• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4618911)   Today's Articles (2416)   Subscriber (49402)
For: Bethel RD, Darensbourg MY. Enzymes activated by synthetic components. Nature 2013;499:40-1. [DOI: 10.1038/nature12260] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Yu X, Rao G, Britt RD, Rauchfuss TB. Final Stages in the Biosynthesis of the [FeFe]-Hydrogenase Active Site. Angew Chem Int Ed Engl 2024;63:e202404044. [PMID: 38551577 PMCID: PMC11253240 DOI: 10.1002/anie.202404044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 04/19/2024]
2
Nguyen Van Ha, Dat DT, Huy NH. Oxygenation Induced Electronic Structure Changes in Anionic Platinum(II) Complex Bearing 2-Phenylpyridine and Benzene-1,2-dithiolate Ligands: Theoretical Study. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
3
Zhao PH, Gu XL, Tan X, Jin B, Guo Y. Bulky oxadithiolate-bridged [FeFe]‑hydrogenase mimics [Fe2(μ-R2odt)(CO)42-diphosphine)] (R = Ph and H) with chelating diphosphines. J Inorg Biochem 2022;235:111933. [PMID: 35863295 DOI: 10.1016/j.jinorgbio.2022.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/18/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
4
Gui MS, Guan Y, Li YL, Zhao PH. Azadithiolate-bridged [FeFe]-hydrogenase mimics with bridgehead N-derivation: structural and electrochemical investigations. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
5
Liu X, Ma Z, Jin B, Wang D, Zhao P. Substituent effects of tertiary phosphines on the structures and electrochemical performances of azadithiolato‐bridged diiron model complexes of [FeFe]‐hydrogenases. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
6
Chen FY, Hu MY, Gu XL, Liu XF, Zhao PH. ADT-Type [FeFe]-hydrogenase biomimics featuring monodentate phosphines: formation, structures, and electrocatalysis. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00482-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
7
Gu XL, Li JR, Jin B, Guo Y, Jing XB, Zhao PH. Phosphine-substituted diiron complexes Fe2(μ-Rodt)(CO)6−n(PPh3)n (R = Ph, Me, H and n = 1, 2) featuring desymmetrized oxadithiolate bridges: structures, protonation, and electrocatalysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj03398k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
8
Zhao PH, Li JR, Ma ZY, Han HF, Qu YP, Lu BP. Diiron azadithiolate clusters supported on carbon nanotubes for efficient electrocatalytic proton reduction. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01415j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
9
Amine‐containing tertiary phosphine‐substituted diiron ethanedithioate (edt) complexes Fe 2 ( μ ‐edt)(CO) 6‐n L n ( n = 1, 2): Synthesis, protonation, and electrochemical properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
10
Li JR, Wang YH, Zhao PH. Crystal structure and electrocatalytic investigation of diiron azadiphosphine complex [Fe2(μ-pdt)(CO)4{(μ-Ph2P)2NH}] related to [FeFe]-hydrogenases. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1733018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
11
Zhao PH, Hu MY, Li JR, Wang YZ, Lu BP, Han HF, Liu XF. Impacts of coordination modes (chelate versus bridge) of PNP-diphosphine ligands on the redox and electrocatalytic properties of diiron oxadithiolate complexes for proton reduction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136615] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
12
Asymmetrically PNP-chelate diiron ethanedithiolate complexes Fe2(μ-edt)(CO)4{κ-(Ph2P)2NR} as diiron subsite models of [FeFe]-hydrogenases: Structural and electrocatalytic investigation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
13
Hu M, Zhao P, Li J, Gu X, Jing X, Liu X. Synthesis, structures, and electrocatalytic properties of phosphine‐monodentate, −chelate, and ‐bridge diiron 2,2‐dimethylpropanedithiolate complexes related to [FeFe]‐hydrogenases. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
14
Li Q, Zhang R, Ma C, Lü S, Mu C, Li Y. Synthesis, characterization, and some electrocatalytic properties of heteromultinuclear Fe I /Ru II Clusters. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
15
Becker R, Bouwens T, Schippers ECF, van Gelderen T, Hilbers M, Woutersen S, Reek JNH. Photocatalytic Hydrogen Generation by Vesicle-Embedded [FeFe]Hydrogenase Mimics: A Mechanistic Study. Chemistry 2019;25:13921-13929. [PMID: 31418952 PMCID: PMC6899470 DOI: 10.1002/chem.201902514] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Indexed: 12/22/2022]
16
Influence of pendant amines in phosphine ligands on the formation, structures, and electrochemical properties of diiron aminophosphine complexes related to [FeFe]-hydrogenases. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
17
Hu M, Yan L, Li J, Wang Y, Zhao P, Liu X. Reactions of Fe 2 ( μ ‐odt)(CO) 6 (odt = 1, 3‐oxadithiolate) with small bite‐angle diphosphines to afford the monodentate, chelate, and bridge diiron complexes: Selective substitution, structures, protonation, and electrocatalytic proton reduction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4949] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
18
Zhao PH, Ma ZY, Hu MY, Jing XB, Wang YH, Liu XF. The effect of a pendant amine in phosphine ligand on the structure and electrochemical property of diiron dithiolate complexes. J COORD CHEM 2019. [DOI: 10.1080/00958972.2018.1506585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
19
Zhao PH, Hu MY, Li JR, Ma ZY, Wang YZ, He J, Li YL, Liu XF. Influence of Dithiolate Bridges on the Structures and Electrocatalytic Performance of Small Bite-Angle PNP-Chelated Diiron Complexes Fe2(μ-xdt)(CO)4{κ2-(Ph2P)2NR} Related to [FeFe]-Hydrogenases. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00759] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
20
Lü S, Zhang RF, Li QL, He J, Li YL. Synthesis, characterization and electrochemical properties of two isomers of diiron diselenolato complexes and a new pathway to the μ4-Se twin cluster. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
21
Yu X, Pang M, Zhang S, Hu X, Tung CH, Wang W. Terminal Thiolate-Dominated H/D Exchanges and H2 Release: Diiron Thiol–Hydride. J Am Chem Soc 2018;140:11454-11463. [DOI: 10.1021/jacs.8b06996] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
22
Keller SG, Probst B, Heinisch T, Alberto R, Ward TR. Photo-Driven Hydrogen Evolution by an Artificial Hydrogenase Utilizing the Biotin-Streptavidin Technology. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
23
Zhao PH, Ma ZY, Hu MY, He J, Wang YZ, Jing XB, Chen HY, Wang Z, Li YL. PNP-Chelated and -Bridged Diiron Dithiolate Complexes Fe2(μ-pdt)(CO)4{(Ph2P)2NR} Together with Related Monophosphine Complexes for the [2Fe]H Subsite of [FeFe]-Hydrogenases: Preparation, Structure, and Electrocatalysis. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00030] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
24
Aminophosphine-substituted diiron dithiolate complexes: Synthesis, crystal structure, and electrocatalytic investigation. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
25
He J, Deng CL, Li Y, Li YL, Wu Y, Zou LK, Mu C, Luo Q, Xie B, Wei J, Hu JW, Zhao PH, Zheng W. A New Route to the Synthesis of Phosphine-Substituted Diiron Aza- and Oxadithiolate Complexes. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00040] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
26
Roy S, Nguyen TAD, Gan L, Jones AK. Biomimetic peptide-based models of [FeFe]-hydrogenases: utilization of phosphine-containing peptides. Dalton Trans 2016. [PMID: 26223293 DOI: 10.1039/c5dt01796c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
27
Hydrogen-activating models of hydrogenases. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.05.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
28
Rapson TD, Sutherland TD, Church JS, Trueman HE, Dacres H, Trowell SC. De Novo Engineering of Solid-State Metalloproteins Using Recombinant Coiled-Coil Silk. ACS Biomater Sci Eng 2015;1:1114-1120. [DOI: 10.1021/acsbiomaterials.5b00239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
29
Zhao PH, Xiong KK, Liang WJ, Hao EJ. Synthesis, crystal structures and electrocatalytic properties of bridgehead-C-functionalized diiron dithiolate complexes. J COORD CHEM 2015. [DOI: 10.1080/00958972.2014.1002398] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
30
Nguyen VH, Chew HQ, Su B, Yip JHK. Synthesis and Spectroscopy of Anionic Cyclometalated Iridium(III)-Dithiolate and -Sulfinates—Effect of Sulfur Dioxygenation on Electronic Structure and Luminescence. Inorg Chem 2014;53:9739-50. [DOI: 10.1021/ic501278n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
31
Iron carbonyl cluster complexes with monophosphine ligands: synthesis, characterization, and crystal structure. TRANSIT METAL CHEM 2014. [DOI: 10.1007/s11243-014-9825-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA