universities Physics Alliance, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
- Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire WA4 4AD, UK
| | - B. Foster
- Department of Experimental Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- John Adams Institute and Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - M. J. Hogan
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - P. Muggli
- Max Planck Institut für Physik, München, Germany
| | - J. B. Rosenzweig
- Particle Beam Physics Laboratory, University of California, Los Angeles, CA, USA
| |
Collapse
|
37
|
Adli E. Plasma wakefield linear colliders-opportunities and challenges. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180419. [PMID: 31230574 DOI: 10.1098/rsta.2018.0419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
A linear electron-positron collider operating at TeV-scale energies will provide high precision measurements and allow, for example, precision studies of the Higgs boson as well as searches for physics beyond the standard model. A future linear collider should produce collisions at high energy, with high luminosity and with a good wall plug to beam power transfer efficiency. The luminosity per power consumed is a key metric that can be used to compare linear collider concepts. The plasma wakefield accelerator has demonstrated high-gradient, high-efficiency acceleration of an electron beam and is therefore a promising technology for a future linear collider. We will go through the opportunities of using plasma wakefield acceleration technology for a collider, as well as a few of the collider-specific challenges that must be addressed in order for a high-energy, high luminosity-per-power plasma wakefield collider to become a reality. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.
Collapse
Affiliation(s)
- Erik Adli
- Department of Physics , University of Oslo , N-0316 Oslo , Norway
| |
Collapse
|
38
|
Wu YP, Hua JF, Zhou Z, Zhang J, Liu S, Peng B, Fang Y, Nie Z, Ning XN, Pai CH, Du YC, Lu W, Zhang CJ, Mori WB, Joshi C. Phase Space Dynamics of a Plasma Wakefield Dechirper for Energy Spread Reduction. PHYSICAL REVIEW LETTERS 2019; 122:204804. [PMID: 31172777 DOI: 10.1103/physrevlett.122.204804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Plasma-based accelerators have made impressive progress in recent years. However, the beam energy spread obtained in these accelerators is still at the ∼1% level, nearly one order of magnitude larger than what is needed for challenging applications like coherent light sources or colliders. In plasma accelerators, the beam energy spread is mainly dominated by its energy chirp (longitudinally correlated energy spread). Here we demonstrate that when an initially chirped electron beam from a linac with a proper current profile is sent through a low-density plasma structure, the self-wake of the beam can significantly reduce its energy chirp and the overall energy spread. The resolution-limited energy spectrum measurements show at least a threefold reduction of the beam energy spread from 1.28% to 0.41% FWHM with a dechirping strength of ∼1 (MV/m)/(mm pC). Refined time-resolved phase space measurements, combined with high-fidelity three-dimensional particle-in-cell simulations, further indicate the real energy spread after the dechirper is only about 0.13% (FWHM), a factor of 10 reduction of the initial energy spread.
Collapse
Affiliation(s)
- Y P Wu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - J F Hua
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Z Zhou
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - J Zhang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - S Liu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - B Peng
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Y Fang
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Z Nie
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - X N Ning
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - C-H Pai
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Y C Du
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - W Lu
- Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - C J Zhang
- University of Los Angeles, Los Angeles, California 90095, USA
| | - W B Mori
- University of Los Angeles, Los Angeles, California 90095, USA
| | - C Joshi
- University of Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
39
|
Alejo A, Walczak R, Sarri G. Laser-driven high-quality positron sources as possible injectors for plasma-based accelerators. Sci Rep 2019; 9:5279. [PMID: 30918287 PMCID: PMC6437300 DOI: 10.1038/s41598-019-41650-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/25/2019] [Indexed: 11/09/2022] Open
Abstract
The intrinsic constraints in the amplitude of the accelerating fields sustainable by radio-frequency accelerators demand for the pursuit of alternative and more compact acceleration schemes. Among these, plasma-based accelerators are arguably the most promising, thanks to the high-accelerating fields they can sustain, greatly exceeding the GeV/m. While plasma-based acceleration of electrons is now sufficiently mature for systematic studies in this direction, positron acceleration is still at its infancy, with limited projects currently undergoing to provide a viable test facility for further experiments. In this article, we study the feasibility of using a recently demonstrated laser-driven configuration as a relatively compact and inexpensive source of high-quality ultra-relativistic positrons for laser-driven and particle-driven plasma wakefield acceleration studies. Monte-Carlo simulations show that near-term high-intensity laser facilities can produce positron beams with high-current, femtosecond-scale duration, and sufficiently low normalised emittance at energies in the GeV range to be injected in further acceleration stages.
Collapse
Affiliation(s)
- Aaron Alejo
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK.
| | - Roman Walczak
- John Adams Institute for Accelerator Science and Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK
| | - Gianluca Sarri
- Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast, BT7 1NN, UK
| |
Collapse
|
40
|
Shpakov V, Anania MP, Bellaveglia M, Biagioni A, Bisesto F, Cardelli F, Cesarini M, Chiadroni E, Cianchi A, Costa G, Croia M, Del Dotto A, Di Giovenale D, Diomede M, Ferrario M, Filippi F, Giribono A, Lollo V, Marongiu M, Martinelli V, Mostacci A, Piersanti L, Di Pirro G, Pompili R, Romeo S, Scifo J, Vaccarezza C, Villa F, Zigler A. Longitudinal Phase-Space Manipulation with Beam-Driven Plasma Wakefields. PHYSICAL REVIEW LETTERS 2019; 122:114801. [PMID: 30951354 DOI: 10.1103/physrevlett.122.114801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in the field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical, and research applications. The ability to shape the beam longitudinal phase space, in particular, plays a key role in achieving high-peak brightness. Here we present a new approach that allows us to tune the longitudinal phase space of a high-brightness beam by means of plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such a solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.
Collapse
Affiliation(s)
- V Shpakov
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Bellaveglia
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Biagioni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Bisesto
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Cardelli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Cesarini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - E Chiadroni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Cianchi
- University of Rome Tor Vergata and INFN, Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Croia
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Del Dotto
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - D Di Giovenale
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Diomede
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - M Ferrario
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Filippi
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - V Lollo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Marongiu
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - V Martinelli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Mostacci
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - L Piersanti
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - R Pompili
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - J Scifo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - C Vaccarezza
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Zigler
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
- Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
| |
Collapse
|
41
|
Curcio A, Petrarca M. Diagnosing plasmas with wideband terahertz pulses. OPTICS LETTERS 2019; 44:1011-1014. [PMID: 30768036 DOI: 10.1364/ol.44.001011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
A diagnostic method for the electron plasma density and temperature based on the exploitation of wideband THz pulses is presented. The model accompanying the diagnostic method is described, and it is shown useful to characterize the plasma density and temperature profile along a symmetry axis. This diagnostic is particularly interesting for plasma-acceleration schemes or laser-produced plasma channels.
Collapse
|
42
|
Adli E, Ahuja A, Apsimon O, Apsimon R, Bachmann AM, Barrientos D, Barros MM, Batkiewicz J, Batsch F, Bauche J, Berglyd Olsen VK, Bernardini M, Biskup B, Boccardi A, Bogey T, Bohl T, Bracco C, Braunmüller F, Burger S, Burt G, Bustamante S, Buttenschön B, Caldwell A, Cascella M, Chappell J, Chevallay E, Chung M, Cooke D, Damerau H, Deacon L, Deubner LH, Dexter A, Doebert S, Farmer J, Fedosseev VN, Fior G, Fiorito R, Fonseca RA, Friebel F, Garolfi L, Gessner S, Gorgisyan I, Gorn AA, Granados E, Grulke O, Gschwendtner E, Guerrero A, Hansen J, Helm A, Henderson JR, Hessler C, Hofle W, Hüther M, Ibison M, Jensen L, Jolly S, Keeble F, Kim SY, Kraus F, Lefevre T, LeGodec G, Li Y, Liu S, Lopes N, Lotov KV, Maricalva Brun L, Martyanov M, Mazzoni S, Medina Godoy D, Minakov VA, Mitchell J, Molendijk JC, Mompo R, Moody JT, Moreira M, Muggli P, Mutin C, Öz E, Ozturk E, Pasquino C, Pardons A, Peña Asmus F, Pepitone K, Perera A, Petrenko A, Pitman S, Plyushchev G, Pukhov A, Rey S, Rieger K, Ruhl H, Schmidt JS, Shalimova IA, Shaposhnikova E, Sherwood P, Silva LO, Soby L, Sosedkin AP, Speroni R, Spitsyn RI, Tuev PV, Turner M, Velotti F, Verra L, Verzilov VA, Vieira J, Vincke H, Welsch CP, Williamson B, Wing M, Woolley B, Xia G. Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities. PHYSICAL REVIEW LETTERS 2019; 122:054802. [PMID: 30822008 DOI: 10.1103/physrevlett.122.054802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 06/09/2023]
Abstract
We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory.
Collapse
Affiliation(s)
- E Adli
- University of Oslo, 0316 Oslo, Norway
| | - A Ahuja
- CERN, 1211 Geneva, Switzerland
| | - O Apsimon
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - R Apsimon
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - A-M Bachmann
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | | | | | - F Batsch
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | | | | | | | | | - T Bogey
- CERN, 1211 Geneva, Switzerland
| | - T Bohl
- CERN, 1211 Geneva, Switzerland
| | | | - F Braunmüller
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | - G Burt
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - B Buttenschön
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - A Caldwell
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | | | | | - M Chung
- UNIST, 44919 Ulsan, Republic of Korea
| | - D Cooke
- UCL, WC1E 6BT London, United Kingdom
| | | | - L Deacon
- UCL, WC1E 6BT London, United Kingdom
| | - L H Deubner
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | - A Dexter
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - J Farmer
- Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - G Fior
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - R Fiorito
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - R A Fonseca
- ISCTE-Instituto Universitéario de Lisboa, 1649-026 Lisbon, Portugal
| | | | | | | | | | - A A Gorn
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - O Grulke
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
- Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | - A Helm
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - J R Henderson
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - W Hofle
- CERN, 1211 Geneva, Switzerland
| | - M Hüther
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Ibison
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | | | - S Jolly
- UCL, WC1E 6BT London, United Kingdom
| | - F Keeble
- UCL, WC1E 6BT London, United Kingdom
| | - S-Y Kim
- UNIST, 44919 Ulsan, Republic of Korea
| | - F Kraus
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | - Y Li
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - S Liu
- TRIUMF, V6T 2A3 Vancouver, Canada
| | - N Lopes
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - K V Lotov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - M Martyanov
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | | | - V A Minakov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - J Mitchell
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - R Mompo
- CERN, 1211 Geneva, Switzerland
| | - J T Moody
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Moreira
- CERN, 1211 Geneva, Switzerland
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - P Muggli
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - C Mutin
- CERN, 1211 Geneva, Switzerland
| | - E Öz
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | | | | | - F Peña Asmus
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | - A Perera
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - A Petrenko
- CERN, 1211 Geneva, Switzerland
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - S Pitman
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - A Pukhov
- Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - S Rey
- CERN, 1211 Geneva, Switzerland
| | - K Rieger
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - H Ruhl
- Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | | | - I A Shalimova
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090 Novosibirsk, Russia
| | | | | | - L O Silva
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - L Soby
- CERN, 1211 Geneva, Switzerland
| | - A P Sosedkin
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - R I Spitsyn
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - P V Tuev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | | | - L Verra
- CERN, 1211 Geneva, Switzerland
- University of Milan, 20122 Milan, Italy
| | | | - J Vieira
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | | | - C P Welsch
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - B Williamson
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - M Wing
- UCL, WC1E 6BT London, United Kingdom
| | | | - G Xia
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| |
Collapse
|
43
|
