1
|
Haase MAB, Steenwyk JL, Boeke JD. Gene loss and cis-regulatory novelty shaped core histone gene evolution in the apiculate yeast Hanseniaspora uvarum. Genetics 2024; 226:iyae008. [PMID: 38271560 PMCID: PMC10917516 DOI: 10.1093/genetics/iyae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Core histone genes display a remarkable diversity of cis-regulatory mechanisms despite their protein sequence conservation. However, the dynamics and significance of this regulatory turnover are not well understood. Here, we describe the evolutionary history of core histone gene regulation across 400 million years in budding yeasts. We find that canonical mode of core histone regulation-mediated by the trans-regulator Spt10-is ancient, likely emerging between 320 and 380 million years ago and is fixed in the majority of extant species. Unexpectedly, we uncovered the emergence of a novel core histone regulatory mode in the Hanseniaspora genus, from its fast-evolving lineage, which coincided with the loss of 1 copy of its paralogous core histone genes. We show that the ancestral Spt10 histone regulatory mode was replaced, via cis-regulatory changes in the histone control regions, by a derived Mcm1 histone regulatory mode and that this rewiring event occurred with no changes to the trans-regulator, Mcm1, itself. Finally, we studied the growth dynamics of the cell cycle and histone synthesis in genetically modified Hanseniaspora uvarum. We find that H. uvarum divides rapidly, with most cells completing a cell cycle within 60 minutes. Interestingly, we observed that the regulatory coupling between histone and DNA synthesis was lost in H. uvarum. Our results demonstrate that core histone gene regulation was fixed anciently in budding yeasts, however it has greatly diverged in the Hanseniaspora fast-evolving lineage.
Collapse
Affiliation(s)
- Max A B Haase
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, 435 E 30th St, New York, NY 10016, USA
| |
Collapse
|
2
|
Del Frate F, Garber ME, Johnson AD. Evolution of a new form of haploid-specific gene regulation appearing in a limited clade of ascomycete yeast species. Genetics 2023; 224:iyad053. [PMID: 37119800 PMCID: PMC10484167 DOI: 10.1093/genetics/iyad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/09/2023] [Accepted: 03/13/2023] [Indexed: 05/01/2023] Open
Abstract
Over evolutionary timescales, the logic and pattern of cell-type specific gene expression can remain constant, yet the molecular mechanisms underlying such regulation can drift between alternative forms. Here, we document a new example of this principle in the regulation of the haploid-specific genes in a small clade of fungal species. For most ascomycete fungal species, transcription of these genes is repressed in the a/α cell type by a heterodimer of two homeodomain proteins, Mata1 and Matα2. We show that in the species Lachancea kluyveri, most of the haploid-specific genes are regulated in this way, but repression of one haploid-specific gene (GPA1) requires, in addition to Mata1 and Matα2, a third regulatory protein, Mcm1. Model building, based on x-ray crystal structures of the three proteins, rationalizes the requirement for all three proteins: no single pair of the proteins is optimally arranged, and we show that no single pair can bring about repression. This case study exemplifies the idea that the energy of DNA binding can be "shared out" in different ways and can result in different DNA-binding solutions across different genes-while maintaining the same overall pattern of gene expression.
Collapse
Affiliation(s)
- Francesca Del Frate
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94102, USA
| | - Megan E Garber
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94102, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94102, USA
| |
Collapse
|
3
|
Mating-Type Switching in Budding Yeasts, from Flip/Flop Inversion to Cassette Mechanisms. Microbiol Mol Biol Rev 2022; 86:e0000721. [PMID: 35195440 PMCID: PMC8941940 DOI: 10.1128/mmbr.00007-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mating-type switching is a natural but unusual genetic control process that regulates cell identity in ascomycete yeasts. It involves physically replacing one small piece of genomic DNA by another, resulting in replacement of the master regulatory genes in the mating pathway and hence a switch of cell type and mating behavior. In this review, we concentrate on recent progress that has been made on understanding the origins and evolution of mating-type switching systems in budding yeasts (subphylum Saccharomycotina). Because of the unusual nature and the complexity of the mechanism in Saccharomyces cerevisiae, mating-type switching was assumed until recently to have originated only once or twice during yeast evolution. However, comparative genomics analysis now shows that switching mechanisms arose many times independently-at least 11 times in budding yeasts and once in fission yeasts-a dramatic example of convergent evolution. Most of these lineages switch mating types by a flip/flop mechanism that inverts a section of a chromosome and is simpler than the well-characterized 3-locus cassette mechanism (MAT/HML/HMR) used by S. cerevisiae. Mating-type switching (secondary homothallism) is one of the two possible mechanisms by which a yeast species can become self-fertile. The other mechanism (primary homothallism) has also emerged independently in multiple evolutionary lineages of budding yeasts, indicating that homothallism has been favored strongly by natural selection. Recent work shows that HO endonuclease, which makes the double-strand DNA break that initiates switching at the S. cerevisiae MAT locus, evolved from an unusual mobile genetic element that originally targeted a glycolytic gene, FBA1.
Collapse
|
4
|
Candida albicans MTLa2 regulates the mating response through both the a-factor and α-factor sensing pathways. Fungal Genet Biol 2022; 159:103664. [PMID: 35026387 DOI: 10.1016/j.fgb.2022.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 11/23/2022]
Abstract
The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.
Collapse
|
5
|
Ata Ö, Ergün BG, Fickers P, Heistinger L, Mattanovich D, Rebnegger C, Gasser B. What makes Komagataella phaffii non-conventional? FEMS Yeast Res 2021; 21:6440159. [PMID: 34849756 PMCID: PMC8709784 DOI: 10.1093/femsyr/foab059] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
The important industrial protein production host Komagataella phaffii (syn Pichia pastoris) is classified as a non-conventional yeast. But what exactly makes K. phaffii non-conventional? In this review, we set out to address the main differences to the 'conventional' yeast Saccharomyces cerevisiae, but also pinpoint differences to other non-conventional yeasts used in biotechnology. Apart from its methylotrophic lifestyle, K. phaffii is a Crabtree-negative yeast species. But even within the methylotrophs, K. phaffii possesses distinct regulatory features such as glycerol-repression of the methanol-utilization pathway or the lack of nitrate assimilation. Rewiring of the transcriptional networks regulating carbon (and nitrogen) source utilization clearly contributes to our understanding of genetic events occurring during evolution of yeast species. The mechanisms of mating-type switching and the triggers of morphogenic phenotypes represent further examples for how K. phaffii is distinguished from the model yeast S. cerevisiae. With respect to heterologous protein production, K. phaffii features high secretory capacity but secretes only low amounts of endogenous proteins. Different to S. cerevisiae, the Golgi apparatus of K. phaffii is stacked like in mammals. While it is tempting to speculate that Golgi architecture is correlated to the high secretion levels or the different N-glycan structures observed in K. phaffii, there is recent evidence against this. We conclude that K. phaffii is a yeast with unique features that has a lot of potential to explore both fundamental research questions and industrial applications.
Collapse
Affiliation(s)
- Özge Ata
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Burcu Gündüz Ergün
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium
| | - Lina Heistinger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Innovative Immunotherapeutics, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria
| | - Corinna Rebnegger
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Christian Doppler Laboratory for Growth-Decoupled Protein Production in Yeast, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences Vienna (BOKU), Muthgasse 18, 1190 Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190 Vienna, Austria.,Biotechnology Research Center, Ministry of Agriculture and Forestry, Ankara, Turkey
| |
Collapse
|
6
|
Solieri L, Cassanelli S, Huff F, Barroso L, Branduardi P, Louis EJ, Morrissey JP. Insights on life cycle and cell identity regulatory circuits for unlocking genetic improvement in Zygosaccharomyces and Kluyveromyces yeasts. FEMS Yeast Res 2021; 21:foab058. [PMID: 34791177 PMCID: PMC8673824 DOI: 10.1093/femsyr/foab058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/14/2021] [Indexed: 11/14/2022] Open
Abstract
Evolution has provided a vast diversity of yeasts that play fundamental roles in nature and society. This diversity is not limited to genotypically homogeneous species with natural interspecies hybrids and allodiploids that blur species boundaries frequently isolated. Thus, life cycle and the nature of breeding systems have profound effects on genome variation, shaping heterozygosity, genotype diversity and ploidy level. The apparent enrichment of hybrids in industry-related environments suggests that hybridization provides an adaptive route against stressors and creates interest in developing new hybrids for biotechnological uses. For example, in the Saccharomyces genus where regulatory circuits controlling cell identity, mating competence and meiosis commitment have been extensively studied, this body of knowledge is being used to combine interesting traits into synthetic F1 hybrids, to bypass F1 hybrid sterility and to dissect complex phenotypes by bulk segregant analysis. Although these aspects are less known in other industrially promising yeasts, advances in whole-genome sequencing and analysis are changing this and new insights are being gained, especially in the food-associated genera Zygosaccharomyces and Kluyveromyces. We discuss this new knowledge and highlight how deciphering cell identity circuits in these lineages will contribute significantly to identify the genetic determinants underpinning complex phenotypes and open new avenues for breeding programmes.
Collapse
Affiliation(s)
- Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Franziska Huff
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Liliane Barroso
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy
| | - Edward J Louis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - John P Morrissey
- School of Microbiology, APC Microbiome Ireland, Environmental Research Institute, University College Cork, Cork T12 K8AF, Ireland
| |
Collapse
|
7
|
A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans. Nat Commun 2020; 11:6224. [PMID: 33277479 PMCID: PMC7718266 DOI: 10.1038/s41467-020-20010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor Rme1 is conserved among ascomycetes and regulates meiosis and pseudohyphal growth in Saccharomyces cerevisiae. The genome of the meiosis-defective pathogen Candida albicans encodes an Rme1 homolog that is part of a transcriptional circuitry controlling hyphal growth. Here, we use chromatin immunoprecipitation and genome-wide expression analyses to study a possible role of Rme1 in C. albicans morphogenesis. We find that Rme1 binds upstream and activates the expression of genes that are upregulated during chlamydosporulation, an asexual process leading to formation of large, spherical, thick-walled cells during nutrient starvation. RME1 deletion abolishes chlamydosporulation in three Candida species, whereas its overexpression bypasses the requirement for chlamydosporulation cues and regulators. RME1 expression levels correlate with chlamydosporulation efficiency across clinical isolates. Interestingly, RME1 displays a biphasic pattern of expression, with a first phase independent of Rme1 function and dependent on chlamydospore-inducing cues, and a second phase dependent on Rme1 function and independent of chlamydospore-inducing cues. Our results indicate that Rme1 plays a central role in chlamydospore development in Candida species.
Collapse
|
8
|
Britton CS, Sorrells TR, Johnson AD. Protein-coding changes preceded cis-regulatory gains in a newly evolved transcription circuit. Science 2020; 367:96-100. [PMID: 31896718 DOI: 10.1126/science.aax5217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
Changes in both the coding sequence of transcriptional regulators and in the cis-regulatory sequences recognized by these regulators have been implicated in the evolution of transcriptional circuits. However, little is known about how they evolved in concert. We describe an evolutionary pathway in fungi where a new transcriptional circuit (a-specific gene repression by the homeodomain protein Matα2) evolved by coding changes in this ancient regulator, followed millions of years later by cis-regulatory sequence changes in the genes of its future regulon. By analyzing a group of species that has acquired the coding changes but not the cis-regulatory sites, we show that the coding changes became necessary for the regulator's deeply conserved function, thereby poising the regulator to jump-start formation of the new circuit.
Collapse
Affiliation(s)
- Candace S Britton
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA.,Tetrad Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Trevor R Sorrells
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA.,Tetrad Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Evolution of Distinct Responses to Low NAD + Stress by Rewiring the Sir2 Deacetylase Network in Yeasts. Genetics 2020; 214:855-868. [PMID: 32071196 DOI: 10.1534/genetics.120.303087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Evolutionary adaptation increases the fitness of a species in its environment. It can occur through rewiring of gene regulatory networks, such that an organism responds appropriately to environmental changes. We investigated whether sirtuin deacetylases, which repress transcription and require NAD+ for activity, serve as transcriptional rewiring points that facilitate the evolution of potentially adaptive traits. If so, bringing genes under the control of sirtuins could enable organisms to mount appropriate responses to stresses that decrease NAD+ levels. To explore how the genomic targets of sirtuins shift over evolutionary time, we compared two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, that display differences in cellular metabolism and life cycle timing in response to nutrient availability. We identified sirtuin-regulated genes through a combination of chromatin immunoprecipitation and RNA expression. In both species, regulated genes were associated with NAD+ homeostasis, mating, and sporulation, but the specific genes differed. In addition, regulated genes in K. lactis were associated with other processes, including utilization of nonglucose carbon sources, detoxification of arsenic, and production of the siderophore pulcherrimin. Consistent with the species-restricted regulation of these genes, sirtuin deletion affected relevant phenotypes in K. lactis but not S. cerevisiae Finally, sirtuin-regulated gene sets were depleted for broadly conserved genes, consistent with sirtuins regulating processes restricted to a few species. Taken together, these results are consistent with the notion that sirtuins serve as rewiring points that allow species to evolve distinct responses to low NAD+ stress.
Collapse
|
10
|
Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in Caenorhabditis Endoderm Specification. G3-GENES GENOMES GENETICS 2020; 10:333-356. [PMID: 31740453 PMCID: PMC6945043 DOI: 10.1534/g3.119.400724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene regulatory networks and their evolution are important in the study of animal development. In the nematode, Caenorhabditis elegans, the endoderm (gut) is generated from a single embryonic precursor, E. Gut is specified by the maternal factor SKN-1, which activates the MED → END-1,3 → ELT-2,7 cascade of GATA transcription factors. In this work, genome sequences from over two dozen species within the Caenorhabditis genus are used to identify MED and END-1,3 orthologs. Predictions are validated by comparison of gene structure, protein conservation, and putative cis-regulatory sites. All three factors occur together, but only within the Elegans supergroup, suggesting they originated at its base. The MED factors are the most diverse and exhibit an unexpectedly extensive gene amplification. In contrast, the highly conserved END-1 orthologs are unique in nearly all species and share extended regions of conservation. The END-1,3 proteins share a region upstream of their zinc finger and an unusual amino-terminal poly-serine domain exhibiting high codon bias. Compared with END-1, the END-3 proteins are otherwise less conserved as a group and are typically found as paralogous duplicates. Hence, all three factors are under different evolutionary constraints. Promoter comparisons identify motifs that suggest the SKN-1, MED, and END factors function in a similar gut specification network across the Elegans supergroup that has been conserved for tens of millions of years. A model is proposed to account for the rapid origin of this essential kernel in the gut specification network, by the upstream intercalation of duplicate genes into a simpler ancestral network.
Collapse
|
11
|
Carbon source requirements for mating and mating‐type switching in the methylotrophic yeasts
Ogataea (Hansenula) polymorpha
and
Komagataella phaffii (Pichia pastoris). Yeast 2020; 37:237-245. [DOI: 10.1002/yea.3446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
|
12
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
13
|
Bizzarri M, Cassanelli S, Bartolini L, Pryszcz LP, Dušková M, Sychrová H, Solieri L. Interplay of Chimeric Mating-Type Loci Impairs Fertility Rescue and Accounts for Intra-Strain Variability in Zygosaccharomyces rouxii Interspecies Hybrid ATCC42981. Front Genet 2019; 10:137. [PMID: 30881382 PMCID: PMC6405483 DOI: 10.3389/fgene.2019.00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
The pre-whole genome duplication (WGD) Zygosaccharomyces clade comprises several allodiploid strain/species with industrially interesting traits. The salt-tolerant yeast ATCC42981 is a sterile and allodiploid strain which contains two subgenomes, one of them resembling the haploid parental species Z. rouxii. Recently, different mating-type-like (MTL) loci repertoires were reported for ATCC42981 and the Japanese strain JCM22060, which are considered two stocks of the same strain. MTL reconstruction by direct sequencing approach is challenging due to gene redundancy, structure complexities, and allodiploid nature of ATCC42981. Here, DBG2OLC and MaSuRCA hybrid de novo assemblies of ONT and Illumina reads were combined with in vitro long PCR to definitively solve these incongruences. ATCC42981 exhibits several chimeric MTL loci resulting from reciprocal translocation between parental haplotypes and retains two MATa/MATα expression loci, in contrast to MATα in JCM22060. Consistently to these reconstructions, JCM22060, but not ATCC42981, undergoes mating and meiosis. To ascertain whether the damage of one allele at the MAT locus regains the complete sexual cycle in ATCC42981, we removed the MATα expressed locus by gene deletion. The resulting MATa/- hemizygous mutants did not show any evidence of sporulation, as well as of self- and out-crossing fertility, probably because incomplete silencing at the chimeric HMLα cassette masks the loss of heterozygosity at the MAT locus. We also found that MATα deletion switched off a2 transcription, an activator of a-specific genes in pre-WGD species. These findings suggest that regulatory scheme of cell identity needs to be further investigated in Z. rouxii protoploid yeast.
Collapse
Affiliation(s)
- Melissa Bizzarri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Cassanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Laura Bartolini
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Leszek P. Pryszcz
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Michala Dušková
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
14
|
Liu Q, Onal P, Datta RR, Rogers JM, Schmidt-Ott U, Bulyk ML, Small S, Thornton JW. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. eLife 2018; 7:e34594. [PMID: 30298815 PMCID: PMC6177261 DOI: 10.7554/elife.34594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/28/2018] [Indexed: 12/14/2022] Open
Abstract
The ancient mechanisms that caused developmental gene regulatory networks to diversify among distantly related taxa are not well understood. Here we use ancestral protein reconstruction, biochemical experiments, and developmental assays of transgenic animals carrying reconstructed ancestral genes to investigate how the transcription factor Bicoid (Bcd) evolved its central role in anterior-posterior patterning in flies. We show that most of Bcd's derived functions are attributable to evolutionary changes within its homeodomain (HD) during a phylogenetic interval >140 million years ago. A single substitution from this period (Q50K) accounts almost entirely for the evolution of Bcd's derived DNA specificity in vitro. In transgenic embryos expressing the reconstructed ancestral HD, however, Q50K confers activation of only a few of Bcd's transcriptional targets and yields a very partial rescue of anterior development. Adding a second historical substitution (M54R) confers regulation of additional Bcd targets and further rescues anterior development. These results indicate that two epistatically interacting mutations played a major role in the evolution of Bcd's controlling regulatory role in early development. They also show how ancestral sequence reconstruction can be combined with in vivo characterization of transgenic animals to illuminate the historical mechanisms of developmental evolution.
Collapse
Affiliation(s)
- Qinwen Liu
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
| | - Pinar Onal
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Rhea R Datta
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Julia M Rogers
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Urs Schmidt-Ott
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoUnited States
| | - Martha L Bulyk
- Committee on Higher Degrees in BiophysicsHarvard UniversityCambridgeUnited States
- Division of Genetics, Department of MedicineBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
| | - Stephen Small
- Department of BiologyNew York UniversityNew YorkUnited States
| | - Joseph W Thornton
- Department of Ecology and EvolutionUniversity of ChicagoChicagoUnited States
- Department of Human GeneticsUniversity of ChicagoChicagoUnited States
| |
Collapse
|
15
|
Sorrells TR, Johnson AN, Howard CJ, Britton CS, Fowler KR, Feigerle JT, Weil PA, Johnson AD. Intrinsic cooperativity potentiates parallel cis-regulatory evolution. eLife 2018; 7:37563. [PMID: 30198843 PMCID: PMC6173580 DOI: 10.7554/elife.37563] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Convergent evolutionary events in independent lineages provide an opportunity to understand why evolution favors certain outcomes over others. We studied such a case where a large set of genes-those coding for the ribosomal proteins-gained cis-regulatory sequences for a particular transcription regulator (Mcm1) in independent fungal lineages. We present evidence that these gains occurred because Mcm1 shares a mechanism of transcriptional activation with an ancestral regulator of the ribosomal protein genes, Rap1. Specifically, we show that Mcm1 and Rap1 have the inherent ability to cooperatively activate transcription through contacts with the general transcription factor TFIID. Because the two regulatory proteins share a common interaction partner, the presence of one ancestral cis-regulatory sequence can 'channel' random mutations into functional sites for the second regulator. At a genomic scale, this type of intrinsic cooperativity can account for a pattern of parallel evolution involving the fixation of hundreds of substitutions.
Collapse
Affiliation(s)
- Trevor R Sorrells
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Amanda N Johnson
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Conor J Howard
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Candace S Britton
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Kyle R Fowler
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| | - Jordan T Feigerle
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - P Anthony Weil
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander D Johnson
- Department of Biochemistry and Biophysics, Tetrad Graduate Program, University of California, San Francisco, United States.,Department of Microbiology and Immunology, University of California, San Francisco, United States
| |
Collapse
|
16
|
Mount HO, Revie NM, Todd RT, Anstett K, Collins C, Costanzo M, Boone C, Robbins N, Selmecki A, Cowen LE. Global analysis of genetic circuitry and adaptive mechanisms enabling resistance to the azole antifungal drugs. PLoS Genet 2018; 14:e1007319. [PMID: 29702647 PMCID: PMC5922528 DOI: 10.1371/journal.pgen.1007319] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 12/20/2022] Open
Abstract
Invasive fungal infections caused by the pathogen Candida albicans have transitioned from a rare curiosity to a major cause of human mortality. This is in part due to the emergence of resistance to the limited number of antifungals available to treat fungal infections. Azoles function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. Loss-of-function mutations in the ergosterol biosynthetic gene ERG3 mitigate azole toxicity and enable resistance that depends upon fungal stress responses. Here, we performed a genome-wide synthetic genetic array screen in Saccharomyces cerevisiae to map ERG3 genetic interactors and uncover novel circuitry important for azole resistance. We identified nine genes that enabled erg3-mediated azole resistance in the model yeast and found that only two of these genes had a conserved impact on resistance in C. albicans. Further, we screened a C. albicans homozygous deletion mutant library and identified 13 genes for which deletion enhances azole susceptibility. Two of the genes, RGD1 and PEP8, were also important for azole resistance acquired by diverse mechanisms. We discovered that loss of function of retrograde transport protein Pep8 overwhelms the functional capacity of the stress response regulator calcineurin, thereby abrogating azole resistance. To identify the mechanism through which the GTPase activator protein Rgd1 enables azole resistance, we selected for mutations that restore resistance in strains lacking Rgd1. Whole genome sequencing uncovered parallel adaptive mechanisms involving amplification of both chromosome 7 and a large segment of chromosome 3. Overexpression of a transporter gene on the right portion of chromosome 3, NPR2, was sufficient to enable azole resistance in the absence of Rgd1. Thus, we establish a novel mechanism of adaptation to drug-induced stress, define genetic circuitry underpinning azole resistance, and illustrate divergence in resistance circuitry over evolutionary time. Fungal infections caused by the pathogen Candida albicans pose a serious threat to human health. Treating these infections relies heavily on the azole antifungals, however, resistance to these drugs develops readily demanding novel therapeutic strategies. We performed large-scale systematic screens in both C. albicans and the model yeast Saccharomyces cerevisiae to identify genes that enable azole resistance. Our genome-wide screen in S. cerevisiae identified nine determinants of azole resistance, only two of which were important for resistance in C. albicans. Our screen of C. albicans mutants identified 13 genes for which deletion enhances susceptibility to azoles, including RGD1 and PEP8. We found that loss of Pep8 overwhelms the functional capacity of a key stress response regulator, calcineurin. In contrast, amplification of chromosome 7 and the right portion of chromosome 3 can restore resistance in strains lacking Rgd1, suggesting that Rgd1 may enable azole resistance by inducing genes in these amplified regions. Specifically, overexpression of a gene involved in transport on chromosome 3, NPR2, was sufficient to restore azole resistance in the absence of Rgd1. Thus, we establish novel circuitry important for antifungal drug resistance, and uncover adaptive mechanisms involving genomic plasticity that occur in response to drug induced stress.
Collapse
Affiliation(s)
| | - Nicole M. Revie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Kaitlin Anstett
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cathy Collins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Ortiz-Merino RA, Varela JA, Coughlan AY, Hoshida H, da Silveira WB, Wilde C, Kuijpers NGA, Geertman JM, Wolfe KH, Morrissey JP. Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Front Genet 2018; 9:94. [PMID: 29619042 PMCID: PMC5871668 DOI: 10.3389/fgene.2018.00094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/05/2018] [Indexed: 11/20/2022] Open
Abstract
Kluyveromyces marxianus is traditionally associated with fermented dairy products, but can also be isolated from diverse non-dairy environments. Because of thermotolerance, rapid growth and other traits, many different strains are being developed for food and industrial applications but there is, as yet, little understanding of the genetic diversity or population genetics of this species. K. marxianus shows a high level of phenotypic variation but the only phenotype that has been clearly linked to a genetic polymorphism is lactose utilisation, which is controlled by variation in the LAC12 gene. The genomes of several strains have been sequenced in recent years and, in this study, we sequenced a further nine strains from different origins. Analysis of the Single Nucleotide Polymorphisms (SNPs) in 14 strains was carried out to examine genome structure and genetic diversity. SNP diversity in K. marxianus is relatively high, with up to 3% DNA sequence divergence between alleles. It was found that the isolates include haploid, diploid, and triploid strains, as shown by both SNP analysis and flow cytometry. Diploids and triploids contain long genomic tracts showing loss of heterozygosity (LOH). All six isolates from dairy environments were diploid or triploid, whereas 6 out 7 isolates from non-dairy environment were haploid. This also correlated with the presence of functional LAC12 alleles only in dairy haplotypes. The diploids were hybrids between a non-dairy and a dairy haplotype, whereas triploids included three copies of a dairy haplotype.
Collapse
Affiliation(s)
- Raúl A Ortiz-Merino
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Javier A Varela
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aisling Y Coughlan
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Hisashi Hoshida
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | | | | | | | | | - Kenneth H Wolfe
- School of Medicine, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John P Morrissey
- School of Microbiology, Centre for Synthetic Biology and Biotechnology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
18
|
Hanson SJ, Byrne KP, Wolfe KH. Flip/flop mating-type switching in the methylotrophic yeast Ogataea polymorpha is regulated by an Efg1-Rme1-Ste12 pathway. PLoS Genet 2017; 13:e1007092. [PMID: 29176810 PMCID: PMC5720833 DOI: 10.1371/journal.pgen.1007092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023] Open
Abstract
In haploid cells of Ogataea (Hansenula) polymorpha an environmental signal, nitrogen starvation, induces a reversible change in the structure of a chromosome. This process, mating-type switching, inverts a 19-kb DNA region to place either MATa or MATα genes under centromeric repression of transcription, depending on the orientation of the region. Here, we investigated the genetic pathway that controls switching. We characterized the transcriptomes of haploid and diploid O. polymorpha by RNAseq in rich and nitrogen-deficient media, and found that there are no constitutively a-specific or α-specific genes other than the MAT genes themselves. We mapped a switching defect in a sibling species (O. parapolymorpha strain DL-1) by interspecies bulk segregant analysis to a frameshift in the transcription factor EFG1, which in Candida albicans regulates filamentous growth and white-opaque switching. Gene knockout, overexpression and ChIPseq experiments show that EFG1 regulates RME1, which in turn regulates STE12, to achieve mating-type switching. All three genes are necessary both for switching and for mating. Overexpression of RME1 or STE12 is sufficient to induce switching without a nitrogen depletion signal. The homologous recombination genes RAD51 and RAD17 are also necessary for switching. The pathway controlling switching in O. polymorpha shares no components with the regulation of HO in S. cerevisiae, which does not involve any environmental signal, but it shares some components with mating-type switching in Kluyveromyces lactis and with white-opaque phenotypic switching in C. albicans. The molecular mechanisms of self-fertility (homothallism) vary enormously among fungal species. We previously found that in the yeast Ogataea polymorpha, homothallism is achieved by a novel mating-type switching mechanism that exchanges the locations of MATa and MATα genes between expression and repression contexts. Switching in this species is induced by nitrogen depletion, unlike the analogous process in Saccharomyces cerevisiae. Here, we show that the upstream parts of the genetic pathway controlling the environmental induction of switching in O. polymorpha are the same as the environmental pathway that induces competence for mating in this species.
Collapse
Affiliation(s)
- Sara J. Hanson
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Molecular Biology, Colorado College, Colorado Springs, Colorado, United States of America
- * E-mail:
| | - Kevin P. Byrne
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H. Wolfe
- UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
19
|
Yamamoto K, Tran TNM, Takegawa K, Kaneko Y, Maekawa H. Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha. Sci Rep 2017; 7:16318. [PMID: 29176579 PMCID: PMC5701183 DOI: 10.1038/s41598-017-16284-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/09/2017] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae and its closely related yeasts undergo mating type switching by replacing DNA sequences at the active mating type locus (MAT) with one of two silent mating type cassettes. Recently, a novel mode of mating type switching was reported in methylotrophic yeast, including Ogataea polymorpha, which utilizes chromosomal recombination between inverted-repeat sequences flanking two MAT loci. The inversion is highly regulated and occurs only when two requirements are met: haploidy and nutritional starvation. However, links between this information and the mechanism associated with mating type switching are not understood. Here we investigated the roles of transcription factors involved in yeast sexual development, such as mating type genes and the conserved zinc finger protein Rme1. We found that co-presence of mating type a1 and α2 genes was sufficient to prevent mating type switching, suggesting that ploidy information resides solely in the mating type locus. Additionally, RME1 deletion resulted in a reduced rate of switching, and ectopic expression of O. polymorpha RME1 overrode the requirement for starvation to induce MAT inversion. These results suggested that mating type switching in O. polymorpha is likely regulated by two distinct transcriptional programs that are linked to the ploidy and transmission of the starvation signal.
Collapse
Affiliation(s)
| | - Thi N M Tran
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kaoru Takegawa
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - Hiromi Maekawa
- Graduate School of Engineering, Osaka University, Osaka, Japan. .,Faculty of Agriculture, Kyushu University, Fukuoka, Japan. .,Centre for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
20
|
Abstract
Cell differentiation in yeast species is controlled by a reversible, programmed DNA-rearrangement process called mating-type switching. Switching is achieved by two functionally similar but structurally distinct processes in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. In both species, haploid cells possess one active and two silent copies of the mating-type locus (a three-cassette structure), the active locus is cleaved, and synthesis-dependent strand annealing is used to replace it with a copy of a silent locus encoding the opposite mating-type information. Each species has its own set of components responsible for regulating these processes. In this review, we summarize knowledge about the function and evolution of mating-type switching components in these species, including mechanisms of heterochromatin formation, MAT locus cleavage, donor bias, lineage tracking, and environmental regulation of switching. We compare switching in these well-studied species to others such as Kluyveromyces lactis and the methylotrophic yeasts Ogataea polymorpha and Komagataella phaffii. We focus on some key questions: Which cells switch mating type? What molecular apparatus is required for switching? Where did it come from? And what is the evolutionary purpose of switching?
Collapse
|
21
|
Nocedal I, Mancera E, Johnson AD. Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator. eLife 2017; 6:e23250. [PMID: 28327289 PMCID: PMC5391208 DOI: 10.7554/elife.23250] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/21/2017] [Indexed: 12/15/2022] Open
Abstract
The rewiring of gene regulatory networks can generate phenotypic novelty. It remains an open question, however, how the large number of connections needed to form a novel network arise over evolutionary time. Here, we address this question using the network controlled by the fungal transcription regulator Ndt80. This conserved protein has undergone a dramatic switch in function-from an ancestral role regulating sporulation to a derived role regulating biofilm formation. This switch in function corresponded to a large-scale rewiring of the genes regulated by Ndt80. However, we demonstrate that the Ndt80-target gene connections were undergoing extensive rewiring prior to the switch in Ndt80's regulatory function. We propose that extensive drift in the Ndt80 regulon allowed for the exploration of alternative network structures without a loss of ancestral function, thereby facilitating the formation of a network with a new function.
Collapse
Affiliation(s)
- Isabel Nocedal
- Department of Microbiology and Immunology, University of California, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Eugenio Mancera
- Department of Microbiology and Immunology, University of California, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, United States
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States
| |
Collapse
|
22
|
Reconfiguration of Transcriptional Control of Lysine Biosynthesis in Candida albicans Involves a Central Role for the Gcn4 Transcriptional Activator. mSphere 2016; 1:mSphere00016-15. [PMID: 27303701 PMCID: PMC4863609 DOI: 10.1128/msphere.00016-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/26/2015] [Indexed: 11/23/2022] Open
Abstract
Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14. Evolution of transcriptional control is essential for organisms to cope with diversification into a spectrum of environments, including environments with limited nutrients. Lysine biosynthesis in fungi occurs in eight enzymatic steps. In Saccharomyces cerevisiae, amino acid starvation elicits the induction of LYS gene expression, mediated by the master regulator Gcn4 and the pathway-specific transcriptional regulator Lys14. Here, we have shown that the activation of LYS gene expression in the human fungal pathogen Candida albicans is predominantly controlled by Gcn4 under amino acid starvation conditions. Multiple lines of study showed that the four C. albicans LYS14-like genes have no role in the regulation of lysine biosynthesis. Whereas Gcn4 is dispensable for the growth of S. cerevisiae under lysine deprivation conditions, it is an essential regulator required for the growth of C. albicans under these conditions, as gcn4 deletion caused lysine auxotrophy. Gcn4 is required for the induction of increased LYS2 and LYS9 mRNA but not for the induction of increased LYS4 mRNA. Under lysine or isoleucine-valine deprivation conditions, Gcn4 recruitment to LYS2 and LYS9 promoters was induced in C. albicans. Indeed, in contrast to the S. cerevisiae LYS gene promoters, all LYS gene promoters in C. albicans harbored a Gcn4 binding site but not all harbored the S. cerevisiae Lys14 binding site, indicating the evolutionary divergence of cis-regulatory motifs. Thus, the transcriptional rewiring of the lysine biosynthetic pathway in C. albicans involves not only neofunctionalization of the four LYS14-like genes but the attendant strengthening of control by Gcn4, indicating a coordinated response with a much broader scope for control of amino acid biosynthesis in this human pathogen. IMPORTANCE Microbes evolve rapidly so as to reconfigure their gene expression to adapt to the metabolic demands in diverse environmental niches. Here, we explored how conditions of nutrient deprivation regulate lysine biosynthesis in the human fungal pathogen Candida albicans. We show that although both Saccharomyces cerevisiae and C. albicans respond to lysine deprivation by transcriptional upregulation of lysine biosynthesis, the regulatory factors required for this control have been reconfigured in these species. We found that Gcn4 is an essential and direct transcriptional regulator of the expression of lysine biosynthetic genes under lysine starvation conditions in C. albicans. Our results therefore suggest that the regulation of the lysine biosynthetic pathway in Candida clade genomes involves gain of function by the master transcriptional regulator Gcn4, coincident with the neofunctionalization of the S. cerevisiae pathway-specific regulator Lys14.
Collapse
|
23
|
Nocedal I, Johnson AD. How Transcription Networks Evolve and Produce Biological Novelty. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:265-74. [PMID: 26657905 DOI: 10.1101/sqb.2015.80.027557] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rewiring of gene regulatory networks over evolutionary timescales produces changes in the patterns of gene expression and is a major source of diversity among species. Yet the molecular mechanisms underlying evolutionary rewiring are only beginning to be understood. Here, we discuss recent analyses in ascomycete yeasts that have revealed several general principles of network rewiring. Specifically, we discuss how transcription networks can maintain a functional output despite changes in mechanism, how specific types of constraints alter available evolutionary trajectories, and how regulatory rewiring can ultimately lead to phenotypic novelty. We also argue that the structure and "logic" of extant gene regulatory networks can largely be accounted for by constraints that shape their evolutionary trajectories.
Collapse
Affiliation(s)
- Isabel Nocedal
- Departments of Microbiology and Immunology and of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Alexander D Johnson
- Departments of Microbiology and Immunology and of Biochemistry and Biophysics, University of California, San Francisco, California 94158
| |
Collapse
|
24
|
Genomics and the making of yeast biodiversity. Curr Opin Genet Dev 2015; 35:100-9. [PMID: 26649756 DOI: 10.1016/j.gde.2015.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies.
Collapse
|
25
|
Sommer RJ, Mayer MG. Toward a Synthesis of Developmental Biology with Evolutionary Theory and Ecology. Annu Rev Cell Dev Biol 2015; 31:453-71. [DOI: 10.1146/annurev-cellbio-102314-112451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ralf J. Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Melanie G. Mayer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
26
|
Roy S, Thompson D. Evolution of regulatory networks in Candida glabrata: learning to live with the human host. FEMS Yeast Res 2015; 15:fov087. [PMID: 26449820 DOI: 10.1093/femsyr/fov087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
The opportunistic human fungal pathogen Candida glabrata is second only to C. albicans as the cause of Candida infections and yet is more closely related to Saccharomyces cerevisiae. Recent advances in functional genomics technologies and computational approaches to decipher regulatory networks, and the comparison of these networks among these and other Ascomycete species, have revealed both unique and shared strategies in adaptation to a human commensal/opportunistic pathogen lifestyle and antifungal drug resistance in C. glabrata. Recently, several C. glabrata sister species in the Nakeseomyces clade representing both human associated (commensal) and environmental isolates have had their genomes sequenced and analyzed. This has paved the way for comparative functional genomics studies to characterize the regulatory networks in these species to identify informative patterns of conservation and divergence linked to phenotypic evolution in the Nakaseomyces lineage.
Collapse
Affiliation(s)
- Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, WI 53715, USA Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Dawn Thompson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
27
|
Abstract
Candida albicans is both a prevalent human commensal and the most commonly encountered human fungal pathogen. This lifestyle is dependent on the ability of the fungus to undergo rapid genetic and epigenetic changes, often in response to specific environmental cues. A parasexual cycle in C. albicans has been defined that includes several unique properties when compared to the related model yeast, Saccharomyces cerevisiae. Novel features include strict regulation of mating via a phenotypic switch, enhanced conjugation within a sexual biofilm, and a program of concerted chromosome loss in place of a conventional meiosis. It is expected that several of these adaptations co-evolved with the ability of C. albicans to colonize the mammalian host.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI 02912, United States.
| |
Collapse
|
28
|
Intersecting transcription networks constrain gene regulatory evolution. Nature 2015; 523:361-5. [PMID: 26153861 PMCID: PMC4531262 DOI: 10.1038/nature14613] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Epistasis—the non-additive interactions between different genetic loci—constrains evolutionary pathways, blocking some and permitting others1–8. For biological networks such as transcription circuits, the nature of these constraints and their consequences are largely unknown. Here we describe the evolutionary pathways of a transcription network that controls the response to mating pheromone in yeasts9. A component of this network, the transcription regulator Ste12, has evolved two different modes of binding to a set of its target genes. In one group of species, Ste12 binds to specific DNA binding sites, while in another lineage it occupies DNA indirectly, relying on a second transcription regulator to recognize DNA. We show, through the construction of various possible evolutionary intermediates, that evolution of the direct mode of DNA binding was not directly accessible to the ancestor. Instead, it was contingent on a lineage-specific change to an overlapping transcription network with a different function, the specification of cell type. These results show that analyzing and predicting the evolution of cis-regulatory regions requires an understanding of their positions in overlapping networks, as this placement constrains the available evolutionary pathways.
Collapse
|
29
|
Metabolic regulation in model ascomycetes--adjusting similar genomes to different lifestyles. Trends Genet 2015; 31:445-53. [PMID: 26051071 DOI: 10.1016/j.tig.2015.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 11/24/2022]
Abstract
The related yeasts Saccharomyces cerevisiae and Candida albicans have similar genomes but very different lifestyles. These fungi have modified transcriptional and post-translational regulatory processes to adapt their similar genomes to the distinct biological requirements of the two yeasts. We review recent findings comparing the differences between these species, highlighting how they have achieved specialized metabolic capacities tailored to their lifestyles despite sharing similar genomes. Studying this transcriptional and post-transcriptional rewiring may improve our ability to interpret phenotype from genotype.
Collapse
|
30
|
Böhm J, Dahlmann TA, Gümüşer H, Kück U. A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 2015; 95:859-74. [PMID: 25521009 PMCID: PMC4357460 DOI: 10.1111/mmi.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 01/07/2023]
Abstract
In heterothallic ascomycetes, mating is controlled by two nonallelic idiomorphs that determine the 'sex' of the corresponding strains. We recently discovered mating-type loci and a sexual life cycle in the penicillin-producing fungus, Penicillium chrysogenum. All industrial penicillin production strains worldwide are derived from a MAT1-1 isolate. No MAT1-2 strain has been investigated in detail until now. Here, we provide the first functional analysis of a MAT1-2 locus from a wild-type strain. Similar to MAT1-1, the MAT1-2 locus has functions beyond sexual development. Unlike MAT1-1, the MAT1-2 locus affects germination and surface properties of conidiospores and controls light-dependent asexual sporulation. Mating of the MAT1-2 wild type with a MAT1-1 high penicillin producer generated sexual spores. We determined the genomic sequences of parental and progeny strains using next-generation sequencing and found evidence for genome-wide recombination. SNP calling showed that derived industrial strains had an uneven distribution of point mutations compared with the wild type. We found evidence for meiotic recombination in all chromosomes. Our results point to a strategy combining the use of mating-type genes, genetics, and next-generation sequencing to optimize conventional strain improvement methods.
Collapse
Affiliation(s)
- Julia Böhm
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Tim A Dahlmann
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Hendrik Gümüşer
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| | - Ulrich Kück
- Christian Doppler Laboratory for Fungal Biotechnology, Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität BochumUniversitätsstr. 150, D-44780, Bochum, Germany
| |
Collapse
|
31
|
De S, Pérez JC. Reshuffling transcriptional circuits: how microorganisms adapt to colonize the human body. Transcription 2014; 5:e976095. [PMID: 25483603 PMCID: PMC4581354 DOI: 10.4161/21541264.2014.976095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Several hundred taxa of microorganisms-including bacteria, archaea and eukaryotes-inhabit the human body. What did it take for these species to become stable residents of humans? Recent reports illustrate how evolutionary changes in transcriptional circuits played a pivotal role in the adaptation of single-celled eukaryotes to colonize mammals.
Collapse
Affiliation(s)
- Sonakshi De
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg, Germany
| | - J Christian Pérez
- Institut für Molekulare Infektionsbiologie; Universität Würzburg; Würzburg, Germany
| |
Collapse
|
32
|
Novel mechanism coupling cyclic AMP-protein kinase A signaling and golgi trafficking via Gyp1 phosphorylation in polarized growth. EUKARYOTIC CELL 2014; 13:1548-56. [PMID: 25326521 DOI: 10.1128/ec.00231-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cyclic AMP (cAMP)-protein kinase A (PKA) signaling activates virulence expression during hyphal development in the fungal human pathogen Candida albicans. The hyphal growth is characterized by Golgi polarization toward the hyphal tips, which is thought to enhance directional vesicle transport. However, how the hypha-induction signal regulates Golgi polarization is unknown. Gyp1, a Golgi-associated protein and the first GTPase-activating protein (GAP) in the Rab GAP cascade, critically regulates membrane trafficking from the endoplasmic reticulum to the plasma membrane. Here, we report a novel pathway by which the cAMP-PKA signaling triggers Golgi polarization during hyphal growth. We demonstrate that Gyp1 plays a crucial role in actin-dependent Golgi polarization. Hyphal induction activates PKA, which in turn phosphorylates Gyp1. Phosphomimetic mutation of four PKA sites identified by mass spectrometry (Gyp1(4E)) caused strong Gyp1 polarization to hyphal tips, whereas nonphosphorylatable mutations (Gyp1(4A)) abolished it. Gyp1(4E) exhibited enhanced association with the actin motor Myo2, while Gyp1(4A) showed the opposite effect, providing a possible mechanism for Golgi polarization. A GAP-dead Gyp1 (Gyp1(R292K)) showed strong polarization similar to that seen with Gyp1(4E), indicating a role for the GAP activity. Mutating the PKA sites on Gyp1 also impaired the recruitment of a late Golgi marker, Sec7. Furthermore, proper PKA phosphorylation and GAP activity of Gyp1 are required for virulence in mice. We propose that the cAMP-PKA signaling directly targets Gyp1 to promote Golgi polarization in the yeast-to-hypha transition, an event crucial for C. albicans infection.
Collapse
|
33
|
Domesticated transposase Kat1 and its fossil imprints induce sexual differentiation in yeast. Proc Natl Acad Sci U S A 2014; 111:15491-6. [PMID: 25313032 DOI: 10.1073/pnas.1406027111] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) have had a major influence on shaping both prokaryotic and eukaryotic genomes, largely through stochastic events following random or near-random insertions. In the mammalian immune system, the recombination activation genes1/2 (Rag1/2) recombinase has evolved from a transposase gene, demonstrating that TEs can be domesticated by the host. In this study, we uncovered a domesticated transposase, Kluyveromyces lactis hobo/Activator/Tam3 (hAT) transposase 1 (Kat1), operating at the fossil imprints of an ancient transposon, that catalyzes the differentiation of cell type. Kat1 induces mating-type switching from mating type a (MATa) to MATα in the yeast K. lactis. Kat1 activates switching by introducing two hairpin-capped DNA double-strand breaks (DSBs) in the MATa1-MATa2 intergenic region, as we demonstrate both in vivo and in vitro. The DSBs stimulate homologous recombination with the cryptic hidden MAT left alpha (HMLα) locus resulting in a switch of the cell type. The sites where Kat1 acts in the MATa locus most likely are ancient remnants of terminal inverted repeats from a long-lost TE. The KAT1 gene is annotated as a pseudogene because it contains two overlapping ORFs. We demonstrate that translation of full-length Kat1 requires a programmed -1 frameshift. The frameshift limited Kat1 activity, because restoring the zero frame causes switching to the MATα genotype. Kat1 also was transcriptionally activated by nutrient limitation via the transcription factor mating type switch 1 (Mts1). A phylogenetic analysis indicated that KAT1 was domesticated specifically in the Kluyveromyces clade of the budding yeasts. We conclude that Kat1 is a highly regulated transposase-derived endonuclease vital for sexual differentiation.
Collapse
|
34
|
Diener C, Schreiber G, Giese W, del Rio G, Schröder A, Klipp E. Yeast mating and image-based quantification of spatial pattern formation. PLoS Comput Biol 2014; 10:e1003690. [PMID: 24967739 PMCID: PMC4072512 DOI: 10.1371/journal.pcbi.1003690] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 05/14/2014] [Indexed: 12/25/2022] Open
Abstract
Communication between cells is a ubiquitous feature of cell populations and is frequently realized by secretion and detection of signaling molecules. Direct visualization of the resulting complex gradients between secreting and receiving cells is often impossible due to the small size of diffusing molecules and because such visualization requires experimental perturbations such as attachment of fluorescent markers, which can change diffusion properties. We designed a method to estimate such extracellular concentration profiles in vivo by using spatiotemporal mathematical models derived from microscopic analysis. This method is applied to populations of thousands of haploid yeast cells during mating in order to quantify the extracellular distributions of the pheromone α-factor and the activity of the aspartyl protease Bar1. We demonstrate that Bar1 limits the range of the extracellular pheromone signal and is critical in establishing α-factor concentration gradients, which is crucial for effective mating. Moreover, haploid populations of wild type yeast cells, but not BAR1 deletion strains, create a pheromone pattern in which cells differentially grow and mate, with low pheromone regions where cells continue to bud and regions with higher pheromone levels and gradients where cells conjugate to form diploids. However, this effect seems to be exclusive to high-density cultures. Our results show a new role of Bar1 protease regulating the pheromone distribution within larger populations and not only locally inside an ascus or among few cells. As a consequence, wild type populations have not only higher mating efficiency, but also higher growth rates than mixed MATabar1Δ/MATα cultures. We provide an explanation of how a rapidly diffusing molecule can be exploited by cells to provide spatial information that divides the population into different transcriptional programs and phenotypes. Haploid budding yeast cells cannot actively move to find a mating partner, like some flagellated bacteria do. Instead they must grow a so-called shmoo – a mating projection – precisely into the direction of a potential partner. They communicate with each other by releasing pheromones into their environment, which are sensed by cells of the opposite mating type. This serves the localization of nearby cells and initiates growth arrest and mating. Paradoxically, yeast cells also secrete the protease Bar1 that destroys pheromones. To visualize the resulting pheromone distribution and understand the effect on mating efficiency, we combined fluorescence imaging and mathematical modeling. We observed that the controlled destruction of pheromones by the yeast cells is beneficial to communication since it causes relatively higher pheromone concentrations in areas where cells are dense and vanishing pheromone concentrations elsewhere. This allows the population to maintain two different cellular behaviors at the same time, i.e. mating and continued growth, a behavior which disappears when we genetically delete the gene for the pheromone-destroying protein.
Collapse
Affiliation(s)
- Christian Diener
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N Ciudad Universitaria, México D.F, México
| | | | - Wolfgang Giese
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriel del Rio
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior S/N Ciudad Universitaria, México D.F, México
| | - Andreas Schröder
- Institut für Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Edda Klipp
- Theoretische Biophysik, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Zarin T, Moses AM. Insights into molecular evolution from yeast genomics. Yeast 2014; 31:233-41. [PMID: 24760744 DOI: 10.1002/yea.3018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 12/13/2022] Open
Abstract
Enabled by comparative genomics, yeasts have increasingly developed into a powerful model system for molecular evolution. Here we survey several areas in which yeast studies have made important contributions, including regulatory evolution, gene duplication and divergence, evolution of gene order and evolution of complexity. In each area we highlight key studies and findings based on techniques ranging from statistical analysis of large datasets to direct laboratory measurements of fitness. Future work will combine traditional evolutionary genetics analysis and experimental evolution with tools from systems biology to yield mechanistic insight into complex phenotypes.
Collapse
Affiliation(s)
- Taraneh Zarin
- Department of Cell and Systems Biology, University of Toronto, ON, Canada
| | | |
Collapse
|
36
|
Todd RB, Zhou M, Ohm RA, Leeggangers HACF, Visser L, de Vries RP. Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics 2014; 15:214. [PMID: 24650355 PMCID: PMC3998117 DOI: 10.1186/1471-2164-15-214] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
Background Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla.
Collapse
Affiliation(s)
- Richard B Todd
- Department of Plant Pathology, Kansas State University, 4024 Throckmorton Plant Sciences Center, Manhattan, KS 66506, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, Mattanovich D. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response. Biotechnol J 2014; 9:511-25. [PMID: 24323948 PMCID: PMC4162992 DOI: 10.1002/biot.201300334] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/21/2013] [Accepted: 12/06/2013] [Indexed: 12/12/2022]
Abstract
Protein production in yeasts is related to the specific growth rate μ. To elucidate on this correlation, we studied the transcriptome of Pichia pastoris at different specific growth rates by cultivating a strain secreting human serum albumin at μ = 0.015 to 0.15 h(-1) in glucose-limited chemostats. Genome-wide regulation revealed that translation-related as well as mitochondrial genes were upregulated with increasing μ, while autophagy and other proteolytic processes, carbon source-responsive genes and other targets of the TOR pathway as well as many transcriptional regulators were downregulated at higher μ. Mating and sporulation genes were most active at intermediate μ of 0.05 and 0.075 h(-1) . At very slow growth (μ = 0.015 h(-1) ) gene regulation differs significantly, affecting many transporters and glucose sensing. Analysis of a subset of genes related to protein folding and secretion reveals that unfolded protein response targets such as translocation, endoplasmic reticulum genes, and cytosolic chaperones are upregulated with increasing growth rate while proteolytic degradation of secretory proteins is downregulated. We conclude that a high μ positively affects specific protein secretion rates by acting on multiple cellular processes.
Collapse
Affiliation(s)
- Corinna Rebnegger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
38
|
Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 2014; 506:387-390. [PMID: 24390351 PMCID: PMC4051440 DOI: 10.1038/nature12891] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/18/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Racquel Kim Sherwood
- Department of Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI, 02912
| | - Christine M Scaduto
- Department of Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI, 02912
| | - Sandra E Torres
- Department of Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI, 02912
| | - Richard J Bennett
- Department of Microbiology and Immunology, Brown University, 171 Meeting St, Providence, RI, 02912
| |
Collapse
|
39
|
Abstract
Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.
Collapse
|
40
|
Schraiber JG, Mostovoy Y, Hsu TY, Brem RB. Inferring evolutionary histories of pathway regulation from transcriptional profiling data. PLoS Comput Biol 2013; 9:e1003255. [PMID: 24130471 PMCID: PMC3794907 DOI: 10.1371/journal.pcbi.1003255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/20/2013] [Indexed: 01/09/2023] Open
Abstract
One of the outstanding challenges in comparative genomics is to interpret the evolutionary importance of regulatory variation between species. Rigorous molecular evolution-based methods to infer evidence for natural selection from expression data are at a premium in the field, and to date, phylogenetic approaches have not been well-suited to address the question in the small sets of taxa profiled in standard surveys of gene expression. We have developed a strategy to infer evolutionary histories from expression profiles by analyzing suites of genes of common function. In a manner conceptually similar to molecular evolution models in which the evolutionary rates of DNA sequence at multiple loci follow a gamma distribution, we modeled expression of the genes of an a priori-defined pathway with rates drawn from an inverse gamma distribution. We then developed a fitting strategy to infer the parameters of this distribution from expression measurements, and to identify gene groups whose expression patterns were consistent with evolutionary constraint or rapid evolution in particular species. Simulations confirmed the power and accuracy of our inference method. As an experimental testbed for our approach, we generated and analyzed transcriptional profiles of four Saccharomyces yeasts. The results revealed pathways with signatures of constrained and accelerated regulatory evolution in individual yeasts and across the phylogeny, highlighting the prevalence of pathway-level expression change during the divergence of yeast species. We anticipate that our pathway-based phylogenetic approach will be of broad utility in the search to understand the evolutionary relevance of regulatory change. Comparative transcriptomic studies routinely identify thousands of genes differentially expressed between species. The central question in the field is whether and how such regulatory changes have been the product of natural selection. Can the signal of evolutionarily relevant expression divergence be detected amid the noise of changes resulting from genetic drift? Our work develops a theory of gene expression variation among a suite of genes that function together. We derive a formalism that relates empirical observations of expression of pathway genes in divergent species to the underlying strength of natural selection on expression output. We show that fitting this type of model to simulated data accurately recapitulates the parameters used to generate the simulation. We then make experimental measurements of gene expression in a panel of single-celled eukaryotic yeast species. To these data we apply our inference method, and identify pathways with striking evidence for accelerated or constrained regulatory evolution, in particular species and across the phylogeny. Our method provides a key advance over previous approaches in that it maximizes the power of rigorous molecular-evolution analysis of regulatory variation even when data are relatively sparse. As such, the theory and tools we have developed will likely find broad application in the field of comparative genomics.
Collapse
Affiliation(s)
- Joshua G. Schraiber
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Yulia Mostovoy
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Tiffany Y. Hsu
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Rachel B. Brem
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Coyle SM, Flores J, Lim WA. Exploitation of latent allostery enables the evolution of new modes of MAP kinase regulation. Cell 2013; 154:875-87. [PMID: 23953117 PMCID: PMC3787944 DOI: 10.1016/j.cell.2013.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/04/2013] [Accepted: 07/03/2013] [Indexed: 01/06/2023]
Abstract
Allosteric interactions provide precise spatiotemporal control over signaling proteins, but how allosteric activators and their targets coevolve is poorly understood. Here, we trace the evolution of two allosteric activator motifs within the yeast scaffold protein Ste5 that specifically target the mating MAP kinase Fus3. One activator (Ste5-VWA) provides pathway insulation and dates to the divergence of Fus3 from its paralog, Kss1; a second activator (Ste5-FBD) that tunes mating behavior is, in contrast, not conserved in most lineages. Surprisingly, both Ste5 activator motifs could regulate MAP kinases that diverged from Fus3 prior to the emergence of Ste5, suggesting that Ste5 activators arose by exploiting latent regulatory features already present in the MAPK ancestor. The magnitude of this latent allosteric potential drifts widely among pre-Ste5 MAP kinases, providing a pool of hidden phenotypic diversity that, when revealed by new activators, could lead to functional divergence and to the evolution of distinct signaling behaviors.
Collapse
Affiliation(s)
- Scott M. Coyle
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Program in Biological Sciences
| | - Jonathan Flores
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wendell A. Lim
- Howard Hughes Medical Institute and Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- UCSF Center for Systems and Synthetic Biology
| |
Collapse
|
42
|
Chen YS, Racca JD, Sequeira PW, Phillips NB, Weiss MA. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty. Proc Natl Acad Sci U S A 2013; 110:E3061-70. [PMID: 23901118 PMCID: PMC3746911 DOI: 10.1073/pnas.1300860110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation. A subset of Sry alleles in superfamily Muroidea (order Rodentia) is remarkable for insertion of an unstable DNA microsatellite, most commonly encoding (as in mice) a CAG repeat-associated glutamine-rich domain. We provide evidence, based on an embryonic pre-Sertoli cell line, that this domain functions at a threshold length as a genetic capacitor to facilitate accumulation of variation elsewhere in the protein, including the HMG box. The glutamine-rich domain compensates for otherwise deleterious substitutions in the box and absence of nonbox phosphorylation sites to ensure occupancy of DNA target sites. Such compensation enables activation of a male transcriptional program despite perturbations to the box. Whereas human SRY requires nucleocytoplasmic shuttling and coupled phosphorylation, mouse Sry contains a defective nuclear export signal analogous to a variant human SRY associated with inherited sex reversal. We propose that the rodent glutamine-rich domain has (i) fostered accumulation of cryptic intragenic variation and (ii) enabled unmasking of such variation due to DNA replicative slippage. This model highlights genomic contingency as a source of protein novelty at the edge of developmental ambiguity and may underlie emergence of non-Sry-dependent sex determination in the radiation of Muroidea.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Weiss
- Departments of Biochemistry
- Biomedical Engineering, and
- Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
43
|
Differential regulation of white-opaque switching by individual subunits of Candida albicans mediator. EUKARYOTIC CELL 2013; 12:1293-304. [PMID: 23873866 DOI: 10.1128/ec.00137-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The multisubunit eukaryotic Mediator complex integrates diverse positive and negative gene regulatory signals and transmits them to the core transcription machinery. Mutations in individual subunits within the complex can lead to decreased or increased transcription of certain subsets of genes, which are highly specific to the mutated subunit. Recent studies suggest a role for Mediator in epigenetic silencing. Using white-opaque morphological switching in Candida albicans as a model, we have shown that Mediator is required for the stability of both the epigenetic silenced (white) and active (opaque) states of the bistable transcription circuit driven by the master regulator Wor1. Individual deletions of eight C. albicans Mediator subunits have shown that different Mediator subunits have dramatically diverse effects on the directionality, frequency, and environmental induction of epigenetic switching. Among the Mediator deletion mutants analyzed, only Med12 has a steady-state transcriptional effect on the components of the Wor1 circuit that clearly corresponds to its effect on switching. The MED16 and MED9 genes have been found to be among a small subset of genes that are required for the stability of both the white and opaque states. Deletion of the Med3 subunit completely destabilizes the opaque state, even though the Wor1 transcription circuit is intact and can be driven by ectopic expression of Wor1. The highly impaired ability of the med3 deletion mutant to mate, even when Wor1 expression is ectopically induced, reveals that the activation of the Wor1 circuit can be decoupled from the opaque state and one of its primary biological consequences.
Collapse
|
44
|
Lin CH, Kabrawala S, Fox EP, Nobile CJ, Johnson AD, Bennett RJ. Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLoS Pathog 2013; 9:e1003305. [PMID: 23637598 PMCID: PMC3630098 DOI: 10.1371/journal.ppat.1003305] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/01/2013] [Indexed: 12/13/2022] Open
Abstract
Candida albicans can stochastically switch between two phenotypes, white and opaque. Opaque cells are the sexually competent form of C. albicans and therefore undergo efficient polarized growth and mating in the presence of pheromone. In contrast, white cells cannot mate, but are induced – under a specialized set of conditions – to form biofilms in response to pheromone. In this work, we compare the genetic regulation of such “pheromone-stimulated” biofilms with that of “conventional” C. albicans biofilms. In particular, we examined a network of six transcriptional regulators (Bcr1, Brg1, Efg1, Tec1, Ndt80, and Rob1) that mediate conventional biofilm formation for their potential roles in pheromone-stimulated biofilm formation. We show that four of the six transcription factors (Bcr1, Brg1, Rob1, and Tec1) promote formation of both conventional and pheromone-stimulated biofilms, indicating they play general roles in cell cohesion and biofilm development. In addition, we identify the master transcriptional regulator of pheromone-stimulated biofilms as C. albicans Cph1, ortholog of Saccharomyces cerevisiae Ste12. Cph1 regulates mating in C. albicans opaque cells, and here we show that Cph1 is also essential for pheromone-stimulated biofilm formation in white cells. In contrast, Cph1 is dispensable for the formation of conventional biofilms. The regulation of pheromone- stimulated biofilm formation was further investigated by transcriptional profiling and genetic analyses. These studies identified 196 genes that are induced by pheromone signaling during biofilm formation. One of these genes, HGC1, is shown to be required for both conventional and pheromone-stimulated biofilm formation. Taken together, these observations compare and contrast the regulation of conventional and pheromone-stimulated biofilm formation in C. albicans, and demonstrate that Cph1 is required for the latter, but not the former. Candida albicans is the predominant fungal pathogen afflicting humans, where many infections arise due to its proclivity to form biofilms. Biofilms are complex multicellular communities in which cells exhibit distinct properties to those grown in suspension. They are particularly relevant in the development of device-associated infections, and thus understanding biofilm regulation and biofilm architecture is a priority. C. albicans has the ability to form different types of biofilms under different environmental conditions. Here, we compare the regulation of biofilm formation in conventional biofilms, for which a core transcriptional network has recently been identified, with pheromone-stimulated biofilms, which occur when C. albicans white cells are exposed to pheromone. Our studies show that several regulatory components control biofilm formation under both conditions, including the network transcriptional regulators Bcr1, Brg1, Rob1, and Tec1. However, other transcriptional regulators are specific to each model of biofilm development. In particular, we demonstrate that Cph1, the master regulator of the pheromone response during mating, is essential for pheromone-stimulated biofilm formation but is dispensable for conventional biofilms. These studies provide an in-depth analysis of the regulation of pheromone-stimulated biofilms, and demonstrate that both shared and unique components operate in different models of biofilm formation in this human pathogen.
Collapse
Affiliation(s)
- Ching-Hsuan Lin
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Shail Kabrawala
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Emily P. Fox
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Tetrad Program, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Clarissa J. Nobile
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander D. Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Richard J. Bennett
- Department of Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
45
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
46
|
Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 2012; 151:80-95. [PMID: 23021217 DOI: 10.1016/j.cell.2012.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/25/2012] [Accepted: 08/08/2012] [Indexed: 01/20/2023]
Abstract
We examine how different transcriptional network structures can evolve from an ancestral network. By characterizing how the ancestral mode of gene regulation for genes specific to a-type cells in yeast species evolved from an activating paradigm to a repressing one, we show that regulatory protein modularity, conversion of one cis-regulatory sequence to another, distribution of binding energy among protein-protein and protein-DNA interactions, and exploitation of ancestral network features all contribute to the evolution of a novel regulatory mode. The formation of this derived mode of regulation did not disrupt the ancestral mode and thereby created a hybrid regulatory state where both means of transcription regulation (ancestral and derived) contribute to the conserved expression pattern of the network. Finally, we show how this hybrid regulatory state has resolved in different ways in different lineages to generate the diversity of regulatory network structures observed in modern species.
Collapse
|
47
|
Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling pathways over specific targets and cleavage site motifs in apoptosis. Cell Death Differ 2012; 19:2040-8. [PMID: 22918439 DOI: 10.1038/cdd.2012.99] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.
Collapse
|
48
|
The Tlo proteins are stoichiometric components of Candida albicans mediator anchored via the Med3 subunit. EUKARYOTIC CELL 2012; 11:874-84. [PMID: 22562472 DOI: 10.1128/ec.00095-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The amplification of the TLO (for telomere-associated) genes in Candida albicans, compared to its less pathogenic, close relative Candida dubliniensis, suggests a role in virulence. Little, however, is known about the function of the Tlo proteins. We have purified the Mediator coactivator complex from C. albicans (caMediator) and found that Tlo proteins are a stoichiometric component of caMediator. Many members of the Tlo family are expressed, and each is a unique member of caMediator. Protein expression analysis of individual Tlo proteins, as well as the purification of tagged Tlo proteins, demonstrate that there is a large free population of Tlo proteins in addition to the Mediator-associated population. Coexpression and copurification of Tloα12 and caMed3 in Escherichia coli established a direct physical interaction between the two proteins. We have also made a C. albicans med3Δ/Δ strain and purified an intact Mediator from this strain. The analysis of the composition of the med3Δ Mediator shows that it lacks a Tlo subunit. Regarding Mediator function, the med3Δ/Δ strain serves as a substitute for the difficult-to-make tloΔ/Δ C. albicans strain. A potential role of the TLO and MED3 genes in virulence is supported by the inability of the med3Δ/Δ strain to form normal germ tubes. This study of caMediator structure provides initial clues to the mechanism of action of the Tlo genes and a platform for further mechanistic studies of caMediator's involvement in gene regulatory patterns that underlie pathogenesis.
Collapse
|
49
|
Kämpf MM, Engesser R, Busacker M, Hörner M, Karlsson M, Zurbriggen MD, Fussenegger M, Timmer J, Weber W. Rewiring and dosing of systems modules as a design approach for synthetic mammalian signaling networks. MOLECULAR BIOSYSTEMS 2012; 8:1824-32. [PMID: 22532387 DOI: 10.1039/c2mb05509k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modularly structured signaling networks coordinate the fate and function of complex biological systems. Each component in the network performs a discrete computational operation, but when connected to each other intricate functionality emerges. Here we study such an architecture by connecting auxin signaling modules and inducible protein biotinylation systems with transcriptional control systems to construct synthetic mammalian high-detect, low-detect and band-detect networks that translate overlapping gradients of inducer molecules into distinct gene expression patterns. Guided by a mathematical model we apply fundamental computational operations like conjunction or addition to rewire individual building blocks to qualitatively and quantitatively program the way the overall network interprets graded input signals. The design principles described in this study might serve as a conceptual blueprint for the development of next-generation mammalian synthetic gene networks in fundamental and translational research.
Collapse
Affiliation(s)
- Michael M Kämpf
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Analysis of Cryptococcus neoformans sexual development reveals rewiring of the pheromone-response network by a change in transcription factor identity. Genetics 2012; 191:435-49. [PMID: 22466042 DOI: 10.1534/genetics.112.138958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.
Collapse
|