1
|
Frérot I, Roscilde T. Symmetry: A Fundamental Resource for Quantum Coherence and Metrology. PHYSICAL REVIEW LETTERS 2024; 133:260402. [PMID: 39879045 DOI: 10.1103/physrevlett.133.260402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/07/2024] [Indexed: 01/31/2025]
Abstract
We introduce a new paradigm for the preparation of deeply entangled states useful for quantum metrology. We show that, when the quantum state is an eigenstate of an operator A, observables G which are completely off diagonal with respect to A have purely quantum fluctuations, as quantified by the quantum Fisher information, namely, F_{Q}(G)=4⟨G^{2}⟩. This property holds regardless of the purity of the quantum state, and it implies that off-diagonal fluctuations represent a metrological resource for phase estimation. In particular, for many-body systems such as quantum spin ensembles or bosonic gases, the presence of off-diagonal long-range order (for a spin observable or for bosonic operators) directly translates into a metrological resource, provided that the system remains in a well-defined symmetry sector. The latter is defined, e.g., by one component of the collective spin or by its parity in spin systems; and by the particle number for bosons. Our results establish the optimal use for metrology of arbitrarily non-Gaussian quantum correlations in a large variety of many-body systems.
Collapse
Affiliation(s)
- Irénée Frérot
- ENS-PSL, Sorbonne Université, Laboratoire Kastler Brossel, CNRS, Research University, Collège de France, 4 Place Jussieu, 75005 Paris, France
| | - Tommaso Roscilde
- Ens de Lyon, Université Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
2
|
Gielerak R, Wiśniewska J, Sawerwain M. Infinite-Dimensional Quantum Entropy: The Unified Entropy Case. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1070. [PMID: 39766699 PMCID: PMC11675474 DOI: 10.3390/e26121070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025]
Abstract
Infinite-dimensional systems play an important role in the continuous-variable quantum computation model, which can compete with a more standard approach based on qubit and quantum circuit computation models. But, in many cases, the value of entropy unfortunately cannot be easily computed for states originating from an infinite-dimensional Hilbert space. Therefore, in this article, the unified quantum entropy (which extends the standard von Neumann entropy) notion is extended to the case of infinite-dimensional systems by using the Fredholm determinant theory. Some of the known (in the finite-dimensional case) basic properties of the introduced unified entropies were extended to this case study. Certain numerical examples for computing the proposed finite- and infinite-dimensional entropies are outlined as well, which allowed us to calculate the entropy values for infinite Hilbert spaces.
Collapse
Affiliation(s)
- Roman Gielerak
- Institute of Control & Computation Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| | - Joanna Wiśniewska
- Institute of Information Systems, Faculty of Cybernetics, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warszaw, Poland;
| | - Marek Sawerwain
- Institute of Control & Computation Engineering, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland;
| |
Collapse
|
3
|
Kielinski T, Schmidt PO, Hammerer K. GHZ protocols enhance frequency metrology despite spontaneous decay. SCIENCE ADVANCES 2024; 10:eadr1439. [PMID: 39441919 PMCID: PMC11639174 DOI: 10.1126/sciadv.adr1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
The use of correlated states and measurements promises improvements in the accuracy of frequency metrology and the stability of atomic clocks. However, developing strategies robust against dominant noise processes remains challenging. We address the issue of decoherence due to spontaneous decay and show that Greenberger-Horne-Zeilinger (GHZ) states, in conjunction with a correlated measurement and nonlinear estimation strategy, achieve gains of up to 2.25 decibel, comparable to fundamental bounds for up to about 80 atoms in the presence of decoherence. This result is unexpected because GHZ states do not provide any enhancement under dephasing due to white frequency noise compared to the standard quantum limit of uncorrelated states. The gain arises from a veto signal, which allows for the detection and mitigation of errors caused by spontaneous emission events. Through comprehensive Monte Carlo simulations of atomic clocks, we demonstrate the robustness of the GHZ protocol.
Collapse
Affiliation(s)
- Timm Kielinski
- Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Leibniz University Hannover, Appelstrasse 2, 30167 Hannover, Germany
| | - Piet O. Schmidt
- Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - Klemens Hammerer
- Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Leibniz University Hannover, Appelstrasse 2, 30167 Hannover, Germany
| |
Collapse
|
4
|
Yu X, Zhong W, Zhu Y, Wang J, Li M, Khakhomov S, Hu ZD. Fisher information of orbital angular momentum quantum states in atmospheric turbulence. OPTICS EXPRESS 2024; 32:27327-27341. [PMID: 39538572 DOI: 10.1364/oe.528811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/08/2024] [Indexed: 11/16/2024]
Abstract
Free-space optical communication based on orbital angular momentum (OAM) offers advantages such as high security, large information capacity, and high-speed transmission. However, turbulence can induce random perturbations to the wavefront, thereby affecting communication performance. Hence, accurately measuring turbulence intensity is crucial. We delve into the quantum Fisher information (QFI) of the spatial coherence length, a pivotal parameter in atmospheric turbulence. Within the framework of free-space optical channels, we conduct a comprehensive analysis of the QFI in models encompassing both single and biphoton systems. As photons propagate through free space, the QFI regarding turbulence parameter initially increases and then decreases, due to the coupling and decoherence between the photons and turbulence. Increasing the number of OAM modes can significantly enhance the QFI regarding turbulence parameters. We considered situations closer to practical preparation, our results indicate that the impact of entanglement on estimation precision depends on the purity of the prepared entangled state. Moreover, we discuss and compare the variations in the QFI of various parameters upon considering backward scattering (BS). We believe our work is the first theoretical attempt towards the exploration of estimating the turbulence parameter via QFI.
Collapse
|
5
|
Liu YX, Zhu L, Luke J, Houwman JJA, Babin MC, Hu MG, Ni KK. Quantum interference in atom-exchange reactions. Science 2024:eadl6570. [PMID: 38753767 DOI: 10.1126/science.adl6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Chemical reactions, where bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb → K2 + Rb2 reaction at 500 nK, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wavefunction after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.
Collapse
Affiliation(s)
- Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - J J Arfor Houwman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Mark C Babin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Ming-Guang Hu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Khastehdel Fumani F, Mahdavifar S, Afrousheh K. Entangled unique coherent line in the ground-state phase diagram of the spin-1/2 XX chain model with three-spin interaction. Phys Rev E 2024; 109:044142. [PMID: 38755842 DOI: 10.1103/physreve.109.044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Entangled spin coherent states are a type of quantum states that involve two or more spin systems that are correlated in a nonclassical way. These states can improve metrology and information processing, as they can surpass the standard quantum limit, which is the ultimate bound for precision measurements using coherent states. However, finding entangled coherent states in physical systems is challenging because they require precise control and manipulation of the interactions between the modes. In this work we show that entangled unique coherent states can be found in the ground state of the spin-1/2 XX chain model with three-spin interaction, which is an exactly solvable model in quantum magnetism. We use the spin squeezing parameter, the l_{1}-norm of coherence, and the entanglement entropy as tools to detect and characterize these unique coherent states. We find that these unique coherent states exist in a gapless spin liquid phase, where they form a line that separates two regions with different degrees of squeezing. We call this line the entangled unique coherent line, as it corresponds to the almost maximum entanglement between two halves of the system. We also study the critical scaling of the spin squeezing parameter and the entanglement entropy versus the system size.
Collapse
Affiliation(s)
- F Khastehdel Fumani
- Department of Basic Sciences, Langarud Branch, Islamic Azad University, 4471311127 Langarud, Iran
| | - S Mahdavifar
- Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
| | - K Afrousheh
- Department of Physics, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| |
Collapse
|
7
|
Xin L, Barrios M, Cohen JT, Chapman MS. Long-Lived Squeezed Ground States in a Quantum Spin Ensemble. PHYSICAL REVIEW LETTERS 2023; 131:133402. [PMID: 37832022 DOI: 10.1103/physrevlett.131.133402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2023] [Indexed: 10/15/2023]
Abstract
We generate spin squeezed ground states in an atomic spin-1 Bose-Einstein condensate tuned near the quantum-critical point separating the different spin phases of the interacting ensemble using a novel nonadiabatic technique. In contrast to typical nonequilibrium methods for preparing atomic squeezed states by quenching through a quantum phase transition, squeezed ground states are time stationary with a constant quadrature squeezing angle. A squeezed ground state with 6-8 dB of squeezing and a constant squeezing angle is demonstrated. The long-term evolution of the squeezed ground state is measured and shows gradual decrease in the degree of squeezing over 2 s that is well modeled by a slow tuning of the Hamiltonian due to the loss of atomic density. Interestingly, modeling the gradual decrease does not require additional spin decoherence models despite a loss of 75% of the atoms.
Collapse
Affiliation(s)
- Lin Xin
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Maryrose Barrios
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Julia T Cohen
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Michael S Chapman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
8
|
Bornet G, Emperauger G, Chen C, Ye B, Block M, Bintz M, Boyd JA, Barredo D, Comparin T, Mezzacapo F, Roscilde T, Lahaye T, Yao NY, Browaeys A. Scalable spin squeezing in a dipolar Rydberg atom array. Nature 2023; 621:728-733. [PMID: 37648859 DOI: 10.1038/s41586-023-06414-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/07/2023] [Indexed: 09/01/2023]
Abstract
The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems to enhance the precision of measurements beyond the standard quantum limit1,2. To do so, one can reshape the quantum projection noise-a strategy known as squeezing3,4. In the context of many-body spin systems, one typically uses all-to-all interactions (for example, the one-axis twisting model4) between the constituents to generate the structured entanglement characteristic of spin squeezing5. Here we explore the prediction, motivated by recent theoretical work6-10, that short-range interactions-and in particular, the two-dimensional dipolar XY model-can also enable the realization of scalable spin squeezing. Working with a dipolar Rydberg quantum simulator of up to N = 100 atoms, we demonstrate that quench dynamics from a polarized initial state lead to spin squeezing that improves with increasing system size up to a maximum of -3.5 ± 0.3 dB (before correcting for detection errors, or roughly -5 ± 0.3 dB after correction). Finally, we present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by roughly 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions, we demonstrate the ability to extend the lifetime of the squeezed state by freezing its dynamics.
Collapse
Affiliation(s)
- Guillaume Bornet
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
| | - Gabriel Emperauger
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
| | - Cheng Chen
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France.
| | - Bingtian Ye
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Maxwell Block
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Marcus Bintz
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Jamie A Boyd
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
| | - Daniel Barredo
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), University of Oviedo (UO), El Entrego, Spain
| | - Tommaso Comparin
- Laboratory of Physics, University of Lyon, Ens de Lyon, CNRS, Lyon, France
| | - Fabio Mezzacapo
- Laboratory of Physics, University of Lyon, Ens de Lyon, CNRS, Lyon, France
| | - Tommaso Roscilde
- Laboratory of Physics, University of Lyon, Ens de Lyon, CNRS, Lyon, France
| | - Thierry Lahaye
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
| | - Norman Y Yao
- Department of Physics, Harvard University, Cambridge, MA, USA
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antoine Browaeys
- Charles Fabry Laboratory University of Paris-Saclay, Institute of Optics Graduate School, CNRS, Palaiseau Cedex, France
| |
Collapse
|
9
|
Hines JA, Rajagopal SV, Moreau GL, Wahrman MD, Lewis NA, Marković O, Schleier-Smith M. Spin Squeezing by Rydberg Dressing in an Array of Atomic Ensembles. PHYSICAL REVIEW LETTERS 2023; 131:063401. [PMID: 37625064 DOI: 10.1103/physrevlett.131.063401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 08/27/2023]
Abstract
We report on the creation of an array of spin-squeezed ensembles of cesium atoms via Rydberg dressing, a technique that offers optical control over local interactions between neutral atoms. We optimize the coherence of the interactions by a stroboscopic dressing sequence that suppresses super-Poissonian loss. We thereby prepare squeezed states of N=200 atoms with a metrological squeezing parameter ξ^{2}=0.77(9) quantifying the reduction in phase variance below the standard quantum limit. We realize metrological gain across three spatially separated ensembles in parallel, with the strength of squeezing controlled by the local intensity of the dressing light. Our method can be applied to enhance the precision of tests of fundamental physics based on arrays of atomic clocks and to enable quantum-enhanced imaging of electromagnetic fields.
Collapse
Affiliation(s)
- Jacob A Hines
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | - Gabriel L Moreau
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Michael D Wahrman
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Neomi A Lewis
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Ognjen Marković
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
10
|
Steinhuber M, Schlagheck P, Urbina JD, Richter K. Dynamical transition from localized to uniform scrambling in locally hyperbolic systems. Phys Rev E 2023; 108:024216. [PMID: 37723671 DOI: 10.1103/physreve.108.024216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 09/20/2023]
Abstract
Fast scrambling of quantum correlations, reflected by the exponential growth of out-of-time-order correlators (OTOCs) on short pre-Ehrenfest time scales, is commonly considered as a major quantum signature of unstable dynamics in quantum systems with a classical limit. In two recent works [Phys. Rev. Lett. 123, 160401 (2019)0031-900710.1103/PhysRevLett.123.160401] and [Phys. Rev. Lett. 124, 140602 (2020)10.1103/PhysRevLett.124.140602], a significant difference in the scrambling rate of integrable (many-body) systems was observed, depending on the initial state being semiclassically localized around unstable fixed points or fully delocalized (infinite temperature). Specifically, the quantum Lyapunov exponent λ_{q} quantifying the OTOC growth is given, respectively, by λ_{q}=2λ_{s} or λ_{q}=λ_{s} in terms of the stability exponent λ_{s} of the hyperbolic fixed point. Here we show that a wave packet, initially localized around this fixed point, features a distinct dynamical transition between these two regions. We present an analytical semiclassical approach providing a physical picture of this phenomenon, and support our findings by extensive numerical simulations in the whole parameter range of locally unstable dynamics of a Bose-Hubbard dimer. Our results suggest that the existence of this crossover is a hallmark of unstable separatrix dynamics in integrable systems, thus opening the possibility to distinguish the latter, on the basis of this particular observable, from genuine chaotic dynamics generally featuring uniform exponential growth of the OTOC.
Collapse
Affiliation(s)
- Mathias Steinhuber
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | | | - Juan Diego Urbina
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
11
|
Hales J, Bajpai U, Liu T, Baykusheva DR, Li M, Mitrano M, Wang Y. Witnessing light-driven entanglement using time-resolved resonant inelastic X-ray scattering. Nat Commun 2023; 14:3512. [PMID: 37316515 DOI: 10.1038/s41467-023-38540-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies. However, defining a quantifiable figure of merit for entanglement in macroscopic solids is theoretically and experimentally challenging. At equilibrium the presence of entanglement can be diagnosed by extracting entanglement witnesses from spectroscopic observables and a nonequilibrium extension of this method could lead to the discovery of novel dynamical phenomena. Here, we propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials with time-resolved resonant inelastic x-ray scattering. Using a quarter-filled extended Hubbard model as an example, we benchmark the efficiency of this approach and predict a light-enhanced many-body entanglement due to the proximity to a phase boundary. Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Jordyn Hales
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Utkarsh Bajpai
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Tongtong Liu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Mingda Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Matteo Mitrano
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| | - Yao Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
12
|
Zheng W, Wang H, Schmieg R, Oesterle A, Polzik ES. Entanglement-Enhanced Magnetic Induction Tomography. PHYSICAL REVIEW LETTERS 2023; 130:203602. [PMID: 37267567 DOI: 10.1103/physrevlett.130.203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
Magnetic induction tomography (MIT) is a sensing protocol exploring conductive objects via their response to radio-frequency magnetic fields. MIT is used in nondestructive testing ranging from geophysics to medical applications. Atomic magnetometers, employed as MIT sensors, allow for significant improvement of the MIT sensitivity and for exploring its quantum limits. Here, we propose and verify a quantum-enhanced version of the atomic MIT by combining it with conditional spin squeezing and stroboscopic backaction evasion. We use this quantum enhancement to demonstrate sensitivity beyond the standard quantum limits of one-dimensional quantum MIT detecting a conductive sample.
Collapse
Affiliation(s)
- Wenqiang Zheng
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hengyan Wang
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Rebecca Schmieg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| | - Alan Oesterle
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| |
Collapse
|
13
|
Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferometers are widely used as sensors in precision measurement. Compared with a conventional Mach–Zehnder interferometer, the sensitivity of a correlation-enhanced nonlinear interferometer can break the standard quantum limit. Phase sensitivity plays a significant role in the enhanced performance. In this paper, we review improvement in phase estimation technologies in correlation-enhanced nonlinear interferometers, including SU(1,1) interferometer and SU(1,1)-SU(2) hybrid interferometer, and so on, and the applications in quantum metrology and quantum sensing networks.
Collapse
|
14
|
Len YL, Gefen T, Retzker A, Kołodyński J. Quantum metrology with imperfect measurements. Nat Commun 2022; 13:6971. [PMID: 36379948 PMCID: PMC9666656 DOI: 10.1038/s41467-022-33563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of measurement imperfections on quantum metrology protocols has not been approached in a systematic manner so far. In this work, we tackle this issue by generalising firstly the notion of quantum Fisher information to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving N probes with local measurements undergoing readout noise, the optimal sensitivity depends crucially on the control operations allowed to counterbalance the measurement imperfections-with global control operations, the ideal sensitivity (e.g., the Heisenberg scaling) can always be recovered in the asymptotic N limit, while with local control operations the quantum-enhancement of sensitivity is constrained to a constant factor. We illustrate our findings with an example of NV-centre magnetometry, as well as schemes involving spin-1/2 probes with bit-flip errors affecting their two-outcome measurements, for which we find the input states and control unitary operations sufficient to attain the ultimate asymptotic precision.
Collapse
Affiliation(s)
- Yink Loong Len
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warszawa, Poland.
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Tuvia Gefen
- Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA.
| | - Alex Retzker
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
- AWS Center for Quantum Computing, Pasadena, CA, 91125, USA
| | - Jan Kołodyński
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warszawa, Poland.
| |
Collapse
|
15
|
Dutta P, Maurya SS, Patel K, Biswas K, Mangaonkar J, Sarkar S, D. Rapol U. A Decade of Advancement of Quantum Sensing and Metrology in India Using Cold Atoms and Ions. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00335-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
16
|
Comparin T, Mezzacapo F, Roscilde T. Multipartite Entangled States in Dipolar Quantum Simulators. PHYSICAL REVIEW LETTERS 2022; 129:150503. [PMID: 36269956 DOI: 10.1103/physrevlett.129.150503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The scalable production of multipartite entangled states in ensembles of qubits is a crucial function of quantum devices, as such states are an essential resource both for fundamental studies on entanglement, as well as for applied tasks. Here we focus on the U(1) symmetric Hamiltonians for qubits with dipolar interactions-a model realized in several state-of-the-art quantum simulation platforms for lattice spin models, including Rydberg-atom arrays with resonant interactions. Making use of exact and variational simulations, we theoretically show that the nonequilibrium dynamics generated by this Hamiltonian shares fundamental features with that of the one-axis-twisting model, namely, the simplest interacting collective-spin model with U(1) symmetry. The evolution governed by the dipolar Hamiltonian generates a cascade of multipartite entangled states-spin-squeezed states, Schrödinger's cat states, and multicomponent superpositions of coherent spin states. Investigating systems with up to N=144 qubits, we observe full scalability of the entanglement features of these states directly related to metrology, namely, scalable spin squeezing at an evolution time O(N^{1/3}) and Heisenberg scaling of sensitivity of the spin parity to global rotations for cat states reached at times O(N). Our results suggest that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms, such as Rydberg-atom arrays, can act as a robust source of multipartite entanglement.
Collapse
Affiliation(s)
- Tommaso Comparin
- Université de Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Fabio Mezzacapo
- Université de Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Tommaso Roscilde
- Université de Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
17
|
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 2022; 610:472-477. [PMID: 36261551 PMCID: PMC9581775 DOI: 10.1038/s41586-022-05197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit1–3 set by projections of individual atoms. Large amounts of entanglement4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\,.\,{4}_{-0.9}^{+1.1}$$\end{document}3.4−0.9+1.1 dB and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\,.\,{5}_{-0.6}^{+0.6}$$\end{document}2.5−0.6+0.6 dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\,.\,{7}_{-0.5}^{+0.5}$$\end{document}1.7−0.5+0.5 dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors17,18, searches for new physics, particles and fields19–23, future advanced gravitational wave detectors24,25 and accessing beyond mean-field quantum many-body physics26–30. A matter-wave interferometer is demonstrated with an interferometric phase noise below the standard quantum limit, combining two core concepts of quantum mechanics, that a particle can simultaneously be in two places at once and entanglement between distinct particles.
Collapse
|
18
|
Comparin T, Mezzacapo F, Robert-de-Saint-Vincent M, Roscilde T. Scalable Spin Squeezing from Spontaneous Breaking of a Continuous Symmetry. PHYSICAL REVIEW LETTERS 2022; 129:113201. [PMID: 36154428 DOI: 10.1103/physrevlett.129.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Spontaneous symmetry breaking is a property of Hamiltonian equilibrium states which, in the thermodynamic limit, retain a finite average value of an order parameter even after a field coupled to it is adiabatically turned off. In the case of quantum spin models with continuous symmetry, we show that this adiabatic process is also accompanied by the suppression of the fluctuations of the symmetry generator-namely, the collective spin component along an axis of symmetry. In systems of S=1/2 spins or qubits, the combination of the suppression of fluctuations along one direction and of the persistence of transverse magnetization leads to spin squeezing-a much sought-after property of quantum states, both for the purpose of entanglement detection as well as for metrological uses. Focusing on the case of XXZ models spontaneously breaking a U(1) [or even SU(2)] symmetry, we show that the adiabatically prepared states have nearly minimal spin uncertainty; that the minimum phase uncertainty that one can achieve with these states scales as N^{-3/4} with the number of spins N; and that this scaling is attained after an adiabatic preparation time scaling linearly with N. Our findings open the door to the adiabatic preparation of strongly spin-squeezed states in a large variety of quantum many-body devices including, e.g., optical-lattice clocks.
Collapse
Affiliation(s)
- Tommaso Comparin
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Fabio Mezzacapo
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Martin Robert-de-Saint-Vincent
- Laboratoire de Physique des Lasers, Université Sorbonne Paris Nord, F-93430 Villetaneuse, France and LPL CNRS, UMR 7538, F-93430 Villetaneuse, France
| | - Tommaso Roscilde
- Univ Lyon, Ens de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
19
|
Fang W, Ou C, Li GX, Yang Y. Resonance fluorescence engineering in hybrid systems consist of biexciton quantum dots and anisotropic metasurfaces. OPTICS EXPRESS 2022; 30:27794-27811. [PMID: 36236942 DOI: 10.1364/oe.457907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
The resonance fluorescence properties in the steady-state regime are investigated for a driven cascaded exciton-biexciton quantum dot coupled to the two-dimensional black phosphorus metasurfaces. It is shown that for the material parameters under consideration, both the elliptic and hyperbolic dispersion patterns of the surface plasmon modes are achievable according to the variation of the carrier concentration. Further study on the Purcell factor indicates unequal enhancements in the spontaneous decay of the orthogonal in-plane dipoles. Motivated by this intriguing phenomenon, we then investigate the steady-state properties of the driven quantum dot, where the populations of the dressed levels are highly tunable by engineering the anisotropy of the surfaces. As a result, the manipulation of the carrier concentration will lead to strong modifications in the resonance fluorescence. Under certain conditions, one can observe the squeezing of two-mode noise spectra with different resonances and polarizations. Although at the expense of declines in the photon-sideband detunings, it is feasible to enhance the two-mode squeezing by gate doping. Our proposal can be easily extended to other hybrid systems containing anisotropic metasurfaces, which are important for the development of quantum information science.
Collapse
|
20
|
Xu K, Zhang YR, Sun ZH, Li H, Song P, Xiang Z, Huang K, Li H, Shi YH, Chen CT, Song X, Zheng D, Nori F, Wang H, Fan H. Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits. PHYSICAL REVIEW LETTERS 2022; 128:150501. [PMID: 35499907 DOI: 10.1103/physrevlett.128.150501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterizes the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalization of the RSP with respect to nonlinear observables and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, we report the characterization of multiparticle entangled states generated during its nonlinear dynamics. First, selecting ten qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89_{-0.29}^{+0.28} dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
| | - Zheng-Hang Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hekang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengtao Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongcheng Xiang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixuan Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun-Hao Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chi-Tong Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohui Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - H Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Baamara Y, Sinatra A, Gessner M. Scaling Laws for the Sensitivity Enhancement of Non-Gaussian Spin States. PHYSICAL REVIEW LETTERS 2021; 127:160501. [PMID: 34723607 DOI: 10.1103/physrevlett.127.160501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
We identify the large-N scaling of the metrological quantum gain offered by over-squeezed spin states that are accessible by one-axis twisting, as a function of the preparation time. We further determine how the scaling is modified by relevant decoherence processes and predict a discontinuous change of the quantum gain at a critical preparation time that depends on the noise. Our analytical results provide recipes for optimal and feasible implementations of quantum enhancements with non-Gaussian spin states in existing experiments, well beyond the reach of spin squeezing.
Collapse
Affiliation(s)
- Youcef Baamara
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| | - Alice Sinatra
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| | - Manuel Gessner
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
22
|
Anders F, Idel A, Feldmann P, Bondarenko D, Loriani S, Lange K, Peise J, Gersemann M, Meyer-Hoppe B, Abend S, Gaaloul N, Schubert C, Schlippert D, Santos L, Rasel E, Klempt C. Momentum Entanglement for Atom Interferometry. PHYSICAL REVIEW LETTERS 2021; 127:140402. [PMID: 34652182 DOI: 10.1103/physrevlett.127.140402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise is large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers promise unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
Collapse
Affiliation(s)
- F Anders
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - A Idel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - P Feldmann
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - D Bondarenko
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - S Loriani
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - K Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - J Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - M Gersemann
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - B Meyer-Hoppe
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - S Abend
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - N Gaaloul
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Schubert
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz, Universität Hannover, DLR-SI, Callinstraße 36, 30167 Hannover, Germany
| | - D Schlippert
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - E Rasel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, c/o Leibniz, Universität Hannover, DLR-SI, Callinstraße 36, 30167 Hannover, Germany
| |
Collapse
|
23
|
Kim K, Hur J, Huh S, Choi S, Choi JY. Emission of Spin-Correlated Matter-Wave Jets from Spinor Bose-Einstein Condensates. PHYSICAL REVIEW LETTERS 2021; 127:043401. [PMID: 34355976 DOI: 10.1103/physrevlett.127.043401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
We report the observation of matter-wave jet emission in a strongly ferromagnetic spinor Bose-Einstein condensate of ^{7}Li atoms. Directional atomic beams with |F=1,m_{F}=1⟩ and |F=1,m_{F}=-1⟩ spin states are generated from |F=1,m_{F}=0⟩ state condensates or vice versa. This results from collective spin-mixing scattering events, where spontaneously produced pairs of atoms with opposite momentum facilitates additional spin-mixing collisions as they pass through the condensates. The matter-wave jets of different spin states (|F=1,m_{F}=±1⟩) can be a macroscopic Einstein-Podolsky-Rosen state with spacelike separation. Its spin-momentum correlations are studied by using the angular correlation function for each spin state. Rotating the spin axis, the inter- and intraspin-momentum correlation peaks display a high-contrast oscillation, indicating collective coherence of the atomic ensembles. We provide numerical calculations that describe the experimental results at a quantitative level. Our Letter paves the way to generating macroscopic quantum entanglement with the spin and motional degree of freedom with massive particles. It has a wide range of applications from quantum information science to the fundamental studies of quantum entanglement.
Collapse
Affiliation(s)
- Kyungtae Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Junhyeok Hur
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - SeungJung Huh
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Soonwon Choi
- Department of Physics, University of California Berkeley, Berkeley, California 94720, USA
- Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jae-Yoon Choi
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
24
|
Niezgoda A, Chwedeńczuk J. Many-Body Nonlocality as a Resource for Quantum-Enhanced Metrology. PHYSICAL REVIEW LETTERS 2021; 126:210506. [PMID: 34114837 DOI: 10.1103/physrevlett.126.210506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that the many-body nonlocality witnessed by a broad family of Bell inequalities is a resource for ultraprecise metrology. We formulate a general scheme which allows one to track how the sensitivity grows with the nonlocality extending over an increasing number of particles. We illustrate our findings with some prominent examples-a collection of spins forming an Ising chain and a gas of ultracold atoms in any two-mode configuration. We show that in the vicinity of a quantum critical point the rapid increase of the sensitivity is accompanied by the emergence of the many-body Bell nonlocality. The method described in this work allows for a systematic study of highly quantum phenomena in complex systems, and also extends the understanding of the beneficial role played by fundamental nonclassical effects in implementations of quantum-enhanced protocols.
Collapse
Affiliation(s)
- Artur Niezgoda
- Faculty of Physics, University of Warsaw, Ulica Pasteura 5, PL-02-093 Warszawa, Poland
| | - Jan Chwedeńczuk
- Faculty of Physics, University of Warsaw, Ulica Pasteura 5, PL-02-093 Warszawa, Poland
| |
Collapse
|
25
|
Abstract
Inertial sensors based on cold atoms have great potential for navigation, geodesy, or fundamental physics. Similar to the Sagnac effect, their sensitivity increases with the space-time area enclosed by the interferometer. Here, we introduce twin-lattice atom interferometry exploiting Bose-Einstein condensates of rubidium-87. Our method provides symmetric momentum transfer and large areas offering a perspective for future palm-sized sensor heads with sensitivities on par with present meter-scale Sagnac devices. Our theoretical model of the impact of beam splitters on the spatial coherence is highly instrumental for designing future sensors. Atom interferometers can be useful for precision measurement of fundamental constants and sensors of different type. Here the authors demonstrate a compact twin-lattice atom interferometry exploiting Bose-Einstein condensates (BECs) of 87 Rb atoms.
Collapse
|
26
|
Szigeti SS, Nolan SP, Close JD, Haine SA. High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2020; 125:100402. [PMID: 32955338 DOI: 10.1103/physrevlett.125.100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL). Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between two and five times below the SNL are achievable with BECs between 10^{4} and 10^{6} in atom number. Our scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a small modification to existing state-of-the-art experiments and does not require additional guiding potentials or optical cavities.
Collapse
Affiliation(s)
- Stuart S Szigeti
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Samuel P Nolan
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, Firenze 50125, Italy
| | - John D Close
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Simon A Haine
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
27
|
Haine SA, Hope JJ. Machine-Designed Sensor to Make Optimal Use of Entanglement-Generating Dynamics for Quantum Sensing. PHYSICAL REVIEW LETTERS 2020; 124:060402. [PMID: 32109102 DOI: 10.1103/physrevlett.124.060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
We use machine optimization to develop a quantum sensing scheme that achieves significantly better sensitivity than traditional schemes with the same quantum resources. Utilizing one-axis twisting dynamics to generate quantum entanglement, we find that, rather than dividing the temporal resources into separate "state-preparation" and "interrogation" stages, a complicated machine-designed sequence of rotations allows for the generation of metrologically useful entanglement while the parameter is interrogated. This provides much higher sensitivities for a given total time compared to states generated via traditional one-axis twisting schemes. This approach could be applied to other methods of generating quantum-enhanced states, allowing for atomic clocks, magnetometers, and inertial sensors with increased sensitivities.
Collapse
Affiliation(s)
- Simon A Haine
- Department of Quantum Science, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Joseph J Hope
- Department of Quantum Science, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
28
|
Bychek AA, Muraev PS, Maksimov DN, Kolovsky AR. Open Bose-Hubbard chain: Pseudoclassical approach. Phys Rev E 2020; 101:012208. [PMID: 32069667 DOI: 10.1103/physreve.101.012208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 06/10/2023]
Abstract
We analyze the stationary current of bosonic carriers in the Bose-Hubbard chain of length L where the first and the last sites of the chain are attached to reservoirs of Bose particles acting as a particle source and sink, respectively. The analysis is carried out by using the pseudoclassical approach which reduces the original quantum problem to the classical problem for L coupled nonlinear oscillators. It is shown that an increase of oscillator nonlinearity (which is determined by the strength of interparticle interactions) results in a transition from the ballistic transport regime, where the stationary current is independent of the chain length, to the diffusive regime, where the current is inversely proportional to L.
Collapse
Affiliation(s)
- A A Bychek
- Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
| | - P S Muraev
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - D N Maksimov
- Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - A R Kolovsky
- Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|
29
|
Kaubruegger R, Silvi P, Kokail C, van Bijnen R, Rey AM, Ye J, Kaufman AM, Zoller P. Variational Spin-Squeezing Algorithms on Programmable Quantum Sensors. PHYSICAL REVIEW LETTERS 2019; 123:260505. [PMID: 31951449 DOI: 10.1103/physrevlett.123.260505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Arrays of atoms trapped in optical tweezers combine features of programmable analog quantum simulators with atomic quantum sensors. Here we propose variational quantum algorithms, tailored for tweezer arrays as programmable quantum sensors, capable of generating entangled states on demand for precision metrology. The scheme is designed to generate metrological enhancement by optimizing it in a feedback loop on the quantum device itself, thus preparing the best entangled states given the available quantum resources. We apply our ideas to the generation of spin-squeezed states on Sr atom tweezer arrays, where finite-range interactions are generated through Rydberg dressing. The complexity of experimental variational optimization of our quantum circuits is expected to scale favorably with system size. We numerically show our approach to be robust to noise, and surpassing known protocols.
Collapse
Affiliation(s)
- Raphael Kaubruegger
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Pietro Silvi
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Christian Kokail
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Rick van Bijnen
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and University of Colorado and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and University of Colorado and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Adam M Kaufman
- JILA, National Institute of Standards and Technology and University of Colorado and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Peter Zoller
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| |
Collapse
|
30
|
Lundblad N, Carollo RA, Lannert C, Gold MJ, Jiang X, Paseltiner D, Sergay N, Aveline DC. Shell potentials for microgravity Bose-Einstein condensates. NPJ Microgravity 2019; 5:30. [PMID: 31815180 PMCID: PMC6892894 DOI: 10.1038/s41526-019-0087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/25/2019] [Indexed: 12/04/2022] Open
Abstract
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we propose to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
Collapse
Affiliation(s)
- N. Lundblad
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - R. A. Carollo
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - C. Lannert
- Department of Physics, Smith College, Northampton, MA 01063 USA
- Department of Physics, University of Massachusetts, Amherst, MA 01003-9300 USA
| | - M. J. Gold
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - X. Jiang
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - D. Paseltiner
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - N. Sergay
- Department of Physics and Astronomy, Bates College, Lewiston, ME 04240 USA
| | - D. C. Aveline
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA
| |
Collapse
|
31
|
How to probe the microscopic onset of irreversibility with ultracold atoms. Sci Rep 2019; 9:14169. [PMID: 31578363 PMCID: PMC6775121 DOI: 10.1038/s41598-019-50608-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/10/2019] [Indexed: 11/11/2022] Open
Abstract
The microscopic onset of irreversibility is finally becoming an experimental subject. Recent experiments on microscopic open and even isolated systems have measured statistical properties associated with entropy production, and hysteresis-like phenomena have been seen in cold atom systems with dissipation (i.e. effectively open systems coupled to macroscopic reservoirs). Here we show how experiments on isolated systems of ultracold atoms can show dramatic irreversibility like cooking an egg. In our proposed experiments, a slow forward-and-back parameter sweep will sometimes fail to return the system close to its initial state. This probabilistic hysteresis is due to the same non-adiabatic spreading and ergodic mixing in phase space that explains macroscopic irreversibility, but realized without dynamical chaos; moreover this fundamental mechanism quantitatively determines the probability of return to the initial state as a function of tunable parameters in the proposed experiments. Matching the predicted curve of return probability will be a conclusive experimental demonstration of the microscopic onset of irreversibility.
Collapse
|
32
|
Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V. Near-Unitary Spin Squeezing in ^{171}Yb. PHYSICAL REVIEW LETTERS 2019; 122:223203. [PMID: 31283296 DOI: 10.1103/physrevlett.122.223203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in ^{171}Yb, an optical lattice clock atom. The collective nuclear spin of ∼10^{3} atoms is squeezed by cavity feedback, using light detuned from the system's resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical-clock transition of ^{171}Yb.
Collapse
Affiliation(s)
- Boris Braverman
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Akio Kawasaki
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edwin Pedrozo-Peñafiel
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Simone Colombo
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chi Shu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zeyang Li
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Enrique Mendez
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Megan Yamoah
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leonardo Salvi
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Daisuke Akamatsu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Yanhong Xiao
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Vladan Vuletić
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Evrard A, Makhalov V, Chalopin T, Sidorenkov LA, Dalibard J, Lopes R, Nascimbene S. Enhanced Magnetic Sensitivity with Non-Gaussian Quantum Fluctuations. PHYSICAL REVIEW LETTERS 2019; 122:173601. [PMID: 31107084 DOI: 10.1103/physrevlett.122.173601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 06/09/2023]
Abstract
The precision of a quantum sensor can overcome its classical counterpart when its constituents are entangled. In Gaussian squeezed states, quantum correlations lead to a reduction of the quantum projection noise below the shot noise limit. However, the most sensitive states involve complex non-Gaussian quantum fluctuations, making the required measurement protocol challenging. Here we measure the sensitivity of nonclassical states of the electronic spin J=8 of dysprosium atoms, created using light-induced nonlinear spin coupling. Magnetic sublevel resolution enables us to reach the optimal sensitivity of non-Gaussian (oversqueezed) states, well above the capability of squeezed states and about half the Heisenberg limit.
Collapse
Affiliation(s)
- Alexandre Evrard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Vasiliy Makhalov
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Thomas Chalopin
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Leonid A Sidorenkov
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Jean Dalibard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Raphael Lopes
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Sylvain Nascimbene
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
34
|
Yao Q, Zhang J, Yi XF, You L, Zhang W. Uniaxial Dynamical Decoupling for an Open Quantum System. PHYSICAL REVIEW LETTERS 2019; 122:010408. [PMID: 31012664 DOI: 10.1103/physrevlett.122.010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Indexed: 06/09/2023]
Abstract
Dynamical decoupling (DD) is an active and effective method for suppressing decoherence of a quantum system from its environment. In contrast to the nominal biaxial DD, this work presents a uniaxial decoupling protocol that requires a significantly reduced number of pulses and a much lower bias field satisfying the "magic" condition. We show this uniaxial DD protocol works effectively in a number of model systems of practical interest, e.g., a spinor atomic Bose-Einstein condensate in stray magnetic fields (classical noise), or an electron spin coupled to nuclear spins (quantum noise) in a semiconductor quantum dot. It requires only half the number of control pulses and a 10-100 times lower bias field for decoupling as normally employed in the above mentioned illustrative examples, and the overall efficacy is robust against rotation errors of the control pulses. The uniaxial DD protocol we propose shines new light on coherent controls in quantum computing and quantum information processing, quantum metrology, and low field nuclear magnetic resonance.
Collapse
Affiliation(s)
- Qi Yao
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Feng Yi
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Li You
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Wenxian Zhang
- School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
35
|
Sharma KK, Ganguly S. Decoherence assisted spin squeezing generation in superposition of tripartite GHZ and W states. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201919800015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the present paper, we study spin squeezing under decoherence in the superposition of tripartite maximally entangled GHZ and W states. Here we use amplitude damping, phase damping and depolarisation channel. We have investigated the dynamics of spin squeezing with the interplay of super-position and decoherence parameters with different directions of the mean spin vector. We have found the mixture of GHZ and W states is robust against spin squeezing generation for amplitude damping and phase damping channels for certain directions of the mean spin vector. However, the depolarisation channel performs well for spin squeezing generation and generates permanent spin squeezing in the superposition of GHZ and W states.
Collapse
|
36
|
Abstract
By employing quantum renormalization group (QRG) method, we investigate quantum phase transitions (QPT) in the Ising transverse field (ITF) model and in the XXZ Heisenberg model, with and without Dzyaloshinskii Moriya (DM) interaction, on a periodic chain of N lattice sites. We adopt a new approach called spin squeezing as an indicator of QPT. Spin squeezing, through analytical expression of a spin squeezing parameter, is calculated after each step of QRG. As the scale of the system becomes larger, (after many QRG steps), the ground state (GS) spin squeezing parameters show an abrupt change at a quantum critical point (QCP). Moreover, in all of the studied models, the first derivative of the spin squeezing parameter with respect to the control parameter is discontinuous, which is a signature of QPT. The spin squeezing parameters develop their saturated values after enough QRG iterations. The divergence exponent of the first derivative of the spin squeezing parameter in the near vicinity of the QCP is associated with the critical exponent of the correlation length.
Collapse
|
37
|
Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. Nat Commun 2018; 9:4955. [PMID: 30470745 PMCID: PMC6251866 DOI: 10.1038/s41467-018-07433-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
Coherent superposition states of a mesoscopic quantum object play a major role in our understanding of the quantum to classical boundary, as well as in quantum-enhanced metrology and computing. However, their practical realization and manipulation remains challenging, requiring a high degree of control of the system and its coupling to the environment. Here, we use dysprosium atoms-the most magnetic element in its ground state-to realize coherent superpositions between electronic spin states of opposite orientation, with a mesoscopic spin size J = 8. We drive coherent spin states to quantum superpositions using non-linear light-spin interactions, observing a series of collapses and revivals of quantum coherence. These states feature highly non-classical behavior, with a sensitivity to magnetic fields enhanced by a factor 13.9(1.1) compared to coherent spin states-close to the Heisenberg limit 2J = 16-and an intrinsic fragility to environmental noise.
Collapse
|
38
|
Gabbrielli M, Smerzi A, Pezzè L. Multipartite Entanglement at Finite Temperature. Sci Rep 2018; 8:15663. [PMID: 30353077 PMCID: PMC6199326 DOI: 10.1038/s41598-018-31761-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/17/2018] [Indexed: 11/10/2022] Open
Abstract
The interplay of quantum and thermal fluctuations in the vicinity of a quantum critical point characterizes the physics of strongly correlated systems. Here we investigate this interplay from a quantum information perspective presenting the universal phase diagram of the quantum Fisher information at a quantum phase transition. Different regions in the diagram are identified by characteristic scaling laws of the quantum Fisher information with respect to temperature. This feature has immediate consequences on the thermal robustness of quantum coherence and multipartite entanglement. We support the theoretical predictions with the analysis of paradigmatic spin systems showing symmetry-breaking quantum phase transitions and free-fermion models characterized by topological phases. In particular we show that topological systems are characterized by the survival of large multipartite entanglement, reaching the Heisenberg limit at finite temperature.
Collapse
Affiliation(s)
- Marco Gabbrielli
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy
| | - Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125, Firenze, Italy.
| |
Collapse
|
39
|
Polo J, Ahufinger V, Hekking FWJ, Minguzzi A. Damping of Josephson Oscillations in Strongly Correlated One-Dimensional Atomic Gases. PHYSICAL REVIEW LETTERS 2018; 121:090404. [PMID: 30230871 DOI: 10.1103/physrevlett.121.090404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 06/08/2023]
Abstract
We study Josephson oscillations of two strongly correlated one-dimensional bosonic clouds separated by a localized barrier. Using a quantum-Langevin approach and the exact Tonks-Girardeau solution in the impenetrable-boson limit, we determine the dynamical evolution of the particle-number imbalance, displaying an effective damping of the Josephson oscillations which depends on barrier height, interaction strength, and temperature. We show that the damping originates from the quantum and thermal fluctuations intrinsically present in the strongly correlated gas. Because of the density-phase duality of the model, the same results apply to particle-current oscillations in a one-dimensional ring where a weak barrier couples different angular momentum states.
Collapse
Affiliation(s)
- J Polo
- Univ. Grenoble Alpes, CNRS, LPMMC, F-38000 Grenoble, France
| | - V Ahufinger
- Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - F W J Hekking
- Univ. Grenoble Alpes, CNRS, LPMMC, F-38000 Grenoble, France
| | - A Minguzzi
- Univ. Grenoble Alpes, CNRS, LPMMC, F-38000 Grenoble, France
| |
Collapse
|
40
|
Tsarev DV, Arakelian SM, Chuang YL, Lee RK, Alodjants AP. Quantum metrology beyond Heisenberg limit with entangled matter wave solitons. OPTICS EXPRESS 2018; 26:19583-19595. [PMID: 30114129 DOI: 10.1364/oe.26.019583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Considering matter wave bright solitons from weakly coupled Bose-Einstein condensates trapped in a double-well potential, we study the formation of macroscopic non-classical states, including Schrödinger-cat superposition state and maximally path entangled N00N-state. We examine these macroscopic states by Mach-Zehnder interferometer in the context of parity measurements, which has been done to obtain Heisenberg limit accuracy for linear phase shift measurement. We reveal that the ratio of two-body scattering length to intra-well hopping parameter can be measured with the scaling beyond this limit by using nonlinear phase shift with interacting quantum solitons.
Collapse
|
41
|
Lange K, Peise J, Lücke B, Kruse I, Vitagliano G, Apellaniz I, Kleinmann M, Tóth G, Klempt C. Entanglement between two spatially separated atomic modes. Science 2018; 360:416-418. [PMID: 29700263 DOI: 10.1126/science.aao2035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 03/22/2018] [Indexed: 02/15/2024]
Abstract
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Collapse
Affiliation(s)
- Karsten Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Jan Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Bernd Lücke
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Ilka Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Giuseppe Vitagliano
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
| | - Iagoba Apellaniz
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
| | - Matthias Kleinmann
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany
| | - Géza Tóth
- Department of Theoretical Physics, University of the Basque Country UPV/EHU, Post Office Box 644, E-48080 Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Post Office Box 49, H-1525 Budapest, Hungary
| | - Carsten Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany.
| |
Collapse
|
42
|
An FA, Meier EJ, Ang'ong'a J, Gadway B. Correlated Dynamics in a Synthetic Lattice of Momentum States. PHYSICAL REVIEW LETTERS 2018; 120:040407. [PMID: 29437415 DOI: 10.1103/physrevlett.120.040407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/09/2017] [Indexed: 06/08/2023]
Abstract
We study the influence of atomic interactions on quantum simulations in momentum-space lattices (MSLs), where driven transitions between discrete momentum states mimic transport between sites of a synthetic lattice. Low-energy atomic collisions, which are short ranged in real space, relate to nearly infinite-ranged interactions in momentum space. However, the added exchange energy between atoms in distinguishable momentum states leads to an effectively attractive, finite-ranged interaction between atoms in momentum space. In this Letter, we observe the onset of self-trapping driven by such interactions in a momentum-space double well, paving the way for more complex many-body studies in tailored MSLs. We consider the types of phenomena that may result from these interactions, including the formation of chiral solitons in zigzag flux lattices.
Collapse
Affiliation(s)
- Fangzhao Alex An
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Eric J Meier
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Jackson Ang'ong'a
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| | - Bryce Gadway
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080, USA
| |
Collapse
|
43
|
Nolan SP, Szigeti SS, Haine SA. Optimal and Robust Quantum Metrology Using Interaction-Based Readouts. PHYSICAL REVIEW LETTERS 2017; 119:193601. [PMID: 29219523 DOI: 10.1103/physrevlett.119.193601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cramér-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry or to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal and robust quantum metrology is achievable in current spin-squeezing experiments.
Collapse
Affiliation(s)
- Samuel P Nolan
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart S Szigeti
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9010, New Zealand
| | - Simon A Haine
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| |
Collapse
|
44
|
Mathew R, Tiesinga E. Phase-space mixing in dynamically unstable, integrable few-mode quantum systems. PHYSICAL REVIEW. A 2017; 96:013604. [PMID: 29876535 PMCID: PMC5986195 DOI: 10.1103/physreva.96.013604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quenches in isolated quantum systems are currently a subject of intense study. Here, we consider quantum few-mode systems that are integrable in their classical mean-field limit and become dynamically unstable after a quench of a system parameter. Specifically, we study a Bose-Einstein condensate (BEC) in a double-well potential and an antiferromagnetic spinor BEC constrained to a single spatial mode. We study the time dynamics after the quench within the truncated Wigner approximation (TWA), focus on the role of motion near separatrices, and find that system relaxes to a steady state due to phase-space mixing. Using the action-angle formalism and a pendulum as an illustration, we derive general analytical expressions for the time evolution of expectation values of observables and their long-time limits. We find that the deviation of the long-time expectation value from its classical value scales as O(1/ln N), where N is the number of atoms in the condensate. Furthermore, the relaxation of an observable to its steady-state value is a damped oscillation. The damping is Gaussian in time with a time scale of O[(ln N)2]. We also give the quantitative dependence of the steady-state value and the damping time on the system parameters. Our results are confirmed with numerical TWA simulations.
Collapse
Affiliation(s)
- R Mathew
- Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, College Park, Maryland 20742, USA
| | - E Tiesinga
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
45
|
Witthaut D, Wimberger S, Burioni R, Timme M. Classical synchronization indicates persistent entanglement in isolated quantum systems. Nat Commun 2017; 8:14829. [PMID: 28401881 PMCID: PMC5394286 DOI: 10.1038/ncomms14829] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 12/16/2017] [Indexed: 11/29/2022] Open
Abstract
Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms. Collective phenomena in many-body systems include synchronization in classical and entanglement in quantum systems. Here the authors study isolated many-body quantum systems and demonstrate that synchronization emerges intrinsically, accompanied by the onset of quantum coherence and persistent entanglement.
Collapse
Affiliation(s)
- Dirk Witthaut
- Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-STE), 52428 Jülich, Germany.,Institute for Theoretical Physics, University of Cologne, Zuelpicher Str. 77, 50937 Köln, Germany.,Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg, 37077 Göttingen, Germany
| | - Sandro Wimberger
- Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universitá di Parma, Via G.P. Usberti 7/a, 43124 Parma, Italy.,INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
| | - Raffaella Burioni
- Dipartimento di Scienze Matematiche, Fisiche ed Informatiche, Universitá di Parma, Via G.P. Usberti 7/a, 43124 Parma, Italy.,INFN, Sezione di Milano Bicocca, Gruppo Collegato di Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
| | - Marc Timme
- Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg, 37077 Göttingen, Germany.,Department of Physics, University of Darmstadt, 64289 Darmstadt, Germany.,Institute for Theoretical Physics, Technical University of Dresden, 01062 Dresden, Germany
| |
Collapse
|
46
|
Jin Y. The effects of symmetrical arrangement on quantum metrology. Sci Rep 2017; 7:405. [PMID: 28341850 PMCID: PMC5428723 DOI: 10.1038/s41598-017-00544-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
An obstacle for precision improvement in quantum metrology is the information loss causing by the unavoidable interaction between probe system and environment. Quantum fluctuations are environment no system can be isolated from and it will make the precision of initial parameter estimation of the probe atom decrease with time. After the typical time of the spontaneous decay of the probe atom, the precision is greatly damaged. However, quantum fluctuations can be modified. Our results show that if we put several ancillary atoms beside the probe atom in symmetrical arrangement, the probe atom will be affected by the ancillary atoms indirectly and the information loss of the probe atom causing by the quantum fluctuations will be partially avoided. We find that the retained precision after long time evolution can approaches to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tfrac{{\bf{9}}}{{\bf{16}}}$$\end{document}916 times of the initial precision in condition that the probe atom and three ancillary atoms are located in the vertex of regular tetrahedron.
Collapse
Affiliation(s)
- Yao Jin
- School of Electronic and Communication Engineering, Guiyang University, Guiyang, Guizhou, 550005, China.
| |
Collapse
|
47
|
Huang Y, Xiong HN, Yang Y, Hu ZD, Xi Z. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate. Sci Rep 2017; 7:43159. [PMID: 28233786 PMCID: PMC5324127 DOI: 10.1038/srep43159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 11/09/2022] Open
Abstract
Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized.
Collapse
Affiliation(s)
- Yixiao Huang
- School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China.,College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| | - Heng-Na Xiong
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yang Yang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zheng-Da Hu
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xi
- College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
48
|
Zhang YC, Zhou XF, Zhou X, Guo GC, Zhou ZW. Cavity-Assisted Single-Mode and Two-Mode Spin-Squeezed States via Phase-Locked Atom-Photon Coupling. PHYSICAL REVIEW LETTERS 2017; 118:083604. [PMID: 28282155 DOI: 10.1103/physrevlett.118.083604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 06/06/2023]
Abstract
We propose a scheme to realize the two-axis countertwisting spin-squeezing Hamiltonian inside an optical cavity with the aid of phase-locked atom-photon coupling. By careful analysis and extensive simulation, we demonstrate that our scheme is robust against dissipation caused by cavity loss and atomic spontaneous emission, and it can achieve significantly higher squeezing than one-axis twisting. We further show how our idea can be extended to generate two-mode spin-squeezed states in two coupled cavities. Because of its easy implementation and high tunability, our scheme is experimentally realizable with current technologies.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Fa Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxiang Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Wei Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
49
|
Burton WC, Kennedy CJ, Chung WC, Vadia S, Chen W, Ketterle W. Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding. PHYSICAL REVIEW LETTERS 2016; 117:275301. [PMID: 28084759 DOI: 10.1103/physrevlett.117.275301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit. We probe the coherence between separated condensates in different sites of an optical lattice by monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way that interactions can improve the performance of quantum devices.
Collapse
Affiliation(s)
- William Cody Burton
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Colin J Kennedy
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Woo Chang Chung
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Samarth Vadia
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany
| | - Wenlan Chen
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wolfgang Ketterle
- Research Laboratory of Electronics, MIT-Harvard Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
50
|
Trenkwalder A, Spagnolli G, Semeghini G, Coop S, Landini M, Castilho P, Pezzè L, Modugno G, Inguscio M, Smerzi A, Fattori M. Quantum Phase Transitions with Parity-Symmetry Breaking and Hysteresis. NATURE PHYSICS 2016; 12:826-829. [PMID: 27610189 PMCID: PMC5011422 DOI: 10.1038/nphys3743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/24/2016] [Indexed: 06/02/2023]
Abstract
Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models1-3. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report for the first time the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system is made of an ultra-cold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature4, the investigation of macroscopic quantum tunneling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points5.
Collapse
Affiliation(s)
- A Trenkwalder
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy
| | - G Spagnolli
- LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - G Semeghini
- LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - S Coop
- LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy; ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - M Landini
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy
| | - P Castilho
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy; Instituto de Física de São Carlos, Universidade de São Paulo, C.P. 369, 13560-970, São Carlos, São Paulo, Brazil
| | - L Pezzè
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy; LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy; Quantum Science and Technology in Arcetri, QSTAR, 50125 Firenze, Italy
| | - G Modugno
- LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - M Inguscio
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy; LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - A Smerzi
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy; LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy; Quantum Science and Technology in Arcetri, QSTAR, 50125 Firenze, Italy
| | - M Fattori
- Istituto Nazionale di Ottica-CNR, 50019 Sesto Fiorentino, Italy; LENS European Laboratory for Nonlinear Spectroscopy, and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|