Turner M, Adli E, Ahuja A, Apsimon O, Apsimon R, Bachmann AM, Barros Marin M, Barrientos D, Batsch F, Batkiewicz J, Bauche J, Berglyd Olsen VK, Bernardini M, Biskup B, Boccardi A, Bogey T, Bohl T, Bracco C, Braunmüller F, Burger S, Burt G, Bustamante S, Buttenschön B, Caldwell A, Cascella M, Chappell J, Chevallay E, Chung M, Cooke D, Damerau H, Deacon L, Deubner LH, Dexter A, Doebert S, Farmer J, Fedosseev VN, Fior G, Fiorito R, Fonseca RA, Friebel F, Garolfi L, Gessner S, Gorgisyan I, Gorn AA, Granados E, Grulke O, Gschwendtner E, Guerrero A, Hansen J, Helm A, Henderson JR, Hessler C, Hofle W, Hüther M, Ibison M, Jensen L, Jolly S, Keeble F, Kim SY, Kraus F, Lefevre T, LeGodec G, Li Y, Liu S, Lopes N, Lotov KV, Maricalva Brun L, Martyanov M, Mazzoni S, Medina Godoy D, Minakov VA, Mitchell J, Molendijk JC, Mompo R, Moody JT, Moreira M, Muggli P, Öz E, Ozturk E, Mutin C, Pasquino C, Pardons A, Peña Asmus F, Pepitone K, Perera A, Petrenko A, Pitman S, Plyushchev G, Pukhov A, Rey S, Rieger K, Ruhl H, Schmidt JS, Shalimova IA, Shaposhnikova E, Sherwood P, Silva LO, Soby L, Sosedkin AP, Speroni R, Spitsyn RI, Tuev PV, Velotti F, Verra L, Verzilov VA, Vieira J, Vincke H, Welsch CP, Williamson B, Wing M, Woolley B, Xia G. Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch. PHYSICAL REVIEW LETTERS 2019; 122:054801. [PMID: 30822039 DOI: 10.1103/physrevlett.122.054801] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 06/09/2023]
Abstract
We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1×10^{14} and 7.7×10^{14} electrons/cm^{3}. We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (<15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels.
Collapse
Affiliation(s)
| | - E Adli
- University of Oslo, 0316 Oslo, Norway
| | - A Ahuja
- CERN, 1211 Geneva, Switzerland
| | - O Apsimon
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - R Apsimon
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - A-M Bachmann
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | | | - F Batsch
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | | | | | | | | | | | - T Bogey
- CERN, 1211 Geneva, Switzerland
| | - T Bohl
- CERN, 1211 Geneva, Switzerland
| | | | - F Braunmüller
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | - G Burt
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - B Buttenschön
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
| | - A Caldwell
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | | | | | - M Chung
- UNIST, 44919 Ulsan, Republic of Korea
| | - D Cooke
- UCL, WC1E 6BT London, United Kingdom
| | | | - L Deacon
- UCL, WC1E 6BT London, United Kingdom
| | - L H Deubner
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | - A Dexter
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - J Farmer
- Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | | | - G Fior
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - R Fiorito
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - R A Fonseca
- ISCTE-Instituto Universitéario de Lisboa, 1649-026 Lisbon, Portugal
| | | | | | | | | | - A A Gorn
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - O Grulke
- Max Planck Institute for Plasma Physics, 17491 Greifswald, Germany
- Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | | - A Helm
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - J R Henderson
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - W Hofle
- CERN, 1211 Geneva, Switzerland
| | - M Hüther
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Ibison
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | | | - S Jolly
- UCL, WC1E 6BT London, United Kingdom
| | - F Keeble
- UCL, WC1E 6BT London, United Kingdom
| | - S-Y Kim
- UNIST, 44919 Ulsan, Republic of Korea
| | - F Kraus
- Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | | | - Y Li
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - S Liu
- TRIUMF, V6T 2A3 Vancouver, Canada
| | - N Lopes
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - K V Lotov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - M Martyanov
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | | | - V A Minakov
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - J Mitchell
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | | | - R Mompo
- CERN, 1211 Geneva, Switzerland
| | - J T Moody
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - M Moreira
- CERN, 1211 Geneva, Switzerland
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - P Muggli
- CERN, 1211 Geneva, Switzerland
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - E Öz
- Max Planck Institute for Physics, 80805 Munich, Germany
| | | | - C Mutin
- CERN, 1211 Geneva, Switzerland
| | | | | | - F Peña Asmus
- Max Planck Institute for Physics, 80805 Munich, Germany
- Technical University Munich, 80333 Munich, Germany
| | | | - A Perera
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - A Petrenko
- CERN, 1211 Geneva, Switzerland
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
| | - S Pitman
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- Lancaster University, LA1 4YB Lancaster, United Kingdom
| | - G Plyushchev
- CERN, 1211 Geneva, Switzerland
- Swiss Plasma Center, EPFL, 1015 Lausanne, Switzerland
| | - A Pukhov
- Heinrich-Heine-University of Düsseldorf, 40225 Düsseldorf, Germany
| | - S Rey
- CERN, 1211 Geneva, Switzerland
| | - K Rieger
- Max Planck Institute for Physics, 80805 Munich, Germany
| | - H Ruhl
- Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | | | - I A Shalimova
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 630090 Novosibirsk, Russia
| | | | | | - L O Silva
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - L Soby
- CERN, 1211 Geneva, Switzerland
| | - A P Sosedkin
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - R I Spitsyn
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - P V Tuev
- Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - L Verra
- CERN, 1211 Geneva, Switzerland
- University of Milan, 20122 Milan, Italy
| | | | - J Vieira
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | | | - C P Welsch
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
- University of Liverpool, L69 7ZE Liverpool, United Kingdom
| | - B Williamson
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| | - M Wing
- UCL, WC1E 6BT London, United Kingdom
| | | | - G Xia
- University of Manchester, M13 9PL Manchester, United Kingdom
- Cockcroft Institute, WA4 4AD Daresbury, United Kingdom
| |
Collapse
|
44
|
D'Arcy R, Wesch S, Aschikhin A, Bohlen S, Behrens C, Garland MJ, Goldberg L, Gonzalez P, Knetsch A, Libov V, de la Ossa AM, Meisel M, Mehrling TJ, Niknejadi P, Poder K, Röckemann JH, Schaper L, Schmidt B, Schröder S, Palmer C, Schwinkendorf JP, Sheeran B, Streeter MJV, Tauscher G, Wacker V, Osterhoff J. Tunable Plasma-Based Energy Dechirper. PHYSICAL REVIEW LETTERS 2019; 122:034801. [PMID: 30735413 DOI: 10.1103/physrevlett.122.034801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Indexed: 06/09/2023]
Abstract
A tunable plasma-based energy dechirper has been developed at FLASHForward to remove the correlated energy spread of a 681 MeV electron bunch. Through the interaction of the bunch with wakefields excited in plasma the projected energy spread was reduced from a FWHM of 1.31% to 0.33% without reducing the stability of the incoming beam. The experimental results for variable plasma density are in good agreement with analytic predictions and three-dimensional simulations. The proof-of-principle dechirping strength of 1.8 GeV/mm/m significantly exceeds those demonstrated for competing state-of-the-art techniques and may be key to future plasma wakefield-based free-electron lasers and high energy physics facilities, where large intrinsic chirps need to be removed.
Collapse
Affiliation(s)
- R D'Arcy
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - S Wesch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - A Aschikhin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S Bohlen
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C Behrens
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - M J Garland
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - L Goldberg
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P Gonzalez
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Knetsch
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - V Libov
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Martinez de la Ossa
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M Meisel
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - T J Mehrling
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA
| | - P Niknejadi
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - K Poder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J-H Röckemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - L Schaper
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - B Schmidt
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - S Schröder
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - C Palmer
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- University of Oxford, Wellington Square, Oxford OX1 2JD, United Kingdom
| | - J-P Schwinkendorf
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - B Sheeran
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - M J V Streeter
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Imperial College London, Kensington, London SW7 2AZ, United Kingdom
| | - G Tauscher
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - V Wacker
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
45
|
Pukhov A, Farmer JP. Stable Particle Acceleration in Coaxial Plasma Channels. PHYSICAL REVIEW LETTERS 2018; 121:264801. [PMID: 30636146 DOI: 10.1103/physrevlett.121.264801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 06/09/2023]
Abstract
The attainable transformer ratio in plasma accelerators is limited by instabilities. Using three-dimensional particle-in-cell simulations, we demonstrate that these can be controlled using a hollow plasma channel with a coaxial plasma filament. The driver scatters electrons from the filament, and the slow pinch of the ions leads to a strong chirp of the effective betatron frequency, preventing beam breakup. We demonstrate the monoenergetic acceleration of an electron bunch to 20 GeV over 4.4 m, achieving a transformer ratio of 10, an energy efficiency of 40%, and an emittance of 1.8 μm.
Collapse
Affiliation(s)
- Alexander Pukhov
- Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40225 Düssseldorf, Germany
| | - John P Farmer
- Institut für Theoretische Physik I, Heinrich-Heine-Universität, 40225 Düssseldorf, Germany
| |
Collapse
|
46
|
Pompili R, Anania MP, Bellaveglia M, Biagioni A, Bini S, Bisesto F, Brentegani E, Cardelli F, Castorina G, Chiadroni E, Cianchi A, Coiro O, Costa G, Croia M, Di Giovenale D, Ferrario M, Filippi F, Giribono A, Lollo V, Marocchino A, Marongiu M, Martinelli V, Mostacci A, Pellegrini D, Piersanti L, Di Pirro G, Romeo S, Rossi AR, Scifo J, Shpakov V, Stella A, Vaccarezza C, Villa F, Zigler A. Focusing of High-Brightness Electron Beams with Active-Plasma Lenses. PHYSICAL REVIEW LETTERS 2018; 121:174801. [PMID: 30411933 DOI: 10.1103/physrevlett.121.174801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 06/08/2023]
Abstract
Plasma-based technology promises a tremendous reduction in size of accelerators used for research, medical, and industrial applications, making it possible to develop tabletop machines accessible for a broader scientific community. By overcoming current limits of conventional accelerators and pushing particles to larger and larger energies, the availability of strong and tunable focusing optics is mandatory also because plasma-accelerated beams usually have large angular divergences. In this regard, active-plasma lenses represent a compact and affordable tool to generate radially symmetric magnetic fields several orders of magnitude larger than conventional quadrupoles and solenoids. However, it has been recently proved that the focusing can be highly nonlinear and induce a dramatic emittance growth. Here, we present experimental results showing how these nonlinearities can be minimized and lensing improved. These achievements represent a major breakthrough toward the miniaturization of next-generation focusing devices.
Collapse
Affiliation(s)
- R Pompili
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M P Anania
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Bellaveglia
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Biagioni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - S Bini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Bisesto
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - E Brentegani
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Cardelli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - G Castorina
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - E Chiadroni
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Cianchi
- University or Rome Tor Vergata and INFN, Via Ricerca Scientifica 1, 00133 Rome, Italy
| | - O Coiro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - G Costa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Croia
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - D Di Giovenale
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Ferrario
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Filippi
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Giribono
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - V Lollo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Marocchino
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - M Marongiu
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - V Martinelli
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Mostacci
- Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - D Pellegrini
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - L Piersanti
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - G Di Pirro
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - S Romeo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A R Rossi
- INFN Milano, via Celoria 16, 20133 Milan, Italy
| | - J Scifo
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - V Shpakov
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Stella
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - C Vaccarezza
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - F Villa
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
| | - A Zigler
- Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy
- Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel
| |
Collapse
|
47
|
Adli E, Ahuja A, Apsimon O, Apsimon R, Bachmann AM, Barrientos D, Batsch F, Bauche J, Berglyd Olsen VK, Bernardini M, Bohl T, Bracco C, Braunmüller F, Burt G, Buttenschön B, Caldwell A, Cascella M, Chappell J, Chevallay E, Chung M, Cooke D, Damerau H, Deacon L, Deubner LH, Dexter A, Doebert S, Farmer J, Fedosseev VN, Fiorito R, Fonseca RA, Friebel F, Garolfi L, Gessner S, Gorgisyan I, Gorn AA, Granados E, Grulke O, Gschwendtner E, Hansen J, Helm A, Henderson JR, Hüther M, Ibison M, Jensen L, Jolly S, Keeble F, Kim SY, Kraus F, Li Y, Liu S, Lopes N, Lotov KV, Maricalva Brun L, Martyanov M, Mazzoni S, Medina Godoy D, Minakov VA, Mitchell J, Molendijk JC, Moody JT, Moreira M, Muggli P, Öz E, Pasquino C, Pardons A, Peña Asmus F, Pepitone K, Perera A, Petrenko A, Pitman S, Pukhov A, Rey S, Rieger K, Ruhl H, Schmidt JS, Shalimova IA, Sherwood P, Silva LO, Soby L, Sosedkin AP, Speroni R, Spitsyn RI, Tuev PV, Turner M, Velotti F, Verra L, Verzilov VA, Vieira J, Welsch CP, Williamson B, Wing M, Woolley B, Xia G. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 2018; 561:363-367. [PMID: 30188496 PMCID: PMC6786972 DOI: 10.1038/s41586-018-0485-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/14/2018] [Indexed: 12/03/2022]
Abstract
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1–5, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse6–9 or electron bunch10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage13. Long, thin proton bunches can be used because they undergo a process called self-modulation14–16, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17–19 uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that our results are an important step towards the development of future high-energy particle accelerators21,22. Electron acceleration to very high energies is achieved in a single step by injecting electrons into a ‘wake’ of charge created in a 10-metre-long plasma by speeding long proton bunches.
Collapse
Affiliation(s)
- E Adli
- University of Oslo, Oslo, Norway
| | | | - O Apsimon
- University of Manchester, Manchester, UK.,Cockcroft Institute, Daresbury, UK
| | - R Apsimon
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | - A-M Bachmann
- CERN, Geneva, Switzerland.,Max Planck Institute for Physics, Munich, Germany.,Technical University Munich, Munich, Germany
| | | | - F Batsch
- CERN, Geneva, Switzerland.,Max Planck Institute for Physics, Munich, Germany.,Technical University Munich, Munich, Germany
| | | | | | | | - T Bohl
- CERN, Geneva, Switzerland
| | | | | | - G Burt
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | - B Buttenschön
- Max Planck Institute for Plasma Physics, Greifswald, Germany
| | - A Caldwell
- Max Planck Institute for Physics, Munich, Germany
| | | | | | | | | | | | | | | | - L H Deubner
- Philipps-Universität Marburg, Marburg, Germany
| | - A Dexter
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | | | - J Farmer
- Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | | | - R Fiorito
- Cockcroft Institute, Daresbury, UK.,University of Liverpool, Liverpool, UK
| | - R A Fonseca
- ISCTE-Instituto Universitéario de Lisboa, Lisbon, Portugal
| | | | | | | | | | - A A Gorn
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - O Grulke
- Max Planck Institute for Plasma Physics, Greifswald, Germany.,Technical University of Denmark, Lyngby, Denmark
| | | | | | - A Helm
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - J R Henderson
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | - M Hüther
- Max Planck Institute for Physics, Munich, Germany
| | - M Ibison
- Cockcroft Institute, Daresbury, UK.,University of Liverpool, Liverpool, UK
| | | | | | | | | | - F Kraus
- Philipps-Universität Marburg, Marburg, Germany
| | - Y Li
- University of Manchester, Manchester, UK.,Cockcroft Institute, Daresbury, UK
| | - S Liu
- TRIUMF, Vancouver, British Columbia, Canada
| | - N Lopes
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - K V Lotov
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - M Martyanov
- Max Planck Institute for Physics, Munich, Germany
| | | | | | - V A Minakov
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - J Mitchell
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | | | - J T Moody
- Max Planck Institute for Physics, Munich, Germany
| | - M Moreira
- CERN, Geneva, Switzerland.,GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - P Muggli
- CERN, Geneva, Switzerland.,Max Planck Institute for Physics, Munich, Germany
| | - E Öz
- Max Planck Institute for Physics, Munich, Germany
| | | | | | - F Peña Asmus
- Max Planck Institute for Physics, Munich, Germany.,Technical University Munich, Munich, Germany
| | | | - A Perera
- Cockcroft Institute, Daresbury, UK.,University of Liverpool, Liverpool, UK
| | - A Petrenko
- CERN, Geneva, Switzerland.,Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia
| | - S Pitman
- Cockcroft Institute, Daresbury, UK.,Lancaster University, Lancaster, UK
| | - A Pukhov
- Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - S Rey
- CERN, Geneva, Switzerland
| | - K Rieger
- Max Planck Institute for Physics, Munich, Germany
| | - H Ruhl
- Ludwig-Maximilians-Universität, Munich, Germany
| | | | - I A Shalimova
- Novosibirsk State University, Novosibirsk, Russia.,Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia
| | | | - L O Silva
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - L Soby
- CERN, Geneva, Switzerland
| | - A P Sosedkin
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - R I Spitsyn
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - P V Tuev
- Budker Institute of Nuclear Physics SB RAS, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | | | - L Verra
- CERN, Geneva, Switzerland.,University of Milan, Milan, Italy
| | | | - J Vieira
- GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - C P Welsch
- Cockcroft Institute, Daresbury, UK.,University of Liverpool, Liverpool, UK
| | - B Williamson
- University of Manchester, Manchester, UK.,Cockcroft Institute, Daresbury, UK
| | | | | | - G Xia
- University of Manchester, Manchester, UK.,Cockcroft Institute, Daresbury, UK
| |
Collapse
|
48
|
Castelvecchi D. CERN’s pioneering mini-accelerator passes first test. Nature 2018. [DOI: 10.1038/d41586-018-06114-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Loisch G, Asova G, Boonpornprasert P, Brinkmann R, Chen Y, Engel J, Good J, Gross M, Grüner F, Huck H, Kalantaryan D, Krasilnikov M, Lishilin O, de la Ossa AM, Mehrling TJ, Melkumyan D, Oppelt A, Osterhoff J, Qian H, Renier Y, Stephan F, Tenholt C, Wohlfarth V, Zhao Q. Observation of High Transformer Ratio Plasma Wakefield Acceleration. PHYSICAL REVIEW LETTERS 2018; 121:064801. [PMID: 30141672 DOI: 10.1103/physrevlett.121.064801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Particle-beam-driven plasma wakefield acceleration (PWFA) enables various novel high-gradient techniques for powering future compact light-source and high-energy physics applications. Here, a driving particle bunch excites a wakefield response in a plasma medium, which may rapidly accelerate a trailing witness beam. In this Letter, we present the measurement of ratios of acceleration of the witness bunch to deceleration of the driver bunch, the so-called transformer ratio, significantly exceeding the fundamental theoretical and thus far experimental limit of 2 in a PWFA. An electron bunch with ramped current profile was utilized to accelerate a witness bunch with a transformer ratio of 4.6_{-0.7}^{+2.2} in a plasma with length ∼10 cm, also demonstrating stable transport of driver bunches with lengths on the order of the plasma wavelength.
Collapse
Affiliation(s)
- Gregor Loisch
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Galina Asova
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
- INRNE, BAS, 1784 Sofia, Bulgaria
| | | | | | - Ye Chen
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Johannes Engel
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - James Good
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Matthias Gross
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Florian Grüner
- Universität Hamburg, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, 22607 Hamburg, Germany
| | - Holger Huck
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | | | | | - Osip Lishilin
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | | | | | - David Melkumyan
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Anne Oppelt
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Jens Osterhoff
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Houjun Qian
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Yves Renier
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| | | | | | - Quantang Zhao
- Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen, Germany
| |
Collapse
|
50
|
Gross M, Engel J, Good J, Huck H, Isaev I, Koss G, Krasilnikov M, Lishilin O, Loisch G, Renier Y, Rublack T, Stephan F, Brinkmann R, Martinez de la Ossa A, Osterhoff J, Malyutin D, Richter D, Mehrling T, Khojoyan M, Schroeder CB, Grüner F. Observation of the Self-Modulation Instability via Time-Resolved Measurements. PHYSICAL REVIEW LETTERS 2018; 120:144802. [PMID: 29694120 DOI: 10.1103/physrevlett.120.144802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 06/08/2023]
Abstract
Self-modulation of an electron beam in a plasma has been observed. The propagation of a long (several plasma wavelengths) electron bunch in an overdense plasma resulted in the production of multiple bunches via the self-modulation instability. Using a combination of a radio-frequency deflector and a dipole spectrometer, the time and energy structure of the self-modulated beam was measured. The longitudinal phase space measurement showed the modulation of a long electron bunch into three bunches with an approximately 200 keV/c amplitude momentum modulation. Demonstrating this effect is a breakthrough for proton-driven plasma accelerator schemes aiming to utilize the same physical effect.
Collapse
Affiliation(s)
- M Gross
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - J Engel
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - J Good
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - H Huck
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - I Isaev
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Koss
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Krasilnikov
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - O Lishilin
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Y Renier
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - T Rublack
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - R Brinkmann
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Martinez de la Ossa
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J Osterhoff
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - D Malyutin
- Helmholtz-Zentrum Berlin für Materialien & Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - D Richter
- Helmholtz-Zentrum Berlin für Materialien & Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - T Mehrling
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - M Khojoyan
- LLR (Laboratoire Leprince-Ringuet), CNRS and Ecole Polytechnique, Palaiseau UMR7638, France
| | - C B Schroeder
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - F Grüner
- Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|