1
|
Banjac I, Maimets M, Tsang IHC, Dioli M, Hansen SL, Krizic K, Bressan RB, Lövkvist C, Jensen KB. Fate mapping in mouse demonstrates early secretory differentiation directly from Lgr5+ intestinal stem cells. Dev Cell 2025:S1534-5807(24)00762-7. [PMID: 39793582 DOI: 10.1016/j.devcel.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The intestinal epithelium has a remarkably high turnover in homeostasis. It remains unresolved how this is orchestrated at the cellular level and how the behavior of stem and progenitor cells ensures tissue maintenance. To address this, we combined quantitative fate mapping in three complementary mouse models with mathematical modeling and single-cell RNA sequencing. Our integrated approach generated a spatially and temporally defined model of crypt maintenance based on two cycling populations: stem cells at the crypt-bottom and transit-amplifying (TA) cells above them. Subsequently, we validated the predictions from the mathematical model, demonstrating that fate decisions between the secretory and absorptive lineages are made within the stem cell compartment, whereas TA cell divisions contribute specifically to the absorptive lineage. These quantitative insights provide further direct evidence for crypt-bottom stem cells as the dominant driver of the intestinal epithelium replenishment.
Collapse
Affiliation(s)
- Isidora Banjac
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Martti Maimets
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Ingrid H C Tsang
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marius Dioli
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Stine Lind Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kata Krizic
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Raul Bardini Bressan
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Cecilia Lövkvist
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
2
|
Golchin A, Shams F, Moradi F, Sadrabadi AE, Parviz S, Alipour S, Ranjbarvan P, Hemmati Y, Rahnama M, Rasmi Y, Aziz SGG. Single-cell Technology in Stem Cell Research. Curr Stem Cell Res Ther 2025; 20:9-32. [PMID: 38243989 DOI: 10.2174/011574888x265479231127065541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Single-cell technology (SCT), which enables the examination of the fundamental units comprising biological organs, tissues, and cells, has emerged as a powerful tool, particularly in the field of biology, with a profound impact on stem cell research. This innovative technology opens new pathways for acquiring cell-specific data and gaining insights into the molecular pathways governing organ function and biology. SCT is not only frequently used to explore rare and diverse cell types, including stem cells, but it also unveils the intricacies of cellular diversity and dynamics. This perspective, crucial for advancing stem cell research, facilitates non-invasive analyses of molecular dynamics and cellular functions over time. Despite numerous investigations into potential stem cell therapies for genetic disorders, degenerative conditions, and severe injuries, the number of approved stem cell-based treatments remains limited. This limitation is attributed to the various heterogeneities present among stem cell sources, hindering their widespread clinical utilization. Furthermore, stem cell research is intimately connected with cutting-edge technologies, such as microfluidic organoids, CRISPR technology, and cell/tissue engineering. Each strategy developed to overcome the constraints of stem cell research has the potential to significantly impact advanced stem cell therapies. Drawing on the advantages and progress achieved through SCT-based approaches, this study aims to provide an overview of the advancements and concepts associated with the utilization of SCT in stem cell research and its related fields.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid, Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Moradi
- Department of Tissue Engineering, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amin Ebrahimi Sadrabadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Shima Parviz
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz, University of Medical Sciences, Shiraz, Iran
| | - Shahriar Alipour
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Parviz Ranjbarvan
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yaser Hemmati
- Department of Prosthodontics, Dental Faculty, Urmia University of Medical Science, Urmia, Iran
| | - Maryam Rahnama
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Gholizadeh-Ghaleh Aziz
- Department of Clinical Biochemistry and Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
4
|
Khandekar A, Ellis SJ. An expanded view of cell competition. Development 2024; 151:dev204212. [PMID: 39560103 DOI: 10.1242/dev.204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cell competition arises in heterogeneous tissues when neighbouring cells sense their relative fitness and undergo selection. It has been a challenge to define contexts in which cell competition is a physiologically relevant phenomenon and to understand the cellular features that underlie fitness and fitness sensing. Drawing on examples across a range of contexts and length scales, we illuminate molecular and cellular features that could underlie fitness in diverse tissue types and processes to promote and reinforce long-term maintenance of tissue function. We propose that by broadening the scope of how fitness is defined and the circumstances in which cell competition can occur, the field can unlock the potential of cell competition as a lens through which heterogeneity and its role in the fundamental principles of complex tissue organisation can be understood.
