1
|
Rodriguez-Reza CM, Sato-Carlton A, Carlton PM. Length-sensitive partitioning of Caenorhabditis elegans meiotic chromosomes responds to proximity and number of crossover sites. Curr Biol 2024; 34:4998-5016.e6. [PMID: 39395418 DOI: 10.1016/j.cub.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/12/2024] [Indexed: 10/14/2024]
Abstract
Sensing and control of size are critical for cellular function and survival. A striking example of size sensing occurs during meiosis in the nematode Caenorhabditis elegans. C. elegans chromosomes compare the lengths of the two chromosome "arms" demarcated by the position of their single off-center crossover, and they differentially modify these arms to ensure that sister chromatid cohesion is lost specifically on the shorter arm in the first meiotic division, while the longer arm maintains cohesion until the second division. While many of the downstream steps leading to cohesion loss have been characterized, the length-sensing process itself remains poorly understood. Here, we have used cytological visualization of short and long chromosome arms, combined with quantitative microscopy, live imaging, and simulations, to investigate the principles underlying length-sensitive chromosome partitioning. By quantitatively analyzing short-arm designation patterns on fusion chromosomes carrying multiple crossovers, we develop a model in which a short-arm-determining factor originates at crossover designation sites, diffuses within the synaptonemal complex, and accumulates within crossover-bounded chromosome segments. We demonstrate experimental support for a critical assumption of this model: that crossovers act as boundaries to diffusion within the synaptonemal complex. Further, we develop a discrete simulation based on our results that recapitulates a wide variety of observed partitioning outcomes in both wild-type and previously reported mutants. Our results suggest that the concentration of a diffusible factor is used as a proxy for chromosome length, enabling the correct designation of short and long arms and proper segregation of chromosomes.
Collapse
Affiliation(s)
| | - Aya Sato-Carlton
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan.
| | - Peter M Carlton
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan; Radiation Biology Center, Kyoto University, Yoshida-Konoecho, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
Raices M, Balmir F, Silva N, Li W, Grundy MK, Hoffman DK, Altendorfer E, Camacho CJ, Bernstein KA, Colaiácovo MP, Yanowitz J. Genetic and physical interactions reveal overlapping and distinct contributions to meiotic double-strand break formation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581796. [PMID: 38463951 PMCID: PMC10925144 DOI: 10.1101/2024.02.23.581796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Double-strand breaks (DSBs) are the most deleterious lesions experienced by our genome. Yet, DSBs are intentionally induced during gamete formation to promote the exchange of genetic material between homologous chromosomes. While the conserved topoisomerase-like enzyme Spo11 catalyzes DSBs, additional regulatory proteins-referred to as "Spo11 accessory factors"- regulate the number, timing, and placement of DSBs during early meiotic prophase ensuring that SPO11 does not wreak havoc on the genome. Despite the importance of the accessory factors, they are poorly conserved at the sequence level suggesting that these factors may adopt unique functions in different species. In this work, we present a detailed analysis of the genetic and physical interactions between the DSB factors in the nematode Caenorhabditis elegans providing new insights into conserved and novel functions of these proteins. This work shows that HIM-5 is the determinant of X-chromosome-specific crossovers and that its retention in the nucleus is dependent on DSB-1, the sole accessory factor that interacts with SPO-11. We further provide evidence that HIM-5 coordinates the actions of the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis.
Collapse
Affiliation(s)
| | - Fabiola Balmir
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
| | - Nicola Silva
- Department of Biology, Masaryk University, Czech Republic
| | - Wei Li
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
- Tsinghua U. Medical School, China
| | - McKenzie K. Grundy
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Elisabeth Altendorfer
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Carlos Jaime Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| | - Kara A. Bernstein
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Biochemistry and Biophysics, University of Pennsylvania, Penn Center for Genome Integrity, Philadelphia, Pennsylvania
| | - Monica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Room 334, Boston, MA 02115, USA
| | - Judith Yanowitz
- Magee-Womens Research Institute, Pittsburgh, PA 15213 USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213 USA
| |
Collapse
|
3
|
Parée T, Noble L, Ferreira Gonçalves J, Teotónio H. rec-1 loss of function increases recombination in the central gene clusters at the expense of autosomal pairing centers. Genetics 2024; 226:iyad205. [PMID: 38001364 DOI: 10.1093/genetics/iyad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Meiotic control of crossover (CO) number and position is critical for homologous chromosome segregation and organismal fertility, recombination of parental genotypes, and the generation of novel genetic combinations. We here characterize the recombination rate landscape of a rec-1 loss of function modifier of CO position in Caenorhabditis elegans, one of the first ever modifiers discovered. By averaging CO position across hermaphrodite and male meioses and by genotyping 203 single-nucleotide variants covering about 95% of the genome, we find that the characteristic chromosomal arm-center recombination rate domain structure is lost in the loss of function rec-1 mutant. The rec-1 loss of function mutant smooths the recombination rate landscape but is insufficient to eliminate the nonuniform position of CO. Lower recombination rates in the rec-1 mutant are particularly found in the autosomal arm domains containing the pairing centers. We further find that the rec-1 mutant is of little consequence for organismal fertility and egg viability and thus for rates of autosomal nondisjunction. It nonetheless increases X chromosome nondisjunction rates and thus male appearance. Our findings question the maintenance of recombination rate heritability and genetic diversity among C. elegans natural populations, and they further suggest that manipulating genetic modifiers of CO position will help find quantitative trait loci located in low-recombining genomic regions normally refractory to discovery.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
- EnviroDNA, 95 Albert St., Brunswick, Victoria 3065, Australia
| | - João Ferreira Gonçalves
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| |
Collapse
|
4
|
Teterina AA, Willis JH, Lukac M, Jovelin R, Cutter AD, Phillips PC. Genomic diversity landscapes in outcrossing and selfing Caenorhabditis nematodes. PLoS Genet 2023; 19:e1010879. [PMID: 37585484 PMCID: PMC10461856 DOI: 10.1371/journal.pgen.1010879] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/28/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Caenorhabditis nematodes form an excellent model for studying how the mode of reproduction affects genetic diversity, as some species reproduce via outcrossing whereas others can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are only available for self-reproducing Caenorhabditis, making the generality of genomic patterns across the genus unclear given the profound potential influence of reproductive mode. Here we present a whole-genome diversity landscape, coupled with a new genetic map, for the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of recombination in C. remanei, like the model nematode C. elegans, shows high recombination rates on chromosome arms and low rates toward the central regions. Patterns of genetic variation across the genome are also similar between these species, but differ dramatically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation in effective population size over the past million generations echo this difference in polymorphism. Evolutionary simulations demonstrate how selection, recombination, mutation, and selfing shape variation along the genome, and that multiple drivers can produce patterns similar to those observed in natural populations. The results illustrate how genome organization and selection play a crucial role in shaping the genomic pattern of diversity whereas demographic processes scale the level of diversity across the genome as a whole.
Collapse
Affiliation(s)
- Anastasia A. Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matt Lukac
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Richard Jovelin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
5
|
Davis GM, Hipwell H, Boag PR. Oogenesis in Caenorhabditis elegans. Sex Dev 2023; 17:73-83. [PMID: 37232019 PMCID: PMC10659005 DOI: 10.1159/000531019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/01/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The nematode, Caenorhabditis elegans has proven itself as a valuable model for investigating metazoan biology. C. elegans have a transparent body, an invariant cell lineage, and a high level of genetic conservation which makes it a desirable model organism. Although used to elucidate many aspects of somatic biology, a distinct advantage of C. elegans is its well annotated germline which allows all aspects of oogenesis to be observed in real time within a single animal. C. elegans hermaphrodites have two U-shaped gonad arms which produce their own sperm that is later stored to fertilise their own oocytes. These two germlines take up much of the internal space of each animal and germ cells are therefore the most abundant cell present within each animal. This feature and the genetic phenotypes observed for mutant worm gonads have allowed many novel findings that established our early understanding of germ cell dynamics. The mutant phenotypes also allowed key features of meiosis and germ cell maturation to be unveiled. SUMMARY This review will focus on the key aspects that make C. elegans an outstanding model for exploring each feature of oogenesis. This will include the fundamental steps associated with germline function and germ cell maturation and will be of use for those interested in exploring reproductive metazoan biology. KEY MESSAGES Since germ cell biology is highly conserved in animals, much can be gained from study of a simple metazoan like C. elegans. Past findings have enhanced understanding on topics that would be more laborious or challenging in more complex animal models.
Collapse
Affiliation(s)
- Gregory M. Davis
- Institute of Innovation, Science and Sustainability, Federation University, Churchill, VIC, Australia
| | - Hayleigh Hipwell
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| | - Peter R. Boag
- Department of Biochemistry and Molecular Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
6
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
7
|
Trivedi S, Blazícková J, Silva N. PARG and BRCA1-BARD1 cooperative function regulates DNA repair pathway choice during gametogenesis. Nucleic Acids Res 2022; 50:12291-12308. [PMID: 36478097 PMCID: PMC9757042 DOI: 10.1093/nar/gkac1153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Meiotic chromosome segregation relies on programmed DNA double-strand break induction. These are in turn repaired by homologous recombination, generating physical attachments between the parental chromosomes called crossovers. A subset of breaks yields recombinant outcomes, while crossover-independent mechanisms repair the majority of lesions. The balance between different repair pathways is crucial to ensure genome integrity. We show that Caenorhabditis elegans BRC-1/BRCA1-BRD-1/BARD1 and PARG-1/PARG form a complex in vivo, essential for accurate DNA repair in the germline. Simultaneous depletion of BRC-1 and PARG-1 causes synthetic lethality due to reduced crossover formation and impaired break repair, evidenced by hindered RPA-1 removal and presence of aberrant chromatin bodies in diakinesis nuclei, whose formation depends on spo-11 function. These factors undergo a similar yet independent loading in developing oocytes, consistent with operating in different pathways. Abrogation of KU- or Theta-mediated end joining elicits opposite effects in brc-1; parg-1 doubles, suggesting a profound impact in influencing DNA repair pathway choice by BRC-1-PARG-1. Importantly, lack of PARG-1 catalytic activity suppresses untimely accumulation of RAD-51 foci in brc-1 mutants but is only partially required for fertility. Our data show that BRC-1/BRD-1-PARG-1 joint function is essential for genome integrity in meiotic cells by regulating multiple DNA repair pathways.
Collapse
Affiliation(s)
- Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nicola Silva
- To whom correspondence should be addressed. Tel: +420 549 49 8033;
| |
Collapse
|
8
|
Tóth A, Székvölgyi L, Vellai T. The genome loading model for the origin and maintenance of sex in eukaryotes. Biol Futur 2022; 73:345-357. [PMID: 36534301 DOI: 10.1007/s42977-022-00148-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Understanding why sexual reproduction-which involves syngamy (union of gametes) and meiosis-emerged and how it has subsisted for millions of years remains a fundamental problem in biology. Considered as the essence of sex, meiotic recombination is initiated by a DNA double-strand break (DSB) that forms on one of the pairing homologous chromosomes. This DNA lesion is subsequently repaired by gene conversion, the non-reciprocal transfer of genetic information from the intact homolog. A major issue is which of the pairing homologs undergoes DSB formation. Accumulating evidence shows that chromosomal sites where the pairing homologs locally differ in size, i.e., are heterozygous for an insertion or deletion, often display disparity in gene conversion. Biased conversion tends to duplicate insertions and lose deletions. This suggests that DSB is preferentially formed on the "shorter" homologous region, which thereby acts as the recipient for DNA transfer. Thus, sex primarily functions as a genome (re)loading mechanism. It ensures the restoration of formerly lost DNA sequences (deletions) and allows the efficient copying and, mainly in eukaryotes, subsequent spreading of newly emerged sequences (insertions) arising initially in an individual genome, even if they confer no advantage to the host. In this way, sex simultaneously repairs deletions and increases genetic variability underlying adaptation. The model explains a remarkable increase in DNA content during the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- András Tóth
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
| | - Lóránt Székvölgyi
- MTA-DE Momentum Genome Architecture and Recombination Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
9
|
Cassani M, Seydoux G. Specialized germline P-bodies are required to specify germ cell fate in Caenorhabditis elegans embryos. Development 2022; 149:dev200920. [PMID: 36196602 PMCID: PMC9686995 DOI: 10.1242/dev.200920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/06/2022] [Indexed: 07/30/2023]
Abstract
In animals with germ plasm, specification of the germline involves 'germ granules', cytoplasmic condensates that enrich maternal transcripts in the germline founder cells. In Caenorhabditis elegans embryos, P granules enrich maternal transcripts, but surprisingly P granules are not essential for germ cell fate specification. Here, we describe a second condensate in the C. elegans germ plasm. Like canonical P-bodies found in somatic cells, 'germline P-bodies' contain regulators of mRNA decapping and deadenylation and, in addition, the intrinsically-disordered proteins MEG-1 and MEG-2 and the TIS11-family RNA-binding protein POS-1. Embryos lacking meg-1 and meg-2 do not stabilize P-body components, misregulate POS-1 targets, mis-specify the germline founder cell and do not develop a germline. Our findings suggest that specification of the germ line involves at least two distinct condensates that independently enrich and regulate maternal mRNAs in the germline founder cells. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Madeline Cassani
- Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute and Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Continuous double-strand break induction and their differential processing sustain chiasma formation during Caenorhabditis elegans meiosis. Cell Rep 2022; 40:111403. [PMID: 36170820 DOI: 10.1016/j.celrep.2022.111403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/01/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022] Open
Abstract
Faithful chromosome segregation into gametes depends on Spo11-induced DNA double-strand breaks (DSBs). These yield single-stranded 3' tails upon resection to promote crossovers (COs). While early Mre11-dependent end resection is the predominant pathway in most organisms, Exo1 or Dna2/BLM can also contribute to the efficient processing of meiotic DSBs. Although its enzymatic activity has been thoroughly dissected, the temporal dynamics underlying Spo11 activity have remained mostly elusive. We show that, in Caenorhabditis elegans, SPO-11-mediated DSB induction takes place throughout early meiotic prophase I until mid-late pachynema. We find that late DSBs are essential for CO formation and are preferentially processed by EXO-1 and DNA-2 in a redundant fashion. Further, EXO-1-DNA-2-mediated resection ensures completion of conservative DSB repair and discourages activation of KU-dependent end joining. Taken together, our data unveil important temporal aspects of DSB induction and identify previously unknown functional implications for EXO-1-DNA-2-mediated resection activity in C. elegans.
Collapse
|
11
|
Fernando LM, Quesada-Candela C, Murray M, Ugoaru C, Yanowitz JL, Allen AK. Proteasomal subunit depletions differentially affect germline integrity in C. elegans. Front Cell Dev Biol 2022; 10:901320. [PMID: 36060813 PMCID: PMC9428126 DOI: 10.3389/fcell.2022.901320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The 26S proteasome is a multi-subunit protein complex that is canonically known for its ability to degrade proteins in cells and maintain protein homeostasis. Non-canonical or non-proteolytic roles of proteasomal subunits exist but remain less well studied. We provide characterization of germline-specific functions of different 19S proteasome regulatory particle (RP) subunits in C. elegans using RNAi specifically from the L4 stage and through generation of endogenously tagged 19S RP lid subunit strains. We show functions for the 19S RP in regulation of proliferation and maintenance of integrity of mitotic zone nuclei, in polymerization of the synaptonemal complex (SC) onto meiotic chromosomes and in the timing of SC subunit redistribution to the short arm of the bivalent, and in turnover of XND-1 proteins at late pachytene. Furthermore, we report that certain 19S RP subunits are required for proper germ line localization of WEE-1.3, a major meiotic kinase. Additionally, endogenous fluorescent labeling revealed that the two isoforms of the essential 19S RP proteasome subunit RPN-6.1 are expressed in a tissue-specific manner in the hermaphrodite. Also, we demonstrate that the 19S RP subunits RPN-6.1 and RPN-7 are crucial for the nuclear localization of the lid subunits RPN-8 and RPN-9 in oocytes, further supporting the ability to utilize the C. elegans germ line as a model to study proteasome assembly real-time. Collectively, our data support the premise that certain 19S RP proteasome subunits are playing tissue-specific roles, especially in the germ line. We propose C. elegans as a versatile multicellular model to study the diverse proteolytic and non-proteolytic roles that proteasome subunits play in vivo.
Collapse
Affiliation(s)
| | - Cristina Quesada-Candela
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Makaelah Murray
- Department of Biology, Howard University, Washington, DC, United States
| | - Caroline Ugoaru
- Department of Biology, Howard University, Washington, DC, United States
| | - Judith L. Yanowitz
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Departments of Developmental Biology, Microbiology, and Molecular Genetics, The Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| | - Anna K. Allen
- Department of Biology, Howard University, Washington, DC, United States
- *Correspondence: Judith L. Yanowitz, ; Anna K. Allen,
| |
Collapse
|
12
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
13
|
Das D, Trivedi S, Blazícková J, Arur S, Silva N. Phosphorylation of HORMA-domain protein HTP-3 at Serine 285 is dispensable for crossover formation. G3 (BETHESDA, MD.) 2022; 12:jkac079. [PMID: 35389463 PMCID: PMC9073698 DOI: 10.1093/g3journal/jkac079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
Generation of functional gametes is accomplished through a multilayered and finely orchestrated succession of events during meiotic progression. In the Caenorhabditis elegans germline, the HORMA-domain-containing protein HTP-3 plays pivotal roles for the establishment of chromosome axes and the efficient induction of programmed DNA double-strand breaks, both of which are crucial for crossover formation. Double-strand breaks allow for accurate chromosome segregation during the first meiotic division and therefore are an essential requirement for the production of healthy gametes. Phosphorylation-dependent regulation of HORMAD protein plays important roles in controlling meiotic chromosome behavior. Here, we document a phospho-site in HTP-3 at Serine 285 that is constitutively phosphorylated during meiotic prophase I. pHTP-3S285 localization overlaps with panHTP-3 except in nuclei undergoing physiological apoptosis, in which pHTP-3 is absent. Surprisingly, we observed that phosphorylation of HTP-3 at S285 is independent of the canonical kinases that control meiotic progression in nematodes. During meiosis, the htp-3(S285A) mutant displays accelerated RAD-51 turnover, but no other meiotic abnormalities. Altogether, these data indicate that the Ser285 phosphorylation is independent of canonical meiotic protein kinases and does not regulate HTP-3-dependent meiotic processes. We propose a model wherein phosphorylation of HTP-3 occurs through noncanonical or redundant meiotic kinases and/or is likely redundant with additional phospho-sites for function in vivo.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shalini Trivedi
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Blazícková
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
14
|
Wang Y, Zhai B, Tan T, Yang X, Zhang J, Song M, Tan Y, Yang X, Chu T, Zhang S, Wang S, Zhang L. ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res 2021; 49:9353-9373. [PMID: 34417612 PMCID: PMC8450111 DOI: 10.1093/nar/gkab722] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Meiotic recombination is integrated into and regulated by meiotic chromosomes, which is organized as loop/axis architecture. However, the regulation of chromosome organization is poorly understood. Here, we show Esa1, the NuA4 complex catalytic subunit, is constitutively expressed and localizes on chromatin loops during meiosis. Esa1 plays multiple roles including homolog synapsis, sporulation efficiency, spore viability, and chromosome segregation in meiosis. Detailed analyses show the meiosis-specific depletion of Esa1 results in decreased chromosome axis length independent of another axis length regulator Pds5, which further leads to a decreased number of Mer2 foci, and consequently a decreased number of DNA double-strand breaks, recombination intermediates, and crossover frequency. However, Esa1 depletion does not impair the occurrence of the obligatory crossover required for faithful chromosome segregation, or the strength of crossover interference. Further investigations demonstrate Esa1 regulates chromosome axis length via acetylating the N-terminal tail of histone H4 but not altering transcription program. Therefore, we firstly show a non-chromosome axis component, Esa1, acetylates histone H4 on chromatin loops to regulate chromosome axis length and consequently recombination frequency but does not affect the basic meiotic recombination process. Additionally, Esa1 depletion downregulates middle induced meiotic genes, which probably causing defects in sporulation and chromosome segregation.
Collapse
Affiliation(s)
- Ying Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Taicong Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Jiaming Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Meihui Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Yingjin Tan
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xuan Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Tingting Chu
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Shuxian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, State Key Laboratory of Microbial Technology, Shandong University, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong250012, China.,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan250014, Shandong, China
| |
Collapse
|
15
|
Rappaport Y, Achache H, Falk R, Murik O, Ram O, Tzur YB. Bisection of the X chromosome disrupts the initiation of chromosome silencing during meiosis in Caenorhabditis elegans. Nat Commun 2021; 12:4802. [PMID: 34376665 PMCID: PMC8355143 DOI: 10.1038/s41467-021-24815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
During meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.
Collapse
Affiliation(s)
- Yisrael Rappaport
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanna Achache
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Falk
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omer Murik
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yonatan B Tzur
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Gartner A, Engebrecht J. DNA repair, recombination, and damage signaling. Genetics 2021; 220:6522877. [PMID: 35137093 PMCID: PMC9097270 DOI: 10.1093/genetics/iyab178] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/10/2021] [Indexed: 01/09/2023] Open
Abstract
DNA must be accurately copied and propagated from one cell division to the next, and from one generation to the next. To ensure the faithful transmission of the genome, a plethora of distinct as well as overlapping DNA repair and recombination pathways have evolved. These pathways repair a large variety of lesions, including alterations to single nucleotides and DNA single and double-strand breaks, that are generated as a consequence of normal cellular function or by external DNA damaging agents. In addition to the proteins that mediate DNA repair, checkpoint pathways have also evolved to monitor the genome and coordinate the action of various repair pathways. Checkpoints facilitate repair by mediating a transient cell cycle arrest, or through initiation of cell suicide if DNA damage has overwhelmed repair capacity. In this chapter, we describe the attributes of Caenorhabditis elegans that facilitate analyses of DNA repair, recombination, and checkpoint signaling in the context of a whole animal. We review the current knowledge of C. elegans DNA repair, recombination, and DNA damage response pathways, and their role during development, growth, and in the germ line. We also discuss how the analysis of mutational signatures in C. elegans is helping to inform cancer mutational signatures in humans.
Collapse
Affiliation(s)
- Anton Gartner
- Department for Biological Sciences, IBS Center for Genomic Integrity, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea,Corresponding author: (A.G.); (J.E.)
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA,Corresponding author: (A.G.); (J.E.)
| |
Collapse
|
18
|
Das D, Chen SY, Arur S. ERK phosphorylates chromosomal axis component HORMA domain protein HTP-1 to regulate oocyte numbers. SCIENCE ADVANCES 2020; 6:6/44/eabc5580. [PMID: 33127680 PMCID: PMC7608811 DOI: 10.1126/sciadv.abc5580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/18/2020] [Indexed: 05/10/2023]
Abstract
Oocyte numbers, a critical determinant of female reproductive fitness, are highly regulated, yet the mechanisms underlying this regulation remain largely undefined. In the Caenorhabditis elegans gonad, RAS/extracellular signal-regulated kinase (ERK) signaling regulates oocyte numbers; mechanisms are unknown. We show that the RAS/ERK pathway phosphorylates meiotic chromosome axis protein HTP-1 at serine-325 to control chromosome dynamics and regulate oocyte number. Phosphorylated HTP-1(S325) accumulates in vivo in an ERK-dependent manner in early-mid pachytene stage germ cells and is necessary for synaptonemal complex extension and/or maintenance. Lack of HTP-1 phosphorylation leads to asynapsis and persistence of meiotic double-strand breaks, causing delayed meiotic progression and reduced oocyte number. In contrast, early onset of ERK activation causes precocious meiotic progression, resulting in increased oocyte number, which is reversed by removal of HTP-1 phosphorylation. The RAS/ERK/HTP-1 signaling cascade thus functions to monitor formation and maintenance of synapsis for timely resolution of double-strand breaks, oocyte production, and reproductive fitness.
Collapse
Affiliation(s)
- Debabrata Das
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shin-Yu Chen
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Li Q, Hariri S, Engebrecht J. Meiotic Double-Strand Break Processing and Crossover Patterning Are Regulated in a Sex-Specific Manner by BRCA1-BARD1 in Caenorhabditis elegans. Genetics 2020; 216:359-379. [PMID: 32796008 PMCID: PMC7536853 DOI: 10.1534/genetics.120.303292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/08/2020] [Indexed: 12/29/2022] Open
Abstract
Meiosis is regulated in a sex-specific manner to produce two distinct gametes, sperm and oocytes, for sexual reproduction. To determine how meiotic recombination is regulated in spermatogenesis, we analyzed the meiotic phenotypes of mutants in the tumor suppressor E3 ubiquitin ligase BRC-1-BRD-1 complex in Caenorhabditis elegans male meiosis. Unlike in mammals, this complex is not required for meiotic sex chromosome inactivation, the process whereby hemizygous sex chromosomes are transcriptionally silenced. Interestingly, brc-1 and brd-1 mutants show meiotic recombination phenotypes that are largely opposing to those previously reported for female meiosis. Fewer meiotic recombination intermediates marked by the recombinase RAD-51 were observed in brc-1 and brd-1 mutants, and the reduction in RAD-51 foci could be suppressed by mutation of nonhomologous-end-joining proteins. Analysis of GFP::RPA-1 revealed fewer foci in the brc-1brd-1 mutant and concentration of BRC-1-BRD-1 to sites of meiotic recombination was dependent on DNA end resection, suggesting that the complex regulates the processing of meiotic double-strand breaks to promote repair by homologous recombination. Further, BRC-1-BRD-1 is important to promote progeny viability when male meiosis is perturbed by mutations that block the pairing and synapsis of different chromosome pairs, although the complex is not required to stabilize the RAD-51 filament as in female meiosis under the same conditions. Analyses of crossover designation and formation revealed that BRC-1-BRD-1 inhibits supernumerary COs when meiosis is perturbed. Together, our findings suggest that BRC-1-BRD-1 regulates different aspects of meiotic recombination in male and female meiosis.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - Sara Hariri
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616
| |
Collapse
|
20
|
Janisiw E, Raices M, Balmir F, Paulin LF, Baudrimont A, von Haeseler A, Yanowitz JL, Jantsch V, Silva N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. Nat Commun 2020; 11:4869. [PMID: 32978394 PMCID: PMC7519143 DOI: 10.1038/s41467-020-18693-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Poly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in coordinating the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism. Poly(ADP-ribose) glycohydrolase (PARG) is involved in different cellular processes including DNA repair. Here the authors reveal a role for PARG in regulating meiotic DNA double strand break induction and repair in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Eva Janisiw
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria.,Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Marilina Raices
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Balmir
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,AHN Center for Reproductive Medicine, AHN McCandless, Pittsburgh, PA, USA
| | - Luis F Paulin
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Laboratories, Medical University of Vienna, Vienna BioCenter, University of Vienna, Vienna, Austria.,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Judith L Yanowitz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Verena Jantsch
- Department of Chromosome Biology, Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicola Silva
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
21
|
Bhargava V, Goldstein CD, Russell L, Xu L, Ahmed M, Li W, Casey A, Servage K, Kollipara R, Picciarelli Z, Kittler R, Yatsenko A, Carmell M, Orth K, Amatruda JF, Yanowitz JL, Buszczak M. GCNA Preserves Genome Integrity and Fertility Across Species. Dev Cell 2019; 52:38-52.e10. [PMID: 31839537 DOI: 10.1016/j.devcel.2019.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/07/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022]
Abstract
The propagation of species depends on the ability of germ cells to protect their genome from numerous exogenous and endogenous threats. While these cells employ ubiquitous repair pathways, specialized mechanisms that ensure high-fidelity replication, chromosome segregation, and repair of germ cell genomes remain incompletely understood. We identified Germ Cell Nuclear Acidic Peptidase (GCNA) as a conserved regulator of genome stability in flies, worms, zebrafish, and human germ cell tumors. GCNA contains an acidic intrinsically disordered region (IDR) and a protease-like SprT domain. In addition to chromosomal instability and replication stress, Gcna mutants accumulate DNA-protein crosslinks (DPCs). GCNA acts in parallel with the SprT domain protein Spartan. Structural analysis reveals that while the SprT domain is needed to limit DNA damage, the IDR imparts significant function. This work shows that GCNA protects germ cells from various sources of damage, providing insights into conserved mechanisms that promote genome integrity across generations.
Collapse
Affiliation(s)
- Varsha Bhargava
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Courtney D Goldstein
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Logan Russell
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Murtaza Ahmed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wei Li
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA; Tsinghua University MD Program, School of Medicine, Tsinghua University, Haidian District, Beijing 100084, PR China
| | - Amanda Casey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - Rahul Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zachary Picciarelli
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Ralf Kittler
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alexander Yatsenko
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Michelle Carmell
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, 6000 Harry Hines Boulevard NA5.120F, Dallas, TX 75235, USA
| | - James F Amatruda
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, PA 15213, USA.
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
22
|
X chromosome and autosomal recombination are differentially sensitive to disruptions in SC maintenance. Proc Natl Acad Sci U S A 2019; 116:21641-21650. [PMID: 31570610 DOI: 10.1073/pnas.1910840116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The synaptonemal complex (SC) is a conserved meiotic structure that regulates the repair of double-strand breaks (DSBs) into crossovers or gene conversions. The removal of any central-region SC component, such as the Drosophila melanogaster transverse filament protein C(3)G, causes a complete loss of SC structure and crossovers. To better understand the role of the SC in meiosis, we used CRISPR/Cas9 to construct 3 in-frame deletions within the predicted coiled-coil region of the C(3)G protein. Since these 3 deletion mutations disrupt SC maintenance at different times during pachytene and exhibit distinct defects in key meiotic processes, they allow us to define the stages of pachytene when the SC is necessary for homolog pairing and recombination during pachytene. Our studies demonstrate that the X chromosome and the autosomes display substantially different defects in pairing and recombination when SC structure is disrupted, suggesting that the X chromosome is potentially regulated differently from the autosomes.
Collapse
|
23
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
24
|
Jänes J, Dong Y, Schoof M, Serizay J, Appert A, Cerrato C, Woodbury C, Chen R, Gemma C, Huang N, Kissiov D, Stempor P, Steward A, Zeiser E, Sauer S, Ahringer J. Chromatin accessibility dynamics across C. elegans development and ageing. eLife 2018; 7:37344. [PMID: 30362940 PMCID: PMC6231769 DOI: 10.7554/elife.37344] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here, we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one Caenorhabditis elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing.
Collapse
Affiliation(s)
- Jürgen Jänes
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yan Dong
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Michael Schoof
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jacques Serizay
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alex Appert
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Cerrato
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Carson Woodbury
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ron Chen
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Carolina Gemma
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ni Huang
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Djem Kissiov
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Przemyslaw Stempor
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Annette Steward
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Eva Zeiser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Otto-Warburg Laboratories, Berlin, Germany
| | - Julie Ahringer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.,The Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Ren X, Li R, Wei X, Bi Y, Ho V, Ding Q, Xu Z, Zhang Z, Hsieh CL, Young A, Zeng J, Liu X, Zhao Z. Genomic basis of recombination suppression in the hybrid between Caenorhabditis briggsae and C. nigoni. Nucleic Acids Res 2018; 46:1295-1307. [PMID: 29325078 PMCID: PMC5814819 DOI: 10.1093/nar/gkx1277] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
DNA recombination is required for effective segregation and diversification of genomes and for the successful completion of meiosis. Recent studies in various species hybrids have demonstrated a genetic link between DNA recombination and speciation. Consistent with this, we observed a striking suppression of recombination in the hybrids between two nematodes, the hermaphroditic Caenorhabditis briggsae and the gonochoristic C. nigoni. To unravel the molecular basis underlying the recombination suppression in their hybrids, we generated a C. nigoni genome with chromosome-level contiguity and produced an improved C. briggsae genome with resolved gaps up to 2.8 Mb. The genome alignment reveals not only high sequence divergences but also pervasive intra- and inter-chromosomal sequence re-arrangements between the two species, which are plausible culprits for the observed suppression. Comparison of recombination boundary sequences suggests that recombination in the hybrid requires extensive sequence homology, which is rarely seen between the two genomes. The new genomes and genomic libraries form invaluable resources for studying genome evolution, hybrid incompatibilities and sex evolution for this pair of model species.
Collapse
Affiliation(s)
- Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaolin Wei
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- PTN (Peking University-Tsinghua University-National Institute of Biological Sciences) Joint Graduate Program, Beijing 100084, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yu Bi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Qiutao Ding
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhichao Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihong Zhang
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | | | - Amanda Young
- Illumina Inc., 5200 Illumina Way, San Diego 92122, USA
| | - Jianyang Zeng
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao Liu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
26
|
McManus CE, Reinke V. The Germline-Specific Factor OEF-1 Facilitates Coordinated Progression Through Germ Cell Development in Caenorhabditis elegans. Genetics 2018; 208:549-563. [PMID: 29167199 PMCID: PMC5788521 DOI: 10.1534/genetics.117.1123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
The purpose of germ cells is to ensure the faithful transmission of genetic material to the next generation. To develop into mature gametes, germ cells must pass through cell cycle checkpoints while maintaining totipotency and genomic integrity. How germ cells coordinate developmental events while simultaneously protecting their unique fate is not well understood. Here, we characterize a novel nuclear protein, Oocyte-Excluded Factor-1 (OEF-1), with highly specific germline expression in Caenorhabditis elegans OEF-1 is initially detected early in embryogenesis and is expressed in the nuclei of all germ cells during larval stages. In adults, OEF-1 expression abruptly decreases just prior to oocyte differentiation. In oef-1 mutants, the developmental progression of germ cells is accelerated, resulting in subtle defects at multiple stages of germ cell development. Lastly, OEF-1 is primarily associated with the bodies of germline-expressed genes, and as such is excluded from the X chromosome. We hypothesize that OEF-1 may regulate the rate of progression through germ cell development, providing insight into how these critical maturation events are coordinated.
Collapse
Affiliation(s)
- Catherine E McManus
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Valerie Reinke
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
27
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357:661-667. [PMID: 28818938 DOI: 10.1126/science.aam8940] [Citation(s) in RCA: 855] [Impact Index Per Article: 122.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022]
Abstract
To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms.
Collapse
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Portland, OR, USA
| | - Robert H Waterston
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
28
|
Saito TT, Colaiácovo MP. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:223-234. [PMID: 29222342 DOI: 10.1101/sqb.2017.82.034132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Crossover recombination is essential for generating genetic diversity and promoting accurate chromosome segregation during meiosis. The process of crossover recombination is tightly regulated and is initiated by the formation of programmed meiotic DNA double-strand breaks (DSBs). The number of DSBs is around 10-fold higher than the number of crossovers in most species, because only a limited number of DSBs are repaired as crossovers during meiosis. Moreover, crossovers are not randomly distributed. Most crossovers are located on chromosomal arm regions and both centromeres and telomeres are usually devoid of crossovers. Either loss or mislocalization of crossovers frequently results in chromosome nondisjunction and subsequent aneuploidy, leading to infertility, miscarriages, and birth defects such as Down syndrome. Here, we will review aspects of crossover regulation observed in most species and then focus on crossover regulation in the nematode Caenorhabditis elegans in which both the frequency and distribution of crossovers are tightly controlled. In this system, only a single crossover is formed, usually at an off-centered position, between each pair of homologous chromosomes. We have identified C. elegans mutants with deregulated crossover distribution, and we are analyzing crossover control by using an inducible single DSB system with which a single crossover can be produced at specific genomic positions. These combined studies are revealing novel insights into how crossover position is linked to accurate chromosome segregation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
29
|
Fradin H, Kiontke K, Zegar C, Gutwein M, Lucas J, Kovtun M, Corcoran DL, Baugh LR, Fitch DHA, Piano F, Gunsalus KC. Genome Architecture and Evolution of a Unichromosomal Asexual Nematode. Curr Biol 2017; 27:2928-2939.e6. [PMID: 28943090 PMCID: PMC5659720 DOI: 10.1016/j.cub.2017.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 10/24/2022]
Abstract
Asexual reproduction in animals, though rare, is the main or exclusive mode of reproduction in some long-lived lineages. The longevity of asexual clades may be correlated with the maintenance of heterozygosity by mechanisms that rearrange genomes and reduce recombination. Asexual species thus provide an opportunity to gain insight into the relationship between molecular changes, genome architecture, and cellular processes. Here we report the genome sequence of the parthenogenetic nematode Diploscapter pachys with only one chromosome pair. We show that this unichromosomal architecture is shared by a long-lived clade of asexual nematodes closely related to the genetic model organism Caenorhabditis elegans. Analysis of the genome assembly reveals that the unitary chromosome arose through fusion of six ancestral chromosomes, with extensive rearrangement among neighboring regions. Typical nematode telomeres and telomeric protection-encoding genes are lacking. Most regions show significant heterozygosity; homozygosity is largely concentrated to one region and attributed to gene conversion. Cell-biological and molecular evidence is consistent with the absence of key features of meiosis I, including synapsis and recombination. We propose that D. pachys preserves heterozygosity and produces diploid embryos without fertilization through a truncated meiosis. As a prelude to functional studies, we demonstrate that D. pachys is amenable to experimental manipulation by RNA interference.
Collapse
Affiliation(s)
- Hélène Fradin
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA
| | - Charles Zegar
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Jessica Lucas
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Mikhail Kovtun
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - David H A Fitch
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Fabio Piano
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Kristin C Gunsalus
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
30
|
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017. [DOI: 10.1126/science.aam8940 order by 10746--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Junyue Cao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jonathan S. Packer
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Vijay Ramani
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Chau Huynh
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Riza Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiaojie Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Scott N. Furlan
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Andrew Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Portland, OR, USA
| | | | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
31
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
32
|
Functional Roles of Acetylated Histone Marks at Mouse Meiotic Recombination Hot Spots. Mol Cell Biol 2017; 37:MCB.00942-15. [PMID: 27821479 DOI: 10.1128/mcb.00942-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/03/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination initiates following the formation of DNA double-strand breaks (DSBs) by the Spo11 endonuclease early in prophase I, at discrete regions in the genome coined "hot spots." In mammals, meiotic DSB site selection is directed in part by sequence-specific binding of PRDM9, a polymorphic histone H3 (H3K4Me3) methyltransferase. However, other chromatin features needed for meiotic hot spot specification are largely unknown. Here we show that the recombinogenic cores of active hot spots in mice harbor several histone H3 and H4 acetylation and methylation marks that are typical of open, active chromatin. Further, deposition of these open chromatin-associated histone marks is dynamic and is manifest at spermatogonia and/or pre-leptotene-stage cells, which facilitates PRDM9 binding and access for Spo11 to direct the formation of DSBs, which are initiated at the leptotene stage. Importantly, manipulating histone acetylase and deacetylase activities established that histone acetylation marks are necessary for both hot spot activity and crossover resolution. We conclude that there are functional roles for histone acetylation marks at mammalian meiotic recombination hot spots.
Collapse
|
33
|
Ahuja JS, Sandhu R, Mainpal R, Lawson C, Henley H, Hunt PA, Yanowitz JL, Börner GV. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 2017; 355:408-411. [PMID: 28059715 DOI: 10.1126/science.aaf4778] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 09/12/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
During meiosis, paired homologous chromosomes (homologs) become linked via the synaptonemal complex (SC) and crossovers. Crossovers mediate homolog segregation and arise from self-inflicted double-strand breaks (DSBs). Here, we identified a role for the proteasome, the multisubunit protease that degrades proteins in the nucleus and cytoplasm, in homolog juxtaposition and crossing over. Without proteasome function, homologs failed to pair and instead remained associated with nonhomologous chromosomes. Although dispensable for noncrossover formation, a functional proteasome was required for a coordinated transition that entails SC assembly between longitudinally organized chromosome axes and stable strand exchange of crossover-designated DSBs. Notably, proteolytic core and regulatory proteasome particles were recruited to chromosomes by Zip3, the ortholog of mammalian E3 ligase RNF212, and SC protein Zip1 . We conclude that proteasome functions along meiotic chromosomes are evolutionarily conserved.
Collapse
Affiliation(s)
- Jasvinder S Ahuja
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rima Sandhu
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Rana Mainpal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hanna Henley
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA
| | - Patricia A Hunt
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Valentin Börner
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University (CSU), Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
34
|
Reichman R, Alleva B, Smolikove S. Prophase I: Preparing Chromosomes for Segregation in the Developing Oocyte. Results Probl Cell Differ 2017; 59:125-173. [PMID: 28247048 DOI: 10.1007/978-3-319-44820-6_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Formation of an oocyte involves a specialized cell division termed meiosis. In meiotic prophase I (the initial stage of meiosis), chromosomes undergo elaborate events to ensure the proper segregation of their chromosomes into gametes. These events include processes leading to the formation of a crossover that, along with sister chromatid cohesion, forms the physical link between homologous chromosomes. Crossovers are formed as an outcome of recombination. This process initiates with programmed double-strand breaks that are repaired through the use of homologous chromosomes as a repair template. The accurate repair to form crossovers takes place in the context of the synaptonemal complex, a protein complex that links homologous chromosomes in meiotic prophase I. To allow proper execution of meiotic prophase I events, signaling processes connect different steps in recombination and synapsis. The events occurring in meiotic prophase I are a prerequisite for proper chromosome segregation in the meiotic divisions. When these processes go awry, chromosomes missegregate. These meiotic errors are thought to increase with aging and may contribute to the increase in aneuploidy observed in advanced maternal age female oocytes.
Collapse
Affiliation(s)
- Rachel Reichman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Alleva
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarit Smolikove
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
35
|
McClendon TB, Mainpal R, Amrit FRG, Krause MW, Ghazi A, Yanowitz JL. X Chromosome Crossover Formation and Genome Stability in Caenorhabditis elegans Are Independently Regulated by xnd-1. G3 (BETHESDA, MD.) 2016; 6:3913-3925. [PMID: 27678523 PMCID: PMC5144962 DOI: 10.1534/g3.116.035725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
The germ line efficiently combats numerous genotoxic insults to ensure the high fidelity propagation of unaltered genomic information across generations. Yet, germ cells in most metazoans also intentionally create double-strand breaks (DSBs) to promote DNA exchange between parental chromosomes, a process known as crossing over. Homologous recombination is employed in the repair of both genotoxic lesions and programmed DSBs, and many of the core DNA repair proteins function in both processes. In addition, DNA repair efficiency and crossover (CO) distribution are both influenced by local and global differences in chromatin structure, yet the interplay between chromatin structure, genome integrity, and meiotic fidelity is still poorly understood. We have used the xnd-1 mutant of Caenorhabditis elegans to explore the relationship between genome integrity and crossover formation. Known for its role in ensuring X chromosome CO formation and germ line development, we show that xnd-1 also regulates genome stability. xnd-1 mutants exhibited a mortal germ line, high embryonic lethality, high incidence of males, and sensitivity to ionizing radiation. We discovered that a hypomorphic allele of mys-1 suppressed these genome instability phenotypes of xnd-1, but did not suppress the CO defects, suggesting it serves as a separation-of-function allele. mys-1 encodes a histone acetyltransferase, whose homolog Tip60 acetylates H2AK5, a histone mark associated with transcriptional activation that is increased in xnd-1 mutant germ lines, raising the possibility that thresholds of H2AK5ac may differentially influence distinct germ line repair events. We also show that xnd-1 regulated him-5 transcriptionally, independently of mys-1, and that ectopic expression of him-5 suppressed the CO defects of xnd-1 Our work provides xnd-1 as a model in which to study the link between chromatin factors, gene expression, and genome stability.
Collapse
Affiliation(s)
- T Brooke McClendon
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pennsylvania
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Services University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Rana Mainpal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Services University of Pittsburgh School of Medicine, Pennsylvania 15213
| | - Francis R G Amrit
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pennsylvania 15224
| | - Michael W Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892
| | - Arjumand Ghazi
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pennsylvania 15224
| | - Judith L Yanowitz
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pennsylvania
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Services University of Pittsburgh School of Medicine, Pennsylvania 15213
| |
Collapse
|
36
|
A Surveillance System Ensures Crossover Formation in C. elegans. Curr Biol 2016; 26:2873-2884. [PMID: 27720619 DOI: 10.1016/j.cub.2016.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022]
Abstract
Crossover (CO) recombination creates a physical connection between homologs that promotes their proper segregation at meiosis I (MI). Failure to realize an obligate CO causes homologs to attach independently to the MI spindle and separate randomly, leading to nondisjunction. However, mechanisms that determine whether homolog pairs have received crossovers remain mysterious. Here we describe a surveillance system in C. elegans that monitors recombination intermediates and couples their formation to meiotic progression. Recombination intermediates are required to activate the system, which then delays further processing if crossover precursors are lacking on even one chromosome. The synaptonemal complex, a specialized, proteinaceous structure connecting homologous chromosomes, is stabilized in cis on chromosomes that receive a crossover and is destabilized on those lacking crossovers, a process that is dependent on the function of the polo-like kinase PLK-2. These results reveal a new layer of communication between crossover-committed intermediates and the synaptonemal complex that functions as a cis-acting, obligate, crossover-counting mechanism.
Collapse
|
37
|
Fine-Scale Crossover Rate Variation on the Caenorhabditis elegans X Chromosome. G3-GENES GENOMES GENETICS 2016; 6:1767-76. [PMID: 27172189 PMCID: PMC4889672 DOI: 10.1534/g3.116.028001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic recombination creates genotypic diversity within species. Recombination rates vary substantially across taxa, and the distribution of crossovers can differ significantly among populations and between sexes. Crossover locations within species have been found to vary by chromosome and by position within chromosomes, where most crossover events occur in small regions known as recombination hotspots. However, several species appear to lack hotspots despite significant crossover heterogeneity. The nematode Caenorhabditis elegans was previously found to have the least fine-scale variation in crossover distribution among organisms studied to date. It is unclear whether this pattern extends to the X chromosome given its unique compaction through the pachytene stage of meiotic prophase in hermaphrodites. We generated 798 recombinant nested near-isogenic lines (NILs) with crossovers in a 1.41 Mb region on the left arm of the X chromosome to determine if its recombination landscape is similar to that of the autosomes. We find that the fine-scale variation in crossover rate is lower than that of other model species, and is inconsistent with hotspots. The relationship of genomic features to crossover rate is dependent on scale, with GC content, histone modifications, and nucleosome occupancy being negatively associated with crossovers. We also find that the abundances of 4- to 6-bp DNA motifs significantly explain crossover density. These results are consistent with recombination occurring at unevenly distributed sites of open chromatin.
Collapse
|
38
|
The p53-like Protein CEP-1 Is Required for Meiotic Fidelity in C. elegans. Curr Biol 2016; 26:1148-58. [PMID: 27151662 DOI: 10.1016/j.cub.2016.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
The passage of genetic information during meiosis requires exceptionally high fidelity to prevent birth defects and infertility. Accurate chromosome segregation during the first meiotic division relies on the formation of crossovers between homologous chromosomes and a series of precisely controlled steps to exchange genetic information. Many studies have hinted at a role for p53 in meiosis, but how it functions in this process is poorly understood. Here, we have identified a cooperative role for the p53-like protein CEP-1 and the meiotic protein HIM-5 in maintaining genome stability in the C. elegans germline. Loss of cep-1 and him-5 results in synthetic lethality that is dependent on the upstream DNA damage checkpoint but independent of the downstream core apoptotic pathway. We show that this synthetic lethality is the result of defective crossover formation due to reduced SPO-11-dependent double-strand breaks. Using cep-1 separation-of-function alleles, we show that cep-1 and him-5 also suppress inappropriate activation of the nonhomologous end joining (NHEJ) pathway. This work reveals an ancestral function for the p53 family in ensuring the fidelity of meiosis and establishes CEP-1 as a critical determinant of repair pathway choice.
Collapse
|
39
|
Mainpal R, Yanowitz JL. A twist of fate: How a meiotic protein is providing new perspectives on germ cell development. WORM 2016; 5:e1175259. [PMID: 27383565 PMCID: PMC4911978 DOI: 10.1080/21624054.2016.1175259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
The molecular pathways that govern how germ line fate is acquired is an area of intense investigation that has major implications for the development of assisted reproductive technologies, infertility interventions, and treatment of germ cell cancers. Transcriptional repression has emerged as a primary mechanism to ensure suppression of somatic growth programs in primordial germ cells. In this commentary, we address how xnd-1 illuminates our understanding of transcriptional repression and how it is coordinated with the germ cell differentiation program. We recently identified xnd-1 as a novel, early determinant of germ cell fates in Caenorhabditis elegans. Our study revealed that XND-1 is maternally deposited into early embryos where it is selectively enriched in the germ lineage and then exclusively found on chromatin in the germ lineage throughout development and into adulthood when it dissociates from chromosomes in late pachytene. This localization is consistent with a range of interesting germ cell defects that suggest xnd-1 is a pivotal determinant of germ cell characteristics. Loss of xnd-1 results in a unique "one PGC (primordial germ cell)" phenotype due to G2 cell cycle arrest of the germline precursor blastomere, P4, which predisposes the animal and its progeny for reduced fecundity. The sterility in xnd-1 mutants is correlated with an increase in the transcriptional activation-associated histone modification, dimethylation of histone H3 lysine 4 (H3K4me2), and aberrant expression of somatic transgenes but overlapping roles with nos-2 and nos-1 suggest that transcriptional repression is achieved by multiple redundant mechanisms.
Collapse
Affiliation(s)
- Rana Mainpal
- Department of Obstetrics, Magee-Womens Research Institute, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith L. Yanowitz
- Department of Obstetrics, Magee-Womens Research Institute, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Semin Cell Dev Biol 2016; 54:106-16. [PMID: 27013114 DOI: 10.1016/j.semcdb.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs.
Collapse
|
41
|
Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans. Genetics 2016; 203:133-45. [PMID: 26936927 DOI: 10.1534/genetics.115.185827] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/19/2016] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination (HR) repairs cytotoxic DNA double-strand breaks (DSBs) with high fidelity. Deficiencies in HR result in genome instability. A key early step in HR is the search for and invasion of a homologous DNA template by a single-stranded RAD-51 nucleoprotein filament. The Shu complex, composed of a SWIM domain-containing protein and its interacting RAD51 paralogs, promotes HR by regulating RAD51 filament dynamics. Despite Shu complex orthologs throughout eukaryotes, our understanding of its function has been most extensively characterized in budding yeast. Evolutionary analysis of the SWIM domain identified Caenorhabditis elegans sws-1 as a putative homolog of the yeast Shu complex member Shu2. Using a CRISPR-induced nonsense allele of sws-1, we show that sws-1 promotes HR in mitotic and meiotic nuclei. sws-1 mutants exhibit sensitivity to DSB-inducing agents and fail to form mitotic RAD-51 foci following treatment with camptothecin. Phenotypic similarities between sws-1 and the two RAD-51 paralogs rfs-1 and rip-1 suggest that they function together. Indeed, we detect direct interaction between SWS-1 and RIP-1 by yeast two-hybrid assay that is mediated by the SWIM domain in SWS-1 and the Walker B motif in RIP-1 Furthermore, RIP-1 bridges an interaction between SWS-1 and RFS-1, suggesting that RIP-1 facilitates complex formation with SWS-1 and RFS-1 We propose that SWS-1, RIP-1, and RFS-1 compose a C. elegans Shu complex. Our work provides a new model for studying Shu complex disruption in the context of a multicellular organism that has important implications as to why mutations in the human RAD51 paralogs are associated with genome instability.
Collapse
|
42
|
Hong Y, Sonneville R, Agostinho A, Meier B, Wang B, Blow JJ, Gartner A. The SMC-5/6 Complex and the HIM-6 (BLM) Helicase Synergistically Promote Meiotic Recombination Intermediate Processing and Chromosome Maturation during Caenorhabditis elegans Meiosis. PLoS Genet 2016; 12:e1005872. [PMID: 27010650 PMCID: PMC4807058 DOI: 10.1371/journal.pgen.1005872] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Meiotic recombination is essential for the repair of programmed double strand breaks (DSBs) to generate crossovers (COs) during meiosis. The efficient processing of meiotic recombination intermediates not only needs various resolvases but also requires proper meiotic chromosome structure. The Smc5/6 complex belongs to the structural maintenance of chromosome (SMC) family and is closely related to cohesin and condensin. Although the Smc5/6 complex has been implicated in the processing of recombination intermediates during meiosis, it is not known how Smc5/6 controls meiotic DSB repair. Here, using Caenorhabditis elegans we show that the SMC-5/6 complex acts synergistically with HIM-6, an ortholog of the human Bloom syndrome helicase (BLM) during meiotic recombination. The concerted action of the SMC-5/6 complex and HIM-6 is important for processing recombination intermediates, CO regulation and bivalent maturation. Careful examination of meiotic chromosomal morphology reveals an accumulation of inter-chromosomal bridges in smc-5; him-6 double mutants, leading to compromised chromosome segregation during meiotic cell divisions. Interestingly, we found that the lethality of smc-5; him-6 can be rescued by loss of the conserved BRCA1 ortholog BRC-1. Furthermore, the combined deletion of smc-5 and him-6 leads to an irregular distribution of condensin and to chromosome decondensation defects reminiscent of condensin depletion. Lethality conferred by condensin depletion can also be rescued by BRC-1 depletion. Our results suggest that SMC-5/6 and HIM-6 can synergistically regulate recombination intermediate metabolism and suppress ectopic recombination by controlling chromosome architecture during meiosis.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Remi Sonneville
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Ana Agostinho
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Bettina Meier
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Bin Wang
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
43
|
Mainpal R, Nance J, Yanowitz JL. A germ cell determinant reveals parallel pathways for germ line development in Caenorhabditis elegans. Development 2015; 142:3571-82. [PMID: 26395476 DOI: 10.1242/dev.125732] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/01/2015] [Indexed: 02/01/2023]
Abstract
Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation.
Collapse
Affiliation(s)
- Rana Mainpal
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, NY 10016, USA Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
44
|
Chung G, Rose AM, Petalcorin MIR, Martin JS, Kessler Z, Sanchez-Pulido L, Ponting CP, Yanowitz JL, Boulton SJ. REC-1 and HIM-5 distribute meiotic crossovers and function redundantly in meiotic double-strand break formation in Caenorhabditis elegans. Genes Dev 2015; 29:1969-79. [PMID: 26385965 PMCID: PMC4579353 DOI: 10.1101/gad.266056.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023]
Abstract
The Caenorhabditis elegans gene rec-1 was the first genetic locus identified in metazoa to affect the distribution of meiotic crossovers along the chromosome. We report that rec-1 encodes a distant paralog of HIM-5, which was discovered by whole-genome sequencing and confirmed by multiple genome-edited alleles. REC-1 is phosphorylated by cyclin-dependent kinase (CDK) in vitro, and mutation of the CDK consensus sites in REC-1 compromises meiotic crossover distribution in vivo. Unexpectedly, rec-1; him-5 double mutants are synthetic-lethal due to a defect in meiotic double-strand break formation. Thus, we uncovered an unexpected robustness to meiotic DSB formation and crossover positioning that is executed by HIM-5 and REC-1 and regulated by phosphorylation.
Collapse
Affiliation(s)
- George Chung
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark I R Petalcorin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Julie S Martin
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| | - Zebulin Kessler
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Luis Sanchez-Pulido
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Chris P Ponting
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Simon J Boulton
- DNA Damage Response Laboratory, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom; Clare Hall Laboratories, The Francis Crick Institute, South Mimms EN3 3LD, United Kingdom
| |
Collapse
|
45
|
Butuči M, Williams AB, Wong MM, Kramer B, Michael WM. Zygotic Genome Activation Triggers Chromosome Damage and Checkpoint Signaling in C. elegans Primordial Germ Cells. Dev Cell 2015; 34:85-95. [PMID: 26073019 DOI: 10.1016/j.devcel.2015.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/17/2015] [Accepted: 04/24/2015] [Indexed: 01/05/2023]
Abstract
Recent findings have identified highly transcribed genes as a source of genome instability; however, the degree to which large-scale shifts in transcriptional activity cause DNA damage was not known. One example of a large-scale shift in transcriptional activity occurs during development, when maternal regulators are destroyed and zygotic genome activation (ZGA) occurs. Here, we show that ZGA triggers widespread chromosome damage in the primordial germ cells of the nematode C. elegans. We show that ZGA-induced DNA damage activates a checkpoint response, the damage is repaired by factors required for inter-sister homologous recombination, and topoisomerase II plays a role in generating the damage. These findings identify ZGA as a source of intrinsic genome instability in the germline and suggest that genome destabilization may be a general consequence of extreme shifts in cellular transcriptional load.
Collapse
Affiliation(s)
- Melina Butuči
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Ashley B Williams
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Matthew M Wong
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Brendan Kramer
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - W Matthew Michael
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
46
|
Székvölgyi L, Ohta K, Nicolas A. Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling. Cold Spring Harb Perspect Biol 2015; 7:7/5/a016527. [PMID: 25934010 DOI: 10.1101/cshperspect.a016527] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs) catalyzed by the evolutionary conserved Spo11 protein and accessory factors. DSBs are nonrandomly distributed along the chromosomes displaying a significant (~400-fold) variation of frequencies, which ultimately establishes local and long-range "hot" and "cold" domains for recombination initiation. This remarkable patterning is set up within the chromatin context, involving multiple layers of biochemical activity. Predisposed chromatin accessibility, but also a range of transcription factors, chromatin remodelers, and histone modifiers likely promote local recruitment of DSB proteins, as well as mobilization, sliding, and eviction of nucleosomes before and after the occurrence of meiotic DSBs. Here, we assess our understanding of meiotic DSB formation and methods to change its patterning. We also synthesize current heterogeneous knowledge on how histone modifications and chromatin remodeling may impact this decisive step in meiotic recombination.
Collapse
Affiliation(s)
- Lóránt Székvölgyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Kunihiro Ohta
- Department of Life Sciences, The University of Tokyo, 113-8654 Tokyo, Japan
| | - Alain Nicolas
- Institut Curie Centre de Recherche, UMR3244 CNRS, Université Pierre et Marie Curie, 75248 Paris CEDEX 05, France
| |
Collapse
|
47
|
Mézard C, Jahns MT, Grelon M. Where to cross? New insights into the location of meiotic crossovers. Trends Genet 2015; 31:393-401. [PMID: 25907025 DOI: 10.1016/j.tig.2015.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
During meiosis, the repair of induced DNA double-strand breaks (DSBs) produces crossovers (COs). COs are essential for the proper segregation of homologous chromosomes at the first meiotic division. In addition, COs generate new combinations of genetic markers in the progeny. CO localization is tightly controlled, giving rise to patterns that are specific to each species. The underlying mechanisms governing CO location, however, are poorly understood. Recent studies highlight the complexity of the multiple interconnected factors involved in shaping the CO landscape and demonstrate that the mechanisms that control CO distribution can vary from species to species. Here, we provide an overview of the recent findings related to CO distribution and discuss their impact on our understanding of the control of meiotic recombination.
Collapse
Affiliation(s)
- Christine Mézard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France.
| |
Collapse
|
48
|
Gao J, Kim HM, Elia AE, Elledge SJ, Colaiácovo MP. NatB domain-containing CRA-1 antagonizes hydrolase ACER-1 linking acetyl-CoA metabolism to the initiation of recombination during C. elegans meiosis. PLoS Genet 2015; 11:e1005029. [PMID: 25768301 PMCID: PMC4359108 DOI: 10.1371/journal.pgen.1005029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/27/2015] [Indexed: 11/18/2022] Open
Abstract
The formation of DNA double-strand breaks (DSBs) must take place during meiosis to ensure the formation of crossovers, which are required for accurate chromosome segregation, therefore avoiding aneuploidy. However, DSB formation must be tightly regulated to maintain genomic integrity. How this regulation operates in the context of different chromatin architectures and accessibility, and how it is linked to metabolic pathways, is not understood. We show here that global histone acetylation levels undergo changes throughout meiotic progression. Moreover, perturbations to global histone acetylation levels are accompanied by changes in the frequency of DSB formation in C. elegans. We provide evidence that the regulation of histone acetylation requires CRA-1, a NatB domain-containing protein homologous to human NAA25, which controls the levels of acetyl-Coenzyme A (acetyl-CoA) by antagonizing ACER-1, a previously unknown and conserved acetyl-CoA hydrolase. CRA-1 is in turn negatively regulated by XND-1, an AT-hook containing protein. We propose that this newly defined protein network links acetyl-CoA metabolism to meiotic DSB formation via modulation of global histone acetylation. Achieving accurate chromosome segregation is a critical outcome for any cell division process. Programmed DNA double-strand break formation is a central mechanism set in place to promote faithful chromosome segregation during meiosis. A subset of these DSBs is repaired as crossovers via reciprocal exchange of genetic information between homologous chromosomes resulting in physical attachments (chiasmata) between homologs, which ensure proper chromosome alignment at the metaphase plate at meiosis I, and also promote genetic diversity. How this regulation operates in the context of different chromatin architectures and accessibility, and how it is linked to metabolic pathways, is not understood. In this study, we found that CRA-1, a NatB domain-containing protein, promotes histone acetylation by maintaining the levels of acetyl-Coenzyme A (acetyl-CoA) through antagonizing ACER-1, a previously unknown and conserved acetyl-CoA hydrolase. CRA-1 is in turn negatively regulated by XND-1, an AT-hook containing protein. We leveraged this discovery to find a connection between the levels of acetyl-CoA, histone acetylation and DSB formation. We identified a novel protein network that links the regulation of DSB formation to the modulation of global levels of histone acetylation, and revealed a link between metabolism and the regulation of DSB formation.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Andrew E. Elia
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen J. Elledge
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Monica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Samson M, Jow MM, Wong CCL, Fitzpatrick C, Aslanian A, Saucedo I, Estrada R, Ito T, Park SKR, Yates JR, Chu DS. The specification and global reprogramming of histone epigenetic marks during gamete formation and early embryo development in C. elegans. PLoS Genet 2014; 10:e1004588. [PMID: 25299455 PMCID: PMC4191889 DOI: 10.1371/journal.pgen.1004588] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C. elegans, a species that lacks conserved DNA methylation pathways. The fate of these histone marks was then tracked using immunostaining. Proteomic analysis found that sperm harbor ∼2.4 fold lower levels of histone PTMs than embryos and revealed differences in classes of PTMs between sperm and embryos. Sperm chromatin repackaging involves the incorporation of the sperm-specific histone H2A variant HTAS-1, a widespread erasure of histone acetylation, and the retention of histone methylation at sites that mark the transcriptional history of chromatin domains during spermatogenesis. After fertilization, we show HTAS-1 and 6 histone PTM marks distinguish sperm and oocyte chromatin in the new embryo and characterize distinct paternal and maternal histone remodeling events during the oocyte-to-embryo transition. These include the exchange of histone H2A that is marked by ubiquitination, retention of HTAS-1, removal of the H2A variant HTZ-1, and differential reprogramming of histone PTMs. This work identifies novel and conserved features of paternal chromatin that are specified during spermatogenesis and processed in the embryo. Furthermore, our results show that different species, even those with diverged DNA packaging and imprinting strategies, use conserved histone modification and removal mechanisms to reprogram epigenetic information.
Collapse
Affiliation(s)
- Mark Samson
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Margaret M. Jow
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Catherine C. L. Wong
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Division, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai, China
| | - Colin Fitzpatrick
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron Aslanian
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Israel Saucedo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo Estrada
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Sung-kyu Robin Park
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Diana S. Chu
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
50
|
de Massy B. Initiation of meiotic recombination: how and where? Conservation and specificities among eukaryotes. Annu Rev Genet 2014; 47:563-99. [PMID: 24050176 DOI: 10.1146/annurev-genet-110711-155423] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Meiotic recombination is essential for fertility in most sexually reproducing species. This process also creates new combinations of alleles and has important consequences for genome evolution. Meiotic recombination is initiated by the formation of DNA double-strand breaks (DSBs), which are repaired by homologous recombination. DSBs are catalyzed by the evolutionarily conserved SPO11 protein, assisted by several other factors. Some of them are absolutely required, whereas others are needed only for full levels of DSB formation and may participate in the regulation of DSB timing and frequency as well as the coordination between DSB formation and repair. The sites where DSBs occur are not randomly distributed in the genome, and remarkably distinct strategies have emerged to control their localization in different species. Here, I review the recent advances in the components required for DSB formation and localization in the various model organisms in which these studies have been performed.
Collapse
Affiliation(s)
- Bernard de Massy
- Institute of Human Genetics, Centre National de la Recherché Scientifique, UPR1142, 34396 Montpellier, France;
| |
Collapse
|