1
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
2
|
Howard RJ, Hou X, Edgecombe GD, Salge T, Shi X, Ma X. A Tube-Dwelling Early Cambrian Lobopodian. Curr Biol 2020; 30:1529-1536.e2. [PMID: 32109391 DOI: 10.1016/j.cub.2020.01.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/09/2019] [Accepted: 01/24/2020] [Indexed: 01/27/2023]
Abstract
Facivermis yunnanicus [1, 2] is an enigmatic worm-like animal from the early Cambrian Chengjiang Biota of Yunnan Province, China. It is a small (<10 cm) bilaterian with five pairs of spiny anterior arms, an elongated body, and a swollen posterior end. The unusual morphology of Facivermis has prompted a history of diverse taxonomic interpretations, including among annelids [1, 3], lophophorates [4], and pentastomids [5]. However, in other studies, Facivermis is considered to be more similar to lobopodians [2, 6-8]-the fossil grade from which modern panarthropods (arthropods, onychophorans, and tardigrades) are derived. In these studies, Facivermis is thought to be intermediate between cycloneuralian worms and lobopodians. Facivermis has therefore been suggested to represent an early endobenthic-epibenthic panarthropod transition [6] and to provide crucial insights into the origin of paired appendages [2]. However, the systematic affinity of Facivermis was poorly supported in a previous phylogeny [6], partially due to incomplete understanding of its morphology. Therefore, the evolutionary significance of Facivermis remains unresolved. In this study, we re-examine Facivermis from new material and the holotype, leading to the discovery of several new morphological features, such as paired eyes on the head and a dwelling tube. Comprehensive phylogenetic analyses using parsimony, Bayesian inference, and maximum likelihood all support Facivermis as a luolishaniid in a derived position within the onychophoran stem group rather than as a basal panarthropod. In contrast to previous studies, we therefore conclude that Facivermis provides a rare early Cambrian example of secondary loss to accommodate a highly specialized tube-dwelling lifestyle.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9TA, UK; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China.
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Tobias Salge
- Imaging and Analysis Centre, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Chenggong Campus, Kunming 650500, China; Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall TR10 9TA, UK.
| |
Collapse
|
4
|
Legg DA, Sutton MD, Edgecombe GD, Caron JB. Cambrian bivalved arthropod reveals origin of arthrodization. Proc Biol Sci 2012; 279:4699-704. [PMID: 23055069 PMCID: PMC3497099 DOI: 10.1098/rspb.2012.1958] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/20/2012] [Indexed: 11/12/2022] Open
Abstract
Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans ('great-appendage' arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids).
Collapse
Affiliation(s)
- David A Legg
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, UK.
| | | | | | | |
Collapse
|
5
|
Ma X, Hou X, Aldridge RJ, Siveter DJ, Siveter DJ, Gabbott SE, Purnell MA, Parker AR, Edgecombe GD. Morphology of Cambrian lobopodian eyes from the Chengjiang Lagerstätte and their evolutionary significance. ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:495-504. [PMID: 22484085 DOI: 10.1016/j.asd.2012.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
Visual organs are widely distributed throughout the animal kingdom and exhibit a great diversity of morphologies. Compound eyes consisting of numerous visual units (ommatidia) are the oldest preserved visual systems of arthropods, but their origins are obscure and hypothetical models for their evolution have been difficult to test in the absence of unequivocal fossil evidence. Here we reveal the detailed eye structures of well-preserved Early Cambrian lobopodians Luolishania longicruris and Hallucigenia fortis from the Chengjiang Lagerstätte, China. These animals possess a pair of eyes composed of at least two visual units, interpreted as pigment cups. Contrary to previous suggestions that Cambrian lobopodians possessed ocellus-like eyes comparable to those of extant onychophorans, this multi-component structure is more similar to the lateral eyes of arthropods. Morphological comparison and phylogenetic analyses indicate that these lobopodian eyes may represent an early stage in the evolution of the ancestral visual system of euarthropods.
Collapse
Affiliation(s)
- Xiaoya Ma
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, 2 North Cuihu Road, Kunming 650091, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G. Opsins in Onychophora (Velvet Worms) Suggest a Single Origin and Subsequent Diversification of Visual Pigments in Arthropods. Mol Biol Evol 2012; 29:3451-8. [DOI: 10.1093/molbev/mss148] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Liu J, Steiner M, Dunlop JA, Keupp H, Shu D, Ou Q, Han J, Zhang Z, Zhang X. Liu et al. reply. Nature 2011. [DOI: 10.1038/nature10268] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|