Collapse
Affiliation(s)
- Ameya Khandekar
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9/Vienna Biocenter 5, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology & Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| |
Collapse
|
5
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
6
|
Wang Y, Thottappillil N, Gomez-Salazar M, Tower RJ, Qin Q, Del Rosario Alvia IC, Xu M, Cherief M, Cheng R, Archer M, Arondekar S, Reddy S, Broderick K, Péault B, James AW. Integrated transcriptomics of human blood vessels defines a spatially controlled niche for early mesenchymal progenitor cells. Dev Cell 2024; 59:2687-2703.e6. [PMID: 39025061 PMCID: PMC11496018 DOI: 10.1016/j.devcel.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024]
Abstract
Human blood vessel walls show concentric layers, with the outermost tunica adventitia harboring mesenchymal progenitor cells. These progenitor cells maintain vessel homeostasis and provide a robust cell source for cell-based therapies. However, human adventitial stem cell niche has not been studied in detail. Here, using spatial and single-cell transcriptomics, we characterized the phenotype, potential, and microanatomic distribution of human perivascular progenitors. Initially, spatial transcriptomics identified heterogeneity between perivascular layers of arteries and veins and delineated the tunica adventitia into inner and outer layers. From this spatial atlas, we inferred a hierarchy of mesenchymal progenitors dictated by a more primitive cell with a high surface expression of CD201 (PROCR). When isolated from humans and mice, CD201Low expression typified a mesodermal committed subset with higher osteogenesis and less proliferation than CD201High cells, with a downstream effect on canonical Wnt signaling through DACT2. CD201Low cells also displayed high translational potential for bone tissue generation.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | - Robert J Tower
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ray Cheng
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shreya Arondekar
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kristen Broderick
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bruno Péault
- Department of Orthopedic Surgery and Orthopedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Greulich P. Emergent order in epithelial sheets by interplay of cell divisions and cell fate regulation. PLoS Comput Biol 2024; 20:e1012465. [PMID: 39401252 PMCID: PMC11501039 DOI: 10.1371/journal.pcbi.1012465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024] Open
Abstract
The fate choices of stem cells between self-renewal and differentiation are often tightly regulated by juxtacrine (cell-cell contact) signalling. Here, we assess how the interplay between cell division, cell fate choices, and juxtacrine signalling can affect the macroscopic ordering of cell types in self-renewing epithelial sheets, by studying a simple spatial cell fate model with cells being arranged on a 2D lattice. We show in this model that if cells commit to their fate directly upon cell division, macroscopic patches of cells of the same type emerge, if at least a small proportion of divisions are symmetric, except if signalling interactions are laterally inhibiting. In contrast, if cells are first 'licensed' to differentiate, yet retaining the possibility to return to their naive state, macroscopic order only emerges if the signalling strength exceeds a critical threshold: if then the signalling interactions are laterally inducing, macroscopic patches emerge as well. Lateral inhibition, on the other hand, can in that case generate periodic patterns of alternating cell types (checkerboard pattern), yet only if the proportion of symmetric divisions is sufficiently low. These results can be understood theoretically by an analogy to phase transitions in spin systems known from statistical physics.
