1
|
Borao S, Vega M, Boronat S, Hidalgo E, Hümmer S, Ayté J. A systematic screen identifies Saf5 as a link between splicing and transcription in fission yeast. PLoS Genet 2024; 20:e1011316. [PMID: 38833506 PMCID: PMC11178228 DOI: 10.1371/journal.pgen.1011316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/14/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Abstract
Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
2
|
Zhang J, Wang T, Shi R, Zhao Y, Zhang Y, Zhang C, Xing Q, Zhou T, Shan Y, Yao H, Zhang X, Pan G. YTHDF1 facilitates PRC1-mediated H2AK119ub in human ES cells. J Cell Physiol 2024; 239:152-165. [PMID: 37991435 DOI: 10.1002/jcp.31152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/25/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Polycomb repressive complexes (PRCs) play critical roles in cell fate decisions during normal development as well as disease progression through mediating histone modifications such as H3K27me3 and H2AK119ub. How exactly PRCs recruited to chromatin remains to be fully illuminated. Here, we report that YTHDF1, the N6-methyladenine (m6 A) RNA reader that was previously known to be mainly cytoplasmic, associates with RNF2, a PRC1 protein that mediates H2AK119ub in human embryonic stem cells (hESCs). A portion of YTHDF1 localizes in the nuclei and associates with RNF2/H2AK119ub on a subset of gene loci related to neural development functions. Knock-down YTHDF1 attenuates H2AK119ub modification on these genes and promotes neural differentiation in hESCs. Our findings provide a noncanonical mechanism that YTHDF1 participates in PRC1 functions in hESCs.
Collapse
Affiliation(s)
- Jingyuan Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Tianyu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruona Shi
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yuan Zhao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yanqi Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cong Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tiancheng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongli Shan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Basic Science Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
3
|
Kwiatek L, Landry-Voyer AM, Latour M, Yague-Sanz C, Bachand F. PABPN1 prevents the nuclear export of an unspliced RNA with a constitutive transport element and controls human gene expression via intron retention. RNA (NEW YORK, N.Y.) 2023; 29:644-662. [PMID: 36754576 PMCID: PMC10158996 DOI: 10.1261/rna.079294.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/12/2023] [Indexed: 05/06/2023]
Abstract
Intron retention is a type of alternative splicing where one or more introns remain unspliced in a polyadenylated transcript. Although many viral systems are known to translate proteins from mRNAs with retained introns, restriction mechanisms generally prevent export and translation of incompletely spliced mRNAs. Here, we provide evidence that the human nuclear poly(A)-binding protein, PABPN1, functions in such restrictions. Using a reporter construct in which nuclear export of an incompletely spliced mRNA is enhanced by a viral constitutive transport element (CTE), we show that PABPN1 depletion results in a significant increase in export and translation from the unspliced CTE-containing transcript. Unexpectedly, we find that inactivation of poly(A)-tail exosome targeting by depletion of PAXT components had no effect on export and translation of the unspliced reporter mRNA, suggesting a mechanism largely independent of nuclear RNA decay. Interestingly, a PABPN1 mutant selectively defective in stimulating poly(A) polymerase elongation strongly enhanced the expression of the unspliced, but not of intronless, reporter transcripts. Analysis of RNA-seq data also revealed that PABPN1 controls the expression of many human genes via intron retention. Notably, PABPN1-dependent intron retention events mostly affected 3'-terminal introns and were insensitive to PAXT and NEXT deficiencies. Our findings thus disclose a role for PABPN1 in restricting nuclear export of intron-retained transcripts and reinforce the interdependence between terminal intron splicing, 3' end processing, and polyadenylation.
Collapse
Affiliation(s)
- Lauren Kwiatek
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Anne-Marie Landry-Voyer
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Mélodie Latour
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Carlo Yague-Sanz
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| | - Francois Bachand
- RNA Group, Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Québec, Canada J1E 4K8
| |
Collapse
|
4
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
5
|
Nuckolls NL, Nidamangala Srinivasa A, Mok AC, Helston RM, Bravo Núñez MA, Lange JJ, Gallagher TJ, Seidel CW, Zanders SE. S. pombe wtf drivers use dual transcriptional regulation and selective protein exclusion from spores to cause meiotic drive. PLoS Genet 2022; 18:e1009847. [PMID: 36477651 PMCID: PMC9762604 DOI: 10.1371/journal.pgen.1009847] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Meiotic drivers bias gametogenesis to ensure their transmission into more than half the offspring of a heterozygote. In Schizosaccharomyces pombe, wtf meiotic drivers destroy the meiotic products (spores) that do not inherit the driver from a heterozygote, thereby reducing fertility. wtf drivers encode both a Wtfpoison protein and a Wtfantidote protein using alternative transcriptional start sites. Here, we analyze how the expression and localization of the Wtf proteins are regulated to achieve drive. We show that transcriptional timing and selective protein exclusion from developing spores ensure that all spores are exposed to Wtf4poison, but only the spores that inherit wtf4 receive a dose of Wtf4antidote sufficient for survival. In addition, we show that the Mei4 transcription factor, a master regulator of meiosis, controls the expression of the wtf4poison transcript. This transcriptional regulation, which includes the use of a critical meiotic transcription factor, likely complicates the universal suppression of wtf genes without concomitantly disrupting spore viability. We propose that these features contribute to the evolutionary success of the wtf drivers.
Collapse
Affiliation(s)
- Nicole L. Nuckolls
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anthony C. Mok
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Missouri—Kansas City, Kansas City, Missouri, United States of America
| | - Rachel M. Helston
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | | | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Todd J. Gallagher
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris W. Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sarah E. Zanders
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
6
|
Palacios-Blanco I, Martín-Castellanos C. Cyclins and CDKs in the regulation of meiosis-specific events. Front Cell Dev Biol 2022; 10:1069064. [PMID: 36523509 PMCID: PMC9745066 DOI: 10.3389/fcell.2022.1069064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 07/13/2024] Open
Abstract
How eukaryotic cells control their duplication is a fascinating example of how a biological system self-organizes specific activities to temporally order cellular events. During cell cycle progression, the cellular level of CDK (Cyclin-Dependent Kinase) activity temporally orders the different cell cycle phases, ensuring that DNA replication occurs prior to segregation into two daughter cells. CDK activity requires the binding of a regulatory subunit (cyclin) to the core kinase, and both CDKs and cyclins are well conserved throughout evolution from yeast to humans. As key regulators, they coordinate cell cycle progression with metabolism, DNA damage, and cell differentiation. In meiosis, the special cell division that ensures the transmission of genetic information from one generation to the next, cyclins and CDKs have acquired novel functions to coordinate meiosis-specific events such as chromosome architecture, recombination, and synapsis. Interestingly, meiosis-specific cyclins and CDKs are common in evolution, some cyclins seem to have evolved to acquire CDK-independent functions, and even some CDKs associate with a non-cyclin partner. We will review the functions of these key regulators in meiosis where variation has specially flourished.
Collapse
|
7
|
Montañés JC, Huertas M, Moro SG, Blevins WR, Carmona M, Ayté J, Hidalgo E, Albà MM. Native RNA sequencing in fission yeast reveals frequent alternative splicing isoforms. Genome Res 2022; 32:1215-1227. [PMID: 35618415 PMCID: PMC9248878 DOI: 10.1101/gr.276516.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
The unicellular yeast Schizosaccharomyces pombe (fission yeast) retains many of the splicing features observed in humans and is thus an excellent model to study the basic mechanisms of splicing. Nearly half the genes contain introns, but the impact of alternative splicing in gene regulation and proteome diversification remains largely unexplored. Here we leverage Oxford Nanopore Technologies native RNA sequencing (dRNA), as well as ribosome profiling data, to uncover the full range of polyadenylated transcripts and translated open reading frames. We identify 332 alternative isoforms affecting the coding sequences of 262 different genes, 97 of which occur at frequencies >20%, indicating that functional alternative splicing in S. pombe is more prevalent than previously suspected. Intron retention events make ∼80% of the cases; these events may be involved in the regulation of gene expression and, in some cases, generate novel protein isoforms, as supported by ribosome profiling data in 18 of the intron retention isoforms. One example is the rpl22 gene, in which intron retention is associated with the translation of a protein of only 13 amino acids. We also find that lowly expressed transcripts tend to have longer poly(A) tails than highly expressed transcripts, highlighting an interdependence between poly(A) tail length and transcript expression level. Finally, we discover 214 novel transcripts that are not annotated, including 158 antisense transcripts, some of which also show translation evidence. The methodologies described in this work open new opportunities to study the regulation of splicing in a simple eukaryotic model.
Collapse
Affiliation(s)
- José Carlos Montañés
- Evolutionary Genomics Group, Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Huertas
- Evolutionary Genomics Group, Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Simone G Moro
- Evolutionary Genomics Group, Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - William R Blevins
- Evolutionary Genomics Group, Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute (IMIM) and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
8
|
González-Medina A, Pazo E, Hidalgo E, Ayté J. SWI/SNF and RSC remodeler complexes bind to MBF-dependent genes. Cell Cycle 2021; 20:2652-2661. [PMID: 34843421 DOI: 10.1080/15384101.2021.2008203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is required for cells to complete S phase. The MBF transcription factor is regulated through a complex feedback mechanism that involves the co-repressors Yox1 and Nrm1 that are loaded onto MBF at the end of S phase, while positive transactivation is achieved through the constitutive binding of the co-activator Rep2. Here we show that Rep2 is required to fully recruit the chromatin remodelers SWI/SNF and RSC to MBF-regulated promoters. On the contrary, Nrm1 and Yox1, when bound to the MBF complex, block the approximation of these chromatin remodelers to MBF-regulated promoters. We propose that SWI/SNF and RSC are recruited to MBF-regulated genes, and RSC together with SAGA complex are important to regulate the G1-to-S transcriptional wave. Mutants of these remodeler complexes are highly sensitive when cells are exposed to insults that challenge DNA synthesis.
Collapse
Affiliation(s)
| | - Esther Pazo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
9
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
10
|
Hümmer S, Borao S, Guerra-Moreno A, Cozzuto L, Hidalgo E, Ayté J. Cross talk between the upstream exon-intron junction and Prp2 facilitates splicing of non-consensus introns. Cell Rep 2021; 37:109893. [PMID: 34706246 DOI: 10.1016/j.celrep.2021.109893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
Splicing of mRNA precursors is essential in the regulation of gene expression. U2AF65 recognizes the poly-pyrimidine tract and helps in the recognition of the branch point. Inactivation of fission yeast U2AF65 (Prp2) blocks splicing of most, but not all, pre-mRNAs, for reasons that are not understood. Here, we have determined genome-wide the splicing efficiency of fission yeast cells as they progress into synchronous meiosis in the presence or absence of functional Prp2. Our data indicate that in addition to the splicing elements at the 3' end of any intron, the nucleotides immediately upstream the intron will determine whether Prp2 is required or dispensable for splicing. By changing those nucleotides in any given intron, we regulate its Prp2 dependency. Our results suggest a model in which Prp2 is required for the coordinated recognition of both intronic ends, placing Prp2 as a key regulatory element in the determination of the exon-intron boundaries.
Collapse
Affiliation(s)
- Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
11
|
Sato M, Kakui Y, Toya M. Tell the Difference Between Mitosis and Meiosis: Interplay Between Chromosomes, Cytoskeleton, and Cell Cycle Regulation. Front Cell Dev Biol 2021; 9:660322. [PMID: 33898463 PMCID: PMC8060462 DOI: 10.3389/fcell.2021.660322] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
Meiosis is a specialized style of cell division conserved in eukaryotes, particularly designed for the production of gametes. A huge number of studies to date have demonstrated how chromosomes behave and how meiotic events are controlled. Yeast substantially contributed to the understanding of the molecular mechanisms of meiosis in the past decades. Recently, evidence began to accumulate to draw a perspective landscape showing that chromosomes and microtubules are mutually influenced: microtubules regulate chromosomes, whereas chromosomes also regulate microtubule behaviors. Here we focus on lessons from recent advancement in genetical and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how chromosomes, cytoskeleton, and cell cycle progression are organized and particularly how these are differentiated in mitosis and meiosis. These studies illuminate that meiosis is strategically designed to fulfill two missions: faithful segregation of genetic materials and production of genetic diversity in descendants through elaboration by meiosis-specific factors in collaboration with general factors.
Collapse
Affiliation(s)
- Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Institute for Medical-Oriented Structural Biology, Waseda University, Tokyo, Japan
| | - Yasutaka Kakui
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Mika Toya
- Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences (TWIns), Waseda University, Tokyo, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.,Major in Bioscience, Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
12
|
Role of promoters in regulating alternative splicing. Gene 2021; 782:145523. [PMID: 33667606 DOI: 10.1016/j.gene.2021.145523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
Alternative splicing (AS) plays a critical role in enhancing proteome complexity in higher eukaryotes. Almost all the multi intron-containing genes undergo AS in humans. Splicing mainly occurs co-transcriptionally, where RNA polymerase II (RNA pol II) plays a crucial role in coordinating transcription and pre-mRNA splicing. Aberrant AS leads to non-functional proteins causative in various pathophysiological conditions such as cancers, neurodegenerative diseases, and muscular dystrophies. Transcription and pre-mRNA splicing are deeply interconnected and can influence each other's functions. Several studies evinced that specific promoters employed by RNA pol II dictate the RNA processing decisions. Promoter-specific recruitment of certain transcriptional factors or transcriptional coactivators influences splicing, and the extent to which these factors affect splicing has not been discussed in detail. Here, in this review, various DNA-binding proteins and their influence on promoter-specific AS are extensively discussed. Besides, this review highlights how the promoter-specific epigenetic changes might regulate AS.
Collapse
|
13
|
An emerging role of chromatin-interacting RNA-binding proteins in transcription regulation. Essays Biochem 2020; 64:907-918. [PMID: 33034346 DOI: 10.1042/ebc20200004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs) are well-established key factors orchestrating gene transcription, and RNA-binding proteins (RBPs) are mainly thought to participate in post-transcriptional control of gene. In fact, these two steps are functionally coupled, offering a possibility for reciprocal communications between transcription and regulatory RNAs and RBPs. Recently, a series of exploratory studies, utilizing functional genomic strategies, have revealed that RBPs are prevalently involved in transcription control genome-wide through their interactions with chromatin. Here, we present a refined census of RBPs to grope for such an emerging role and discuss the global view of RBP-chromatin interactions and their functional diversities in transcription regulation.
Collapse
|
14
|
CDK Regulation of Meiosis: Lessons from S. cerevisiae and S. pombe. Genes (Basel) 2020; 11:genes11070723. [PMID: 32610611 PMCID: PMC7397238 DOI: 10.3390/genes11070723] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Meiotic progression requires precise orchestration, such that one round of DNA replication is followed by two meiotic divisions. The order and timing of meiotic events is controlled through the modulation of the phosphorylation state of proteins. Key components of this phospho-regulatory system include cyclin-dependent kinase (CDK) and its cyclin regulatory subunits. Over the past two decades, studies in budding and fission yeast have greatly informed our understanding of the role of CDK in meiotic regulation. In this review, we provide an overview of how CDK controls meiotic events in both budding and fission yeast. We discuss mechanisms of CDK regulation through post-translational modifications and changes in the levels of cyclins. Finally, we highlight the similarities and differences in CDK regulation between the two yeast species. Since CDK and many meiotic regulators are highly conserved, the findings in budding and fission yeasts have revealed conserved mechanisms of meiotic regulation among eukaryotes.
Collapse
|
15
|
Chen JY, Lim DH, Fu XD. Mechanistic Dissection of RNA-Binding Proteins in Regulated Gene Expression at Chromatin Levels. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:55-66. [PMID: 31900328 PMCID: PMC7332398 DOI: 10.1101/sqb.2019.84.039222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic genomes are known to prevalently transcribe diverse classes of RNAs, virtually all of which, including nascent RNAs from protein-coding genes, are now recognized to have regulatory functions in gene expression, suggesting that RNAs are both the products and the regulators of gene expression. Their functions must enlist specific RNA-binding proteins (RBPs) to execute their regulatory activities, and recent evidence suggests that nearly all biochemically defined chromatin regions in the human genome, whether defined for gene activation or silencing, have the involvement of specific RBPs. Interestingly, the boundary between RNA- and DNA-binding proteins is also melting, as many DNA-binding proteins traditionally studied in the context of transcription are able to bind RNAs, some of which may simultaneously bind both DNA and RNA to facilitate network interactions in three-dimensional (3D) genome. In this review, we focus on RBPs that function at chromatin levels, with particular emphasis on their mechanisms of action in regulated gene expression, which is intended to facilitate future functional and mechanistic dissection of chromatin-associated RBPs.
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Do-Hwan Lim
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
16
|
González-Medina A, Hidalgo E, Ayté J. Gcn5-mediated acetylation at MBF-regulated promoters induces the G1/S transcriptional wave. Nucleic Acids Res 2019; 47:8439-8451. [PMID: 31260531 PMCID: PMC6895280 DOI: 10.1093/nar/gkz561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 11/26/2022] Open
Abstract
In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.
Collapse
Affiliation(s)
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
17
|
Xiao R, Chen JY, Liang Z, Luo D, Chen G, Lu ZJ, Chen Y, Zhou B, Li H, Du X, Yang Y, San M, Wei X, Liu W, Lécuyer E, Graveley BR, Yeo GW, Burge CB, Zhang MQ, Zhou Y, Fu XD. Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription. Cell 2019; 178:107-121.e18. [PMID: 31251911 PMCID: PMC6760001 DOI: 10.1016/j.cell.2019.06.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/21/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023]
Abstract
Increasing evidence suggests that transcriptional control and chromatin activities at large involve regulatory RNAs, which likely enlist specific RNA-binding proteins (RBPs). Although multiple RBPs have been implicated in transcription control, it has remained unclear how extensively RBPs directly act on chromatin. We embarked on a large-scale RBP ChIP-seq analysis, revealing widespread RBP presence in active chromatin regions in the human genome. Like transcription factors (TFs), RBPs also show strong preference for hotspots in the genome, particularly gene promoters, where their association is frequently linked to transcriptional output. Unsupervised clustering reveals extensive co-association between TFs and RBPs, as exemplified by YY1, a known RNA-dependent TF, and RBM25, an RBP involved in splicing regulation. Remarkably, RBM25 depletion attenuates all YY1-dependent activities, including chromatin binding, DNA looping, and transcription. We propose that various RBPs may enhance network interaction through harnessing regulatory RNAs to control transcription.
Collapse
Affiliation(s)
- Rui Xiao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China.
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhengyu Liang
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Daji Luo
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430071, China
| | - Geng Chen
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhi John Lu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xian Du
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Yang Yang
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Mingkui San
- Medical Research Institute, Wuhan University, Wuhan, Hubei 430071, China
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health Science Center, Farmington, CT 06030, USA
| | - Wen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal, Département de Biochimie and Médecine Moléculaire, Université de Montréal, Montréal, QC H2W 1R7, Canada
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health Science Center, Farmington, CT 06030, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher B Burge
- Program in Computational and Systems Biology, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Michael Q Zhang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, University of Texas, Dallas, TX 75080, USA
| | - Yu Zhou
- College of Life Sciences and Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
CDK contribution to DSB formation and recombination in fission yeast meiosis. PLoS Genet 2019; 15:e1007876. [PMID: 30640914 PMCID: PMC6331086 DOI: 10.1371/journal.pgen.1007876] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
CDKs (cyclin-dependent kinases) associate with different cyclins to form different CDK-complexes that are fundamental for an ordered cell cycle progression, and the coordination of this progression with different aspects of the cellular physiology. During meiosis programmed DNA double-strand breaks (DSBs) initiate recombination that in addition to generating genetic variability are essential for the reductional chromosome segregation during the first meiotic division, and therefore for genome stability and viability of the gametes. However, how meiotic progression and DSB formation are coordinated, and the role CDKs have in the process, is not well understood. We have used single and double cyclin deletion mutants, and chemical inhibition of global CDK activity using the cdc2-asM17 allele, to address the requirement of CDK activity for DSB formation and recombination in fission yeast. We report that several cyclins (Cig1, Cig2, and the meiosis-specific Crs1) control DSB formation and recombination, with a major contribution of Crs1. Moreover, complementation analysis indicates specificity at least for this cyclin, suggesting that different CDK complexes might act in different pathways to promote recombination. Down-regulation of CDK activity impinges on the formation of linear elements (LinEs, protein complexes required for break formation at most DSB hotspot sites). This defect correlates with a reduction in the capability of one structural component (Rec25) to bind chromatin, suggesting a molecular mechanism by which CDK controls break formation. However, reduction in DSB formation in cyclin deletion mutants does not always correspondingly correlate with a proportional reduction in meiotic recombination (crossovers), suggesting that specific CDK complexes might also control downstream events balancing repair pathways. Therefore, our work points to CDK regulation of DSB formation as a key conserved feature in the initiation of meiotic recombination, in addition to provide a view of possible roles CDK might have in other steps of the recombination process. Meiotic division is a cell division process where a single round of DNA replication is followed by two sequential chromosome segregations, the first reductional (homologous chromosomes separate) and the second equational (sister chromatids segregate). As a consequence diploid organisms halve ploidy, producing haploid gametes that after fertilization generate a new diploid organism with a complete chromosome complement. At early stages of meiosis physical exchange between homologous chromosomes ensures the accurate following reductional segregation. Physical exchange is provided by recombination that initiates with highly-controlled self-inflicted DNA damage (DSBs, double strand breaks). We have found that the conserved CDK (cyclin-dependent kinase) activity controls DSB formation in fission yeast. Available data were uncertain about the conservation of CDK in the process, and thus our work points to a broad evolutionary conservation of this regulation. Regulation is exerted at least by controlling chromatin-binding of one structural component of linear elements, a protein complex related to the synaptonemal complex and required for high levels of DSBs. Correspondingly, depletion of CDK activity impairs formation of these structures. In addition, CDK might control homeostatic mechanisms, critical to maintain efficient levels of recombination across the genome and, therefore, high rates of genetic exchange between parental chromosomes.
Collapse
|
19
|
Knezevic I, González-Medina A, Gaspa L, Hidalgo E, Ayté J. The INO80 complex activates the transcription of S-phase genes in a cell cycle-regulated manner. FEBS J 2018; 285:3870-3881. [PMID: 30134042 DOI: 10.1111/febs.14640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/30/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Chromatin structure is an essential factor in the proper regulation of DNA repair, DNA replication and transcription. The INO80 complex and the SWR complex have been shown to play a fundamental role in transcription regulation through remodeling chromatin at specific genes and loci. Here, we report that the Schizosaccharomyces pombe INO80 complex physically interacts with the mlui-binding factor (MBF) complex. Furthermore, we are able to detect the INO80 complex in MBF-regulated promoters. Binding of INO80 to these genes is cell cycle regulated, with a maximum binding preceding their transcription and accumulation of their mRNAs. In fact, the INO80 complex is required to fully and timely activate the transcription of these genes. We also show that the accumulation of acetylated H2A.Z at the +1 nucleosome is cell cycle regulated. Cells in which H2A.Z acetylation is abolished still have some cell cycle-regulated transcription of MBF-dependent genes, although to a much lesser extent.
Collapse
Affiliation(s)
- Iva Knezevic
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alberto González-Medina
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Gaspa
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
20
|
Virčíková V, Pokorná L, Tahotná D, Džugasová V, Balážová M, Griač P. Schizosaccharomyces pombe cardiolipin synthase is part of a mitochondrial fusion protein regulated by intron retention. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1331-1344. [PMID: 29958934 DOI: 10.1016/j.bbalip.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.
Collapse
Affiliation(s)
- Veronika Virčíková
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Mária Balážová
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
21
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
22
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
23
|
Yamashita A, Sakuno T, Watanabe Y, Yamamoto M. Analysis of Schizosaccharomyces pombe Meiosis. Cold Spring Harb Protoc 2017; 2017:pdb.top079855. [PMID: 28733417 DOI: 10.1101/pdb.top079855] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Meiosis is a specialized cell cycle that generates haploid gametes from diploid cells. The fission yeast Schizosaccharomyces pombe is one of the best model organisms for studying the regulatory mechanisms of meiosis. S. pombe cells, which normally grow in the haploid state, diploidize by conjugation and initiate meiosis when starved for nutrients, especially nitrogen. Following two rounds of chromosome segregation, spore formation takes place. The switch from mitosis to meiosis is controlled by a kinase, Pat1, and an RNA-binding protein, Mei2. Mei2 is also a key factor for meiosis-specific gene expression. Studies on S. pombe have offered insights into cell cycle regulation and chromosome segregation during meiosis. Here we outline the current understanding of the molecular mechanisms regulating the initiation and progression of meiosis, and introduce methods for the study of meiosis in fission yeast.
Collapse
Affiliation(s)
- Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takeshi Sakuno
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Yoshinori Watanabe
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Tokyo 113-0032, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan;
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
24
|
Cuf2 Is a Transcriptional Co-Regulator that Interacts with Mei4 for Timely Expression of Middle-Phase Meiotic Genes. PLoS One 2016; 11:e0151914. [PMID: 26986212 PMCID: PMC4795683 DOI: 10.1371/journal.pone.0151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
The Schizosaccharomyces pombe cuf2+ gene encodes a nuclear regulator that is required for timely activation and repression of several middle-phase genes during meiotic differentiation. In this study, we sought to gain insight into the mechanism by which Cuf2 regulates meiotic gene expression. Using a chromatin immunoprecipitation approach, we demonstrate that Cuf2 is specifically associated with promoters of both activated and repressed target genes, in a time-dependent manner. In case of the fzr1+ gene whose transcription is positively affected by Cuf2, promoter occupancy by Cuf2 results in a concomitant increased association of RNA polymerase II along its coding region. In marked contrast, association of RNA polymerase II with chromatin decreases when Cuf2 negatively regulates target gene expression such as wtf13+. Although Cuf2 operates through a transcriptional mechanism, it is unable to perform its function in the absence of the Mei4 transcription factor, which is a member of the conserved forkhead protein family. Using coimmunoprecipitation experiments, results showed that Cuf2 is a binding partner of Mei4. Bimolecular fluorescence complementation experiments brought further evidence that an association between Cuf2 and Mei4 occurs in the nucleus. Analysis of fzr1+ promoter regions revealed that two FLEX-like elements, which are bound by the transcription factor Mei4, are required for chromatin occupancy by Cuf2. Together, results reported here revealed that Cuf2 and Mei4 co-regulate the timely expression of middle-phase genes during meiosis.
Collapse
|
25
|
Alves-Rodrigues I, Ferreira PG, Moldón A, Vivancos AP, Hidalgo E, Guigó R, Ayté J. Spatiotemporal Control of Forkhead Binding to DNA Regulates the Meiotic Gene Expression Program. Cell Rep 2016; 14:885-895. [PMID: 26804917 DOI: 10.1016/j.celrep.2015.12.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/13/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023] Open
Abstract
Meiosis is a differentiated program of the cell cycle that is characterized by high levels of recombination followed by two nuclear divisions. In fission yeast, the genetic program during meiosis is regulated at multiple levels, including transcription, mRNA stabilization, and splicing. Mei4 is a forkhead transcription factor that controls the expression of mid-meiotic genes. Here, we describe that Fkh2, another forkhead transcription factor that is essential for mitotic cell-cycle progression, also plays a pivotal role in the control of meiosis. Fkh2 binding preexists in most Mei4-dependent genes, inhibiting their expression. During meiosis, Fkh2 is phosphorylated in a CDK/Cig2-dependent manner, decreasing its affinity for DNA, which creates a window of opportunity for Mei4 binding to its target genes. We propose that Fkh2 serves as a placeholder until the later appearance of Mei4 with a higher affinity for DNA that induces the expression of a subset of meiotic genes.
Collapse
Affiliation(s)
- Isabel Alves-Rodrigues
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Pedro G Ferreira
- Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Alberto Moldón
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Ana P Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Elena Hidalgo
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Roderic Guigó
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain; Center for Genomic Regulation, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - José Ayté
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
26
|
Eckert D, Andrée N, Razanau A, Zock-Emmenthal S, Lützelberger M, Plath S, Schmidt H, Guerra-Moreno A, Cozzuto L, Ayté J, Käufer NF. Prp4 Kinase Grants the License to Splice: Control of Weak Splice Sites during Spliceosome Activation. PLoS Genet 2016; 12:e1005768. [PMID: 26730850 PMCID: PMC4701394 DOI: 10.1371/journal.pgen.1005768] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/03/2015] [Indexed: 12/02/2022] Open
Abstract
The genome of the fission yeast Schizosaccharomyces pombe encodes 17 kinases that are essential for cell growth. These include the cell-cycle regulator Cdc2, as well as several kinases that coordinate cell growth, polarity, and morphogenesis during the cell cycle. In this study, we further characterized another of these essential kinases, Prp4, and showed that the splicing of many introns is dependent on Prp4 kinase activity. For detailed characterization, we chose the genes res1 and ppk8, each of which contains one intron of typical size and position. Splicing of the res1 intron was dependent on Prp4 kinase activity, whereas splicing of the ppk8 intron was not. Extensive mutational analyses of the 5’ splice site of both genes revealed that proper transient interaction with the 5’ end of snRNA U1 governs the dependence of splicing on Prp4 kinase activity. Proper transient interaction between the branch sequence and snRNA U2 was also important. Therefore, the Prp4 kinase is required for recognition and efficient splicing of introns displaying weak exon1/5’ splice sites and weak branch sequences. Prp4 is an essential protein kinase that is involved in the splicing of some introns. Using a conditional mutant of Prp4, we showed that a subset of genes, including several cell cycle–regulatory genes, are dependent on Prp4 for splicing. Furthermore, we could convert genes between Prp4-dependent and -independent states by introducing single-nucleotide mutations in the exon1/5’ splice sites and branch sequence of introns. This work shows that Prp4 activity is required for splicing surveillance in a subset of mRNAs.
Collapse
Affiliation(s)
- Daniela Eckert
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nicole Andrée
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Aleh Razanau
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Martin Lützelberger
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Susann Plath
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Schmidt
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), and Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail: (JA); (NFK)
| | - Norbert F. Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- * E-mail: (JA); (NFK)
| |
Collapse
|
27
|
A Function for the hnRNP A1/A2 Proteins in Transcription Elongation. PLoS One 2015; 10:e0126654. [PMID: 26011126 PMCID: PMC4444011 DOI: 10.1371/journal.pone.0126654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
The hnRNP A1 and A2 proteins regulate processes such as alternative pre-mRNA splicing and mRNA stability. Here, we report that a reduction in the levels of hnRNP A1 and A2 by RNA interference or their cytoplasmic retention by osmotic stress drastically increases the transcription of a reporter gene. Based on previous work, we propose that this effect may be linked to a decrease in the activity of the transcription elongation factor P-TEFb. Consistent with this hypothesis, the transcription of the reporter gene was stimulated when the catalytic component of P-TEFb, CDK9, was inhibited with DRB. While low levels of A1/A2 stimulated the association of RNA polymerase II with the reporter gene, they also increased the association of CDK9 with the repressor 7SK RNA, and compromised the recovery of promoter-distal transcription on the Kitlg gene after the release of pausing. Transcriptome analysis revealed that more than 50% of the genes whose expression was affected by the siRNA-mediated depletion of A1/A2 were also affected by DRB. RNA polymerase II-chromatin immunoprecipitation assays on DRB-treated and A1/A2-depleted cells identified a common set of repressed genes displaying increased occupancy of polymerases at promoter-proximal locations, consistent with pausing. Overall, our results suggest that lowering the levels of hnRNP A1/A2 elicits defective transcription elongation on a fraction of P-TEFb-dependent genes, hence favoring the transcription of P-TEFb-independent genes.
Collapse
|
28
|
Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation. Mol Cell Biol 2015; 35:2503-17. [PMID: 25963658 DOI: 10.1128/mcb.00070-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
The poly(A)-binding protein nuclear 1 is encoded by the PABPN1 gene, whose mutations result in oculopharyngeal muscular dystrophy, a late-onset disorder for which the molecular basis remains unknown. Despite recent studies investigating the functional roles of PABPN1, little is known about its regulation. Here, we show that PABPN1 negatively controls its own expression to maintain homeostatic levels in human cells. Transcription from the PABPN1 gene results in the accumulation of two major isoforms: an unspliced nuclear transcript that retains the 3'-terminal intron and a fully spliced cytoplasmic mRNA. Increased dosage of PABPN1 protein causes a significant decrease in the spliced/unspliced ratio, reducing the levels of endogenous PABPN1 protein. We also show that PABPN1 autoregulation requires inefficient splicing of its 3'-terminal intron. Our data suggest that autoregulation occurs via the binding of PABPN1 to an adenosine (A)-rich region in its 3' untranslated region, which promotes retention of the 3'-terminal intron and clearance of intron-retained pre-mRNAs by the nuclear exosome. Our findings unveil a mechanism of regulated intron retention coupled to nuclear pre-mRNA decay that functions in the homeostatic control of PABPN1 expression.
Collapse
|
29
|
Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen. Sci Rep 2015; 5:10108. [PMID: 25955538 PMCID: PMC4424799 DOI: 10.1038/srep10108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/30/2015] [Indexed: 01/18/2023] Open
Abstract
Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests.
Collapse
|
30
|
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 2015; 25:884-96. [PMID: 25883323 PMCID: PMC4448684 DOI: 10.1101/gr.185371.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sophie R Atkinson
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - François Bachand
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Samuel Marguerat
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
31
|
Patrick KL, Ryan CJ, Xu J, Lipp JJ, Nissen KE, Roguev A, Shales M, Krogan NJ, Guthrie C. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet 2015; 11:e1005074. [PMID: 25825871 PMCID: PMC4380400 DOI: 10.1371/journal.pgen.1005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. It has recently become apparent that most introns are removed from pre-mRNA while the transcript is still engaged with RNA polymerase II (RNAPII). To gain insight into possible roles for chromatin in co-transcriptional splicing, we generated a genome-wide genetic interaction map in fission yeast and uncovered numerous connections between splicing and chromatin. The SWI/SNF remodeling complex is typically thought to activate gene expression by relieving barriers to polymerase elongation imposed by nucleosomes. Here we show that this remodeler is important for an early step in splicing in which Prp2, an RNA-dependent ATPase, is recruited to the assembling spliceosome to promote catalytic activation. Interestingly, introns with sub-optimal splice sites are particularly dependent on SWI/SNF, suggesting the impact of nucleosome dynamics on the kinetics of spliceosome assembly and catalysis. By monitoring nucleosome occupancy, we show significant alterations in nucleosome density in particular splicing and chromatin mutants, which generally paralleled the levels of RNAPII. Taken together, our findings challenge the notion that nucleosomes simply act as barriers to elongation; rather, we suggest that polymerase pausing at nucleosomes can activate gene expression by allowing more time for co-transcriptional splicing.
Collapse
Affiliation(s)
- Kristin L. Patrick
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jesse J. Lipp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Kelly E. Nissen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Guo R, Zheng L, Park JW, Lv R, Chen H, Jiao F, Xu W, Mu S, Wen H, Qiu J, Wang Z, Yang P, Wu F, Hui J, Fu X, Shi X, Shi YG, Xing Y, Lan F, Shi Y. BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 2014; 56:298-310. [PMID: 25263594 DOI: 10.1016/j.molcel.2014.08.022] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/28/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
Abstract
BS69 (also called ZMYND11) contains tandemly arranged PHD, BROMO, and PWWP domains, which are chromatin recognition modalities. Here, we show that BS69 selectively recognizes histone variant H3.3 lysine 36 trimethylation (H3.3K36me3) via its chromatin-binding domains. We further identify BS69 association with RNA splicing regulators, including the U5 snRNP components of the spliceosome, such as EFTUD2. Remarkably, RNA sequencing shows that BS69 mainly regulates intron retention (IR), which is the least understood RNA alternative splicing event in mammalian cells. Biochemical and genetic experiments demonstrate that BS69 promotes IR by antagonizing EFTUD2 through physical interactions. We further show that regulation of IR by BS69 also depends on its binding to H3K36me3-decorated chromatin. Taken together, our study identifies an H3.3K36me3-specific reader and a regulator of IR and reveals that BS69 connects histone H3.3K36me3 to regulated RNA splicing, providing significant, important insights into chromatin regulation of pre-mRNA processing.
Collapse
Affiliation(s)
- Rui Guo
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lijuan Zheng
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CHS 33-228, 650 Charles E. Young Drive South, Los Angeles, CA 90095-7278, USA
| | - Ruitu Lv
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Hao Chen
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Fangfang Jiao
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Wenqi Xu
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Shirong Mu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Wen
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, The Palade Laboratories, Room 231, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Zhentian Wang
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Pengyuan Yang
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Feizhen Wu
- Epigenetics Laboratory, School of Basic Medicine and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jingyi Hui
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiangdong Fu
- Department of Cellular and Molecular Medicine, The Palade Laboratories, Room 231, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Xiaobing Shi
- Department of Molecular Carcinogenesis and Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Genes and Development Graduate Program, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yujiang Geno Shi
- Endocrinology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Epigenetics Laboratory, Institutes of Biomedical Sciences and School of Basic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CHS 33-228, 650 Charles E. Young Drive South, Los Angeles, CA 90095-7278, USA.
| | - Fei Lan
- Epigenetics Laboratory, Institutes of Biomedical Sciences and School of Basic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China.
| | - Yang Shi
- Epigenetics Laboratory, Institutes of Biomedical Sciences and School of Basic Medicine, Shanghai Medical College of Fudan University, Shanghai 200032, China; Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Bitton DA, Rallis C, Jeffares DC, Smith GC, Chen YYC, Codlin S, Marguerat S, Bähler J. LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq. Genome Res 2014; 24:1169-79. [PMID: 24709818 PMCID: PMC4079972 DOI: 10.1101/gr.166819.113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Both canonical and alternative splicing of RNAs are governed by intronic sequence elements and produce transient lariat structures fastened by branch points within introns. To map precisely the location of branch points on a genomic scale, we developed LaSSO (Lariat Sequence Site Origin), a data-driven algorithm which utilizes RNA-seq data. Using fission yeast cells lacking the debranching enzyme Dbr1, LaSSO not only accurately identified canonical splicing events, but also pinpointed novel, but rare, exon-skipping events, which may reflect aberrantly spliced transcripts. Compromised intron turnover perturbed gene regulation at multiple levels, including splicing and protein translation. Notably, Dbr1 function was also critical for the expression of mitochondrial genes and for the processing of self-spliced mitochondrial introns. LaSSO showed better sensitivity and accuracy than algorithms used for computational branch-point prediction or for empirical branch-point determination. Even when applied to a human data set acquired in the presence of debranching activity, LaSSO identified both canonical and exon-skipping branch points. LaSSO thus provides an effective approach for defining high-resolution maps of branch-site sequences and intronic elements on a genomic scale. LaSSO should be useful to validate introns and uncover branch-point sequences in any eukaryote, and it could be integrated into RNA-seq pipelines.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Daniel C Jeffares
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Samuel Marguerat
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jürg Bähler
- University College London, Department of Genetics, Evolution and Environment, London WC1E 6BT, United Kingdom; University College London, UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
34
|
Abstract
An unexpectedly large fraction of genes in metazoans (human, mouse, zebrafish, worm, fruit fly) express high levels of circularized RNAs containing canonical exons. Here we report that circular RNA isoforms are found in diverse species whose most recent common ancestor existed more than one billion years ago: fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae), a plant (Arabidopsis thaliana), and protists (Plasmodium falciparum and Dictyostelium discoideum). For all species studied to date, including those in this report, only a small fraction of the theoretically possible circular RNA isoforms from a given gene are actually observed. Unlike metazoans, Arabidopsis, D. discoideum, P. falciparum, S. cerevisiae, and S. pombe have very short introns (∼100 nucleotides or shorter), yet they still produce circular RNAs. A minority of genes in S. pombe and P. falciparum have documented examples of canonical alternative splicing, making it unlikely that all circular RNAs are by-products of alternative splicing or ‘piggyback’ on signals used in alternative RNA processing. In S. pombe, the relative abundance of circular to linear transcript isoforms changed in a gene-specific pattern during nitrogen starvation. Circular RNA may be an ancient, conserved feature of eukaryotic gene expression programs.
Collapse
|
35
|
Yamashita A, Shichino Y, Tanaka H, Hiriart E, Touat-Todeschini L, Vavasseur A, Ding DQ, Hiraoka Y, Verdel A, Yamamoto M. Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biol 2013; 2:120014. [PMID: 22645662 PMCID: PMC3352096 DOI: 10.1098/rsob.120014] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/28/2012] [Indexed: 11/28/2022] Open
Abstract
The selective elimination system blocks the accumulation of meiosis-specific mRNAs during the mitotic cell cycle in fission yeast. These mRNAs harbour a region, the determinant of selective removal (DSR), which is recognized by a YTH-family RNA-binding protein, Mmi1. Mmi1 directs target transcripts to destruction in association with nuclear exosomes. Hence, the interaction between DSR and Mmi1 is crucial to discriminate mitosis from meiosis. Here, we show that Mmi1 interacts with repeats of the hexanucleotide U(U/C)AAAC that are enriched in the DSR. Disruption of this ‘DSR core motif’ in a target mRNA inhibits its elimination. Tandem repeats of the motif can function as an artificial DSR. Mmi1 binds to it in vitro. Thus, a core motif cluster is responsible for the DSR activity. Furthermore, certain variant hexanucleotide motifs can augment the function of the DSR core motif. Notably, meiRNA, which composes the nuclear Mei2 dot required to suppress Mmi1 activity during meiosis, carries numerous copies of the core/augmenting motifs on its tail and is indeed degraded by the Mmi1/exosome system, indicating its likely role as decoy bait for Mmi1.
Collapse
Affiliation(s)
- Akira Yamashita
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ivanova T, Alves-Rodrigues I, Gómez-Escoda B, Dutta C, DeCaprio JA, Rhind N, Hidalgo E, Ayté J. The DNA damage and the DNA replication checkpoints converge at the MBF transcription factor. Mol Biol Cell 2013; 24:3350-7. [PMID: 24006488 PMCID: PMC3814153 DOI: 10.1091/mbc.e13-05-0257] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DNA damage and DNA replication checkpoints regulate differently the G1-to-S phase transcriptional program, resulting in the repression or induction, respectively, of the same set of genes. When this signaling is disrupted, cells are unable to cope with DNA-damaging agents, leading to increased cell lethality. In fission yeast cells, Cds1 is the effector kinase of the DNA replication checkpoint. We previously showed that when the DNA replication checkpoint is activated, the repressor Yox1 is phosphorylated and inactivated by Cds1, resulting in activation of MluI-binding factor (MBF)–dependent transcription. This is essential to reinitiate DNA synthesis and for correct G1-to-S transition. Here we show that Cdc10, which is an essential part of the MBF core, is the target of the DNA damage checkpoint. When fission yeast cells are treated with DNA-damaging agents, Chk1 is activated and phosphorylates Cdc10 at its carboxy-terminal domain. This modification is responsible for the repression of MBF-dependent transcription through induced release of MBF from chromatin. This inactivation of MBF is important for survival of cells challenged with DNA-damaging agents. Thus Yox1 and Cdc10 couple normal cell cycle regulation in unperturbed conditions and the DNA replication and DNA damage checkpoints into a single transcriptional complex.
Collapse
Affiliation(s)
- Tsvetomira Ivanova
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona 08003, Spain Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A 2013; 110:12762-7. [PMID: 23861491 DOI: 10.1073/pnas.1218353110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.
Collapse
|
38
|
DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat Genet 2013; 45:852-9. [PMID: 23793028 DOI: 10.1038/ng.2677] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 05/30/2013] [Indexed: 12/18/2022]
Abstract
The precise splicing of genes confers an enormous transcriptional complexity to the human genome. The majority of gene splicing occurs cotranscriptionally, permitting epigenetic modifications to affect splicing outcomes. Here we show that select exonic regions are demarcated within the three-dimensional structure of the human genome. We identify a subset of exons that exhibit DNase I hypersensitivity and are accompanied by 'phantom' signals in chromatin immunoprecipitation and sequencing (ChIP-seq) that result from cross-linking with proximal promoter- or enhancer-bound factors. The capture of structural features by ChIP-seq is confirmed by chromatin interaction analysis that resolves local intragenic loops that fold exons close to cognate promoters while excluding intervening intronic sequences. These interactions of exons with promoters and enhancers are enriched for alternative splicing events, an effect reflected in cell type-specific periexonic DNase I hypersensitivity patterns. Collectively, our results connect local genome topography, chromatin structure and cis-regulatory landscapes with the generation of human transcriptional complexity by cotranscriptional splicing.
Collapse
|
39
|
Kannan R, Hartnett S, Voelker RB, Berglund JA, Staley JP, Baumann P. Intronic sequence elements impede exon ligation and trigger a discard pathway that yields functional telomerase RNA in fission yeast. Genes Dev 2013; 27:627-38. [PMID: 23468430 DOI: 10.1101/gad.212738.112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The fission yeast telomerase RNA (TER1) precursor harbors an intron immediately downstream from its mature 3' end. Unlike most introns, which are removed from precursor RNAs by the spliceosome in two sequential but tightly coupled transesterification reactions, TER1 only undergoes the first cleavage reaction during telomerase RNA maturation. The mechanism underlying spliceosome-mediated 3' end processing has remained unclear. We now demonstrate that a strong branch site (BS), a long distance to the 3' splice site (3' SS), and a weak polypyrimidine (Py) tract act synergistically to attenuate the transition from the first to the second step of splicing. The observation that a strong BS antagonizes the second step of splicing in the context of TER1 suggests that the BS-U2 snRNA interaction is disrupted after the first step and thus much earlier than previously thought. The slow transition from first to second step triggers the Prp22 DExD/H-box helicase-dependent rejection of the cleaved products and Prp43-dependent "discard" of the splicing intermediates. Our findings explain how the spliceosome can function in 3' end processing and provide new insights into the mechanism of splicing.
Collapse
Affiliation(s)
- Ram Kannan
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yap K, Makeyev EV. Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol Cell Neurosci 2013; 56:420-8. [PMID: 23357783 DOI: 10.1016/j.mcn.2013.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/15/2013] [Accepted: 01/17/2013] [Indexed: 12/12/2022] Open
Abstract
Eukaryotic gene expression is orchestrated on a genome-wide scale through several post-transcriptional mechanisms. Of these, alternative pre-mRNA splicing expands the proteome diversity and modulates mRNA stability through downstream RNA quality control (QC) pathways including nonsense-mediated decay (NMD) of mRNAs containing premature termination codons and nuclear retention and elimination (NRE) of intron-containing transcripts. Although originally identified as mechanisms for eliminating aberrant transcripts, a growing body of evidence suggests that NMD and NRE coupled with deliberate changes in pre-mRNA splicing patterns are also used in a number of biological contexts for deterministic control of gene expression. Here we review recent studies elucidating molecular mechanisms and biological significance of these gene regulation strategies with a specific focus on their roles in nervous system development and physiology. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | |
Collapse
|
41
|
Yap K, Lim ZQ, Khandelia P, Friedman B, Makeyev EV. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes Dev 2012; 26:1209-23. [PMID: 22661231 DOI: 10.1101/gad.188037.112] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiated cells acquire unique structural and functional traits through coordinated expression of lineage-specific genes. An extensive battery of genes encoding components of the synaptic transmission machinery and specialized cytoskeletal proteins is activated during neurogenesis, but the underlying regulation is not well understood. Here we show that genes encoding critical presynaptic proteins are transcribed at a detectable level in both neurons and nonneuronal cells. However, in nonneuronal cells, the splicing of 3'-terminal introns within these genes is repressed by the polypyrimidine tract-binding protein (Ptbp1). This inhibits the export of incompletely spliced mRNAs to the cytoplasm and triggers their nuclear degradation. Clearance of these intron-containing transcripts occurs independently of the nonsense-mediated decay (NMD) pathway but requires components of the nuclear RNA surveillance machinery, including the nuclear pore-associated protein Tpr and the exosome complex. When Ptbp1 expression decreases during neuronal differentiation, the regulated introns are spliced out, thus allowing the accumulation of translation-competent mRNAs in the cytoplasm. We propose that this mechanism counters ectopic and precocious expression of functionally linked neuron-specific genes and ensures their coherent activation in the appropriate developmental context.
Collapse
Affiliation(s)
- Karen Yap
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | |
Collapse
|
42
|
Potter K, Cremona N, Sunder S, Wise JA. A dominant role for meiosis-specific 3' RNA processing in controlling expression of a fission yeast cyclin gene. RNA (NEW YORK, N.Y.) 2012; 18:1408-1420. [PMID: 22647846 PMCID: PMC3383971 DOI: 10.1261/rna.033423.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/15/2012] [Indexed: 06/01/2023]
Abstract
Meiotic gene regulation provides a rich source of insight into mechanisms of temporal control during development. We previously reported that accumulation of many meiotic mRNAs in fission yeast is governed by changes in 3' RNA processing and elucidated the molecular basis of this regulatory mechanism for an early meiotic gene. Here, we report that cleavage/polyadenylation is also the nexus of negative control for middle meiotic genes. Parallel profiles of splicing and polyadenylation are observed over a meiotic time course for both rem1 and spo4 but not for a constitutive control gene. Nevertheless, polyadenylation of rem1 transcripts is restricted to meiosis by a splicing-independent mechanism. Through systematic sequence substitutions, we identified a negative control region (NCR) located upstream of the rem1 transcription start site and found that it is required to block 3' RNA processing in proliferating cells. Ablation of the NCR relieves inhibition regardless of whether the intron is present, absent, or carries splice site mutations. Consistent with the previous report of a polypeptide encoded by the first exon of rem1, we discovered a second 3' processing site just downstream from the 5' splice site. Polyadenylation within the intron is activated concurrent with the downstream site during meiosis, is controlled by the NCR, and is enhanced when splicing is blocked via 5' junction or branch point mutations. Taken together, these data suggest a novel regulatory mechanism in which a 5' element modulates the dynamic interplay between splicing and polyadenylation.
Collapse
Affiliation(s)
- Kristine Potter
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | - Nicole Cremona
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | - Jo Ann Wise
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| |
Collapse
|
43
|
Guenzl PM, Barlow DP. Macro lncRNAs: a new layer of cis-regulatory information in the mammalian genome. RNA Biol 2012; 9:731-41. [PMID: 22617879 DOI: 10.4161/rna.19985] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the past ten years, long non-protein-coding RNAs (lncRNAs) have been shown to comprise a major part of the mammalian transcriptome and are predicted from their highly specific expression patterns, to play a role in regulating protein-coding gene expression in development and disease. Many lncRNAs particularly those lying in imprinted clusters, are predominantly unspliced "macro" transcripts that can also show a low level of splicing, and both the unspliced and spliced transcript have the potential to be functional. Three known imprinted macro lncRNAs have been shown to silence from three to ten genes in cis in imprinted gene clusters. We review here the potential for functional macro lncRNAs, defined here as "inefficiently-spliced lncRNAs" to play a wider cis-regulatory role in the mammalian genome. This potential has been underestimated by the inability of current RNA-seq technology to annotate unspliced macro lncRNAs.
Collapse
Affiliation(s)
- Philipp M Guenzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH-BT25.3, Vienna 1090, Austria
| | | |
Collapse
|
44
|
Guerra-Moreno A, Alves-Rodrigues I, Hidalgo E, Ayté J. Chemical genetic induction of meiosis in Schizosaccharomyces pombe. Cell Cycle 2012; 11:1621-5. [PMID: 22456336 DOI: 10.4161/cc.20051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, meiosis is inhibited by the protein kinase Pat1, which phosphorylates and inactivates Mei2, an RNA binding protein essential for the initiation of meiosis. When diploid cells are deprived of nutrients, they initiate a cascade of events leading to the inactivation of Pat1 and entry into meiosis. Strains carrying the temperature-sensitive pat1-114 allele are forced to enter into meiosis when shifted to the non-permissive temperature, independently of the ploidity of the cell. This system has been extensively used, since it is possible to achieve a highly synchronous meiosis, which is a must for any molecular or microscopic approach that aims to decipher the mechanisms governing meiosis. Here, we have designed a new system to obtain a similarly synchronous meiosis, but independently of temperature shifts. Thus, by introducing a mutation in the ATP pocket of Pat1, we have generated a protein kinase that, in the presence of small specific inhibitors, can be inactivated. This results in forced entry into meiosis without the need of a temperature shift, minimizing the introduction of heat shock or any other stress responses along the meiotic waves of transcription.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Hnilicová J, Staněk D. Where splicing joins chromatin. Nucleus 2012; 2:182-8. [PMID: 21818411 DOI: 10.4161/nucl.2.3.15876] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
There are numerous data suggesting that two key steps in gene expression-transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and methylation and potential mechanisms of their role in splicing. It seems that whereas histone acetylation acts mainly by alterating the transcription rate, histone methylation can also influence splicing directly by recruiting various splicing components.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
46
|
Trcek T, Larson DR, Moldón A, Query CC, Singer RH. Single-molecule mRNA decay measurements reveal promoter- regulated mRNA stability in yeast. Cell 2012; 147:1484-97. [PMID: 22196726 DOI: 10.1016/j.cell.2011.11.051] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Messenger RNA decay measurements are typically performed on a population of cells. However, this approach cannot reveal sufficient complexity to provide information on mechanisms that may regulate mRNA degradation, possibly on short timescales. To address this deficiency, we measured cell cycle-regulated decay in single yeast cells using single-molecule FISH. We found that two genes responsible for mitotic progression, SWI5 and CLB2, exhibit a mitosis-dependent mRNA stability switch. Their transcripts are stable until mitosis, when a precipitous decay eliminates the mRNA complement, preventing carryover into the next cycle. Remarkably, the specificity and timing of decay is entirely regulated by their promoter, independent of specific cis mRNA sequences. The mitotic exit network protein Dbf2p binds to SWI5 and CLB2 mRNAs cotranscriptionally and regulates their decay. This work reveals the promoter-dependent control of mRNA stability, a regulatory mechanism that could be employed by a variety of mRNAs and organisms.
Collapse
Affiliation(s)
- Tatjana Trcek
- Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Johnson TL, Vilardell J. Regulated pre-mRNA splicing: the ghostwriter of the eukaryotic genome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:538-45. [PMID: 22248620 DOI: 10.1016/j.bbagrm.2011.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/28/2022]
Abstract
Intron removal is at the heart of mRNA synthesis. It is mediated by one of the cell's largest complexes, the spliceosome. Yet, the fundamental chemistry involved is simple. In this review we will address how the spliceosome acts in diverse ways to optimize gene expression in order to meet the cell's needs. This is done largely by regulating the splicing of key transcripts encoding products that control gene expression pathways. This widespread role is evident even in the yeast Saccharomyces cerevisiae, where many introns appear to have been lost; yet how this control is being achieved is known only in a few cases. Here we explore the relevant examples and posit hypotheses whereby regulated splicing fine-tunes gene expression pathways to maintain cell homeostasis. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Tracy L Johnson
- Division of Biological Sciences, University of California, San Diego, CA, USA.
| | | |
Collapse
|
48
|
Chen HM, Rosebrock AP, Khan SR, Futcher B, Leatherwood JK. Repression of meiotic genes by antisense transcription and by Fkh2 transcription factor in Schizosaccharomyces pombe. PLoS One 2012; 7:e29917. [PMID: 22238674 PMCID: PMC3253116 DOI: 10.1371/journal.pone.0029917] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/06/2011] [Indexed: 12/22/2022] Open
Abstract
In S. pombe, about 5% of genes are meiosis-specific and accumulate little or no mRNA during vegetative growth. Here we use Affymetrix tiling arrays to characterize transcripts in vegetative and meiotic cells. In vegetative cells, many meiotic genes, especially those induced in mid-meiosis, have abundant antisense transcripts. Disruption of the antisense transcription of three of these mid-meiotic genes allowed vegetative sense transcription. These results suggest that antisense transcription represses sense transcription of meiotic genes in vegetative cells. Although the mechanism(s) of antisense mediated transcription repression need to be further explored, our data indicates that RNAi machinery is not required for repression. Previously, we and others used non-strand specific methods to study splicing regulation of meiotic genes and concluded that 28 mid-meiotic genes are spliced only in meiosis. We now demonstrate that the "unspliced" signal in vegetative cells comes from the antisense RNA, not from unspliced sense RNA, and we argue against the idea that splicing regulates these mid-meiotic genes. Most of these mid-meiotic genes are induced in mid-meiosis by the forkhead transcription factor Mei4. Interestingly, deletion of a different forkhead transcription factor, Fkh2, allows low levels of sense expression of some mid-meiotic genes in vegetative cells. We propose that vegetative expression of mid-meiotic genes is repressed at least two independent ways: antisense transcription and Fkh2 repression.
Collapse
Affiliation(s)
- Huei-Mei Chen
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adam P. Rosebrock
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Sohail R. Khan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Janet K. Leatherwood
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
49
|
Bitton DA, Grallert A, Scutt PJ, Yates T, Li Y, Bradford JR, Hey Y, Pepper SD, Hagan IM, Miller CJ. Programmed fluctuations in sense/antisense transcript ratios drive sexual differentiation in S. pombe. Mol Syst Biol 2011; 7:559. [PMID: 22186733 PMCID: PMC3738847 DOI: 10.1038/msb.2011.90] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 11/07/2011] [Indexed: 12/31/2022] Open
Abstract
Strand-specific RNA sequencing of S. pombe reveals a highly structured programme of ncRNA expression at over 600 loci. Functional investigations show that this extensive ncRNA landscape controls the complex programme of sexual differentiation in S. pombe. The model eukaryote S. pombe features substantial numbers of ncRNAs many of which are antisense regulatory transcripts (ARTs), ncRNAs expressed on the opposing strand to coding sequences. Individual ARTs are generated during the mitotic cycle, or at discrete stages of sexual differentiation to downregulate the levels of proteins that drive and coordinate sexual differentiation. Antisense transcription occurring from events such as bidirectional transcription is not simply artefactual ‘chatter', it performs a critical role in regulating gene expression.
Regulation of the RNA profile is a principal control driving sexual differentiation in the fission yeast Schizosaccharomyces pombe. Before transcription, RNAi-mediated formation of heterochromatin is used to suppress expression, while post-transcription, regulation is achieved via the active stabilisation or destruction of transcripts, and through at least two distinct types of splicing control (Mata et al, 2002; Shimoseki and Shimoda, 2001; Averbeck et al, 2005; Mata and Bähler, 2006; Xue-Franzen et al, 2006; Moldon et al, 2008; Djupedal et al, 2009; Amorim et al, 2010; Grewal, 2010; Cremona et al, 2011). Around 94% of the S. pombe genome is transcribed (Wilhelm et al, 2008). While many of these transcripts encode proteins (Wood et al, 2002; Bitton et al, 2011), the majority have no known function. We used a strand-specific protocol to sequence total RNA extracts taken from vegetatively growing cells, and at different points during a time course of sexual differentiation. The resulting data redefined existing gene coordinates and identified additional transcribed loci. The frequency of reads at each of these was used to monitor transcript abundance. Transcript levels at 6599 loci changed in at least one sample (G-statistic; False Discovery Rate <5%). 4231 (72.3%), of which 4011 map to protein-coding genes, while 809 loci were antisense to a known gene. Comparisons between haploid and diploid strains identified changes in transcript levels at over 1000 loci. At 354 loci, greater antisense abundance was observed relative to sense, in at least one sample (putative antisense regulatory transcripts—ARTs). Since antisense mechanisms are known to modulate sense transcript expression through a variety of inhibitory mechanisms (Faghihi and Wahlestedt, 2009), we postulated that the waves of antisense expression activated at different stages during meiosis might be regulating protein expression. To ask whether transcription factors that drive sense-transcript levels influenced ART production, we performed RNA-seq of a pat1.114 diploid meiosis in the absence of the transcription factors Atf21 and Atf31 (responsible for late meiotic transcription; Mata et al, 2002). Transcript levels at 185 ncRNA loci showed significant changes in the knockout backgrounds. Although meiotic progression is largely unaffected by removal of Atf21 and Atf31, viability of the resulting spores was significantly diminished, indicating that Atf21- and Atf31-mediated events are critical to efficient sexual differentiation. If changes to relative antisense/sense transcript levels during a particular phase of sexual differentiation were to regulate protein expression, then the continued presence of the antisense at points in the differentiation programme where it would normally be absent should abolish protein function during this phase. We tested this hypothesis at four loci representing the three means of antisense production: convergent gene expression, improper termination and nascent transcription from an independent locus. Induction of the natural antisense transcripts that opposed spo4+, spo6+ and dis1+ (Figures 3 and 7) in trans from a heterologous locus phenocopied a loss of function of the target protein. ART overexpression decreased Dis1 protein levels. Antisense transcription opposing spk1+ originated from improper termination of the sense ups1+ transcript on the opposite strand (Figure 3B, left locus). Expression of either the natural full-length ups1+ transcript or a truncated version, restricted to the portion of ups1+ overlapping spk1+ (Figure 3, orange transcripts) in trans from a heterologous locus phenocopied the spk1.Δ differentiation deficiency. Convergent transcription from a neighbouring gene on the opposing strand is, therefore, an effective mechanism to generate RNAi-mediated (below) silencing in fission yeast. Further analysis of the data revealed, for many loci, substantial changes in UTR length over the course of meiosis, suggesting that UTR dynamics may have an active role in regulating gene expression by controlling the transcriptional overlap between convergent adjacent gene pairs. The RNAi machinery (Grewal, 2010) was required for antisense suppression at each of the dis1, spk1, spo4 and spo6 loci, as antisense to each locus had no impact in ago1.Δ, dcr1.Δ and rdp1.Δ backgrounds. We conclude that RNAi control has a key role in maintaining the fidelity of sexual differentiation in fission yeast. The histone H3 methyl transferase Clr4 was required for antisense control from a heterologous locus. Thus, a significant portion of the impact of ncRNA upon sexual differentiation arises from antisense gene silencing. Importantly, in contrast to the extensively characterised ability of the RNAi machinery to operate in cis at a target locus in S. pombe (Grewal, 2010), each case of gene silencing generated here could be achieved in trans by expression of the antisense transcript from a single heterologous locus elsewhere in the genome. Integration of an antibiotic marker gene immediately downstream of the dis1+ locus instigated antisense control in an orientation-dependent manner. PCR-based gene tagging approaches are widely used to fuse the coding sequences of epitope or protein tags to a gene of interest. Not only do these tagging approaches disrupt normal 3′UTR controls, but the insertion of a heterologous marker gene immediately downstream of an ORF can clearly have a significant impact upon transcriptional control of the resulting fusion protein. Thus, PCR tagging approaches can no longer be viewed as benign manipulations of a locus that only result in the production of a tagged protein product. Repression of Dis1 function by gene deletion or antisense control revealed a key role this conserved microtubule regulator in driving the horsetail nuclear migrations that promote recombination during meiotic prophase. Non-coding transcripts have often been viewed as simple ‘chatter', maintained solely because evolutionary pressures have not been strong enough to force their elimination from the system. Our data show that phenomena such as improper termination and bidirectional transcription are not simply interesting artifacts arising from the complexities of transcription or genome history, but have a critical role in regulating gene expression in the current genome. Given the widespread use of RNAi, it is reasonable to anticipate that future analyses will establish ARTs to have equal importance in other organisms, including vertebrates. These data highlight the need to modify our concept of a gene from that of a spatially distinct locus. This view is becoming increasingly untenable. Not only are the 5′ and 3′ ends of many genes indistinct, but that this lack of a hard and fast boundary is actively used by cells to control the transcription of adjacent and overlapping loci, and thus to regulate critical events in the life of a cell. Strand-specific RNA sequencing of S. pombe revealed a highly structured programme of ncRNA expression at over 600 loci. Waves of antisense transcription accompanied sexual differentiation. A substantial proportion of ncRNA arose from mechanisms previously considered to be largely artefactual, including improper 3′ termination and bidirectional transcription. Constitutive induction of the entire spk1+, spo4+, dis1+ and spo6+ antisense transcripts from an integrated, ectopic, locus disrupted their respective meiotic functions. This ability of antisense transcripts to disrupt gene function when expressed in trans suggests that cis production at native loci during sexual differentiation may also control gene function. Consistently, insertion of a marker gene adjacent to the dis1+ antisense start site mimicked ectopic antisense expression in reducing the levels of this microtubule regulator and abolishing the microtubule-dependent ‘horsetail' stage of meiosis. Antisense production had no impact at any of these loci when the RNA interference (RNAi) machinery was removed. Thus, far from being simply ‘genome chatter', this extensive ncRNA landscape constitutes a fundamental component in the controls that drive the complex programme of sexual differentiation in S. pombe.
Collapse
Affiliation(s)
- Danny A Bitton
- CRUK Applied Computational Biology and Bioinformatics Group, Cancer Research UK, Paterson Institute for Cancer Research, The University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schad E, Tompa P, Hegyi H. The relationship between proteome size, structural disorder and organism complexity. Genome Biol 2011; 12:R120. [PMID: 22182830 PMCID: PMC3334615 DOI: 10.1186/gb-2011-12-12-r120] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 10/25/2011] [Accepted: 12/19/2011] [Indexed: 11/22/2022] Open
Abstract
Background Sequencing the genomes of the first few eukaryotes created the impression that gene number shows no correlation with organism complexity, often referred to as the G-value paradox. Several attempts have previously been made to resolve this paradox, citing multifunctionality of proteins, alternative splicing, microRNAs or non-coding DNA. As intrinsic protein disorder has been linked with complex responses to environmental stimuli and communication between cells, an additional possibility is that structural disorder may effectively increase the complexity of species. Results We revisited the G-value paradox by analyzing many new proteomes whose complexity measured with their number of distinct cell types is known. We found that complexity and proteome size measured by the total number of amino acids correlate significantly and have a power function relationship. We systematically analyzed numerous other features in relation to complexity in several organisms and tissues and found: the fraction of protein structural disorder increases significantly between prokaryotes and eukaryotes but does not further increase over the course of evolution; the number of predicted binding sites in disordered regions in a proteome increases with complexity; the fraction of protein disorder, predicted binding sites, alternative splicing and protein-protein interactions all increase with the complexity of human tissues. Conclusions We conclude that complexity is a multi-parametric trait, determined by interaction potential, alternative splicing capacity, tissue-specific protein disorder and, above all, proteome size. The G-value paradox is only apparent when plants are grouped with metazoans, as they have a different relationship between complexity and proteome size.
Collapse
Affiliation(s)
- Eva Schad
- Institute of Enzymology, Research Center For Natural Sciences, Hungarian Academy of Sciences, Karolina út 29, Budapest, Hungary
| | | | | |
Collapse
|