Collapse
Affiliation(s)
- Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Shi G, Li Y, Shen H, He Q, Zhu P. Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis. LIFE MEDICINE 2024; 3:lnae042. [PMID: 39872442 PMCID: PMC11749485 DOI: 10.1093/lifemedi/lnae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Colorectal cancer (CRC), one of the most common tumors in the world, is generally proposed to be generated from intestinal stem cells (ISCs). Leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive ISCs are located at the bottom of the crypt and harbor self-renewal and differentiation capacities, serving as the resource of all intestinal epithelial cells and CRC cells as well. Here we review recent progress in ISCs both in non-tumoral and tumoral contexts. We summarize the molecular mechanisms of ISC self-renewal, differentiation, and plasticity for intestinal homeostasis and regeneration. We also discuss the function of ISCs in colorectal tumorigenesis as cancer stem cells and summarize fate dynamic, competition, niche regulation, and remote environmental regulation of ISCs for CRC initiation and propagation.
Collapse
Affiliation(s)
- Gaoli Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Qiankun He
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pingping Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
10
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
11
|
Wallbank BA, Pardy RD, Brodsky IE, Hunter CA, Striepen B. Cryptosporidium impacts epithelial turnover and is resistant to induced death of the host cell. mBio 2024; 15:e0172024. [PMID: 38995074 PMCID: PMC11323733 DOI: 10.1128/mbio.01720-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Infection with the apicomplexan parasite Cryptosporidium is a leading cause of diarrheal disease. Cryptosporidiosis is of particular importance in infants and shows a strong association with malnutrition, both as a risk factor and as a consequence. Cryptosporidium invades and replicates within the small intestine epithelial cells. This is a highly dynamic tissue that is developmentally stratified along the villus axis. New cells emerge from a stem cell niche in the crypt and differentiate into mature epithelial cells while moving toward the villus tip, where they are ultimately shed. Here, we studied the impact of Cryptosporidium infection on this dynamic architecture. Tracing DNA synthesis in pulse-chase experiments in vivo, we quantified the genesis and migration of epithelial cells along the villus. We found proliferation and epithelial migration to be elevated in response to Cryptosporidium infection. Infection also resulted in significant cell loss documented by imaging and molecular assays. Consistent with these observations, single-cell RNA sequencing of infected intestines showed a gain of young and a loss of mature cells. Interestingly, enhanced epithelial cell loss was not a function of enhanced apoptosis of infected cells. To the contrary, Cryptosporidium-infected cells were less likely to be apoptotic than bystanders, and experiments in tissue culture demonstrated that infection provided enhanced resistance to chemically induced apoptosis to the host but not bystander cells. Overall, this study suggests that Cryptosporidium may modulate cell apoptosis and documents pronounced changes in tissue homeostasis due to parasite infection, which may contribute to its long-term impact on the developmental and nutritional state of children. IMPORTANCE The intestine must balance its roles in digestion and nutrient absorption with the maintenance of an effective barrier to colonization and breach by numerous potential pathogens. An important component of this balance is its constant turnover, which is modulated by a gain of cells due to proliferation and loss due to death or extrusion. Here, we report that Cryptosporidium infection changes the dynamics of this process increasing both gain and loss of enterocytes speeding up the villus elevator. This leads to a much more immature epithelium and a reduction of the number of those cells typically found toward the villus apex best equipped to take up key nutrients including carbohydrates and lipids. These changes in the cellular architecture and physiology of the small intestine may be linked to the profound association between cryptosporidiosis and malnutrition.
Collapse
Affiliation(s)
- Bethan A. Wallbank
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan D. Pardy
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Igor E. Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Pinelli M, Makdissi S, Scur M, Parsons BD, Baker K, Otley A, MacIntyre B, Nguyen HD, Kim PK, Stadnyk AW, Di Cara F. Peroxisomal cholesterol metabolism regulates yap-signaling, which maintains intestinal epithelial barrier function and is altered in Crohn's disease. Cell Death Dis 2024; 15:536. [PMID: 39069546 DOI: 10.1038/s41419-024-06925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Intestinal epithelial cells line the luminal surface to establish the intestinal barrier, where the cells play essential roles in the digestion of food, absorption of nutrients and water, protection from microbial infections, and maintaining symbiotic interactions with the commensal microbial populations. Maintaining and coordinating all these functions requires tight regulatory signaling, which is essential for intestinal homeostasis and organismal health. Dysfunction of intestinal epithelial cells, indeed, is linked to gastrointestinal disorders such as irritable bowel syndrome, inflammatory bowel disease, and gluten-related enteropathies. Emerging evidence suggests that peroxisome metabolic functions are crucial in maintaining intestinal epithelial cell functions and intestinal epithelium regeneration and, therefore, homeostasis. Here, we investigated the molecular mechanisms by which peroxisome metabolism impacts enteric health using the fruit fly Drosophila melanogaster and murine model organisms and clinical samples. We show that peroxisomes control cellular cholesterol, which in turn regulates the conserved yes-associated protein-signaling and contributes to intestinal epithelial structure and epithelial barrier function. Moreover, analysis of intestinal organoid cultures derived from biopsies of patients affected by Crohn's Disease revealed that the dysregulation of peroxisome number, excessive cellular cholesterol, and inhibition of Yap-signaling are markers of disease and could be novel diagnostic and/or therapeutic targets for treating Crohn's Disease. Our studies provided mechanistic insights on peroxisomal signaling in intestinal epithelial cell functions and identified cholesterol as a novel metabolic regulator of yes-associated protein-signaling in tissue homeostasis.
Collapse
Affiliation(s)
- Marinella Pinelli
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Stephanie Makdissi
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Kristi Baker
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Anthony Otley
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Brad MacIntyre
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
| | - Huong D Nguyen
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Peter K Kim
- The Hospital for Sick Children, Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew W Stadnyk
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
- Department of Pediatrics, Dalhousie University, Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada.
| |
Collapse
|
13
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Packard CR, Unnikrishnan S, Phuyal S, Cheong SH, Manning ML, Tung CK, Sussman DM. Self-organized vortex phases and hydrodynamic interactions in Bos taurus sperm cells. Phys Rev E 2024; 110:014407. [PMID: 39160914 PMCID: PMC11338586 DOI: 10.1103/physreve.110.014407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/01/2024] [Indexed: 08/21/2024]
Abstract
Flocking behavior is observed in biological systems from the cellular to superorganismal length scales, and the mechanisms and purposes of this behavior are objects of intense interest. In this paper, we study the collective dynamics of bovine sperm cells in a viscoelastic fluid. These cells appear not to spontaneously flock, but transition into a long-lived flocking phase after being exposed to a transient ordering pulse of fluid flow. Surprisingly, this induced flocking phase has many qualitative similarities with the spontaneous polar flocking phases predicted by Toner-Tu theory, such as anisotropic giant number fluctuations and nontrivial transverse density correlations, despite the induced nature of the phase and the clearly important role of momentum conservation between the swimmers and the surrounding fluid in these experiments. We also find a self-organized global vortex state of the sperm cells, and map out an experimental phase diagram of states of collective motion as a function of cell density and motility statistics. We compare our experiments with a parameter-matched computational model of persistently turning active particles and find that the experimental order-disorder phase boundary as a function of cell density and persistence time can be approximately predicted from measures of single-cell properties. Our results may have implications for the evaluation of sample fertility by studying the collective phase behavior of dense groups of swimming sperm.
Collapse
Affiliation(s)
| | | | - Shiva Phuyal
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA
| | - Soon Hon Cheong
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - M. Lisa Manning
- Department of Physics, Syracuse University, Syracuse, NY, USA and BioInspired Institute, Syracuse University, Syracuse, NY, USA
| | - Chih-Kuan Tung
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA
| | | |
Collapse
|
15
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
16
|
Capdevila C, Miller J, Cheng L, Kornberg A, George JJ, Lee H, Botella T, Moon CS, Murray JW, Lam S, Calderon RI, Malagola E, Whelan G, Lin CS, Han A, Wang TC, Sims PA, Yan KS. Time-resolved fate mapping identifies the intestinal upper crypt zone as an origin of Lgr5+ crypt base columnar cells. Cell 2024; 187:3039-3055.e14. [PMID: 38848677 PMCID: PMC11770878 DOI: 10.1016/j.cell.2024.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.
Collapse
Affiliation(s)
- Claudia Capdevila
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Miller
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Liang Cheng
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam Kornberg
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joel J George
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyeonjeong Lee
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Theo Botella
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine S Moon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - John W Murray
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephanie Lam
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ruben I Calderon
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Ermanno Malagola
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary Whelan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Han
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A Sims
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA; Departments of Biochemistry & Molecular Biophysics and of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kelley S Yan
- Department of Medicine, Division of Digestive & Liver Diseases, Columbia University Irving Medical Center, New York, NY, USA; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Digestive & Liver Diseases Research Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
17
|
Aalam SMM, Nguyen LV, Ritting ML, Kannan N. Clonal tracking in cancer and metastasis. Cancer Metastasis Rev 2024; 43:639-656. [PMID: 37910295 PMCID: PMC11500829 DOI: 10.1007/s10555-023-10149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.
Collapse
Affiliation(s)
| | - Long Viet Nguyen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Megan L Ritting
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
- Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
18
|
Jiang C, Zhou Q, Yi K, Yuan Y, Xie X. Colorectal cancer initiation: Understanding early-stage disease for intervention. Cancer Lett 2024; 589:216831. [PMID: 38574882 DOI: 10.1016/j.canlet.2024.216831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
How tumors arise or the cause of precancerous lesions is a fundamental question in cancer biology. It is generally accepted that tumors originate from normal cells that undergo uncontrolled proliferation owing to genetic alterations. At the onset of adenoma formation, cancer driver mutations confer clonal growth advantage, enabling mutant cells to outcompete and eliminate the surrounding healthy cells. Hence, the development of precancerous lesions is not only attributed to the expansion of pre-malignant clones, but also relies on the relative fitness of mutated cells compared to the neighboring cells. Colorectal cancer (CRC) is an excellent model to investigate cancer origin as it follows a stereotypical process from mutant cell hyperplasia to adenoma formation and progression. Here, we review the evolving understanding of colonic tumor development, focusing on how cell intrinsic and extrinsic factors impact cell competition and the "clone war" between cancer-initiating cells and normal stem cells. We also discuss the promises and limitations of targeting cell competitiveness in cancer prevention and early intervention. The field of tumor initiation is currently in its infancy, elucidating the adenoma origin is crucial for designing effective prevention strategies and early treatments before cancer becomes incurable.
Collapse
Affiliation(s)
- Chao Jiang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Qiujing Zhou
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310005, China
| | - Ke Yi
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Xin Xie
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, 314400, China; Department of Medical Oncology, Cancer Institute and Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Parigini C, Greulich P. Homeostatic regulation of renewing tissue cell populations via crowding control: stability, robustness and quasi-dedifferentiation. J Math Biol 2024; 88:47. [PMID: 38520536 PMCID: PMC10960778 DOI: 10.1007/s00285-024-02057-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 03/25/2024]
Abstract
To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions and differentiation need to be tightly regulated. Mechanisms of homeostatic regulation often rely on crowding feedback control: cells are able to sense the cell density in their environment, via various molecular and mechanosensing pathways, and respond by adjusting division, differentiation, and cell state transitions appropriately. Here, we determine, via a mathematically rigorous framework, which general conditions for the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient, to allow the maintenance of homeostasis in renewing tissues. We show that those conditions naturally allow for a degree of robustness toward disruption of regulation. Furthermore, intrinsic to this feedback regulation is that stem cell identity is established collectively by the cell population, not by individual cells, which implies the possibility of 'quasi-dedifferentiation', in which cells committed to differentiation may reacquire stem cell properties upon depletion of the stem cell pool. These findings can guide future experimental campaigns to identify specific crowding feedback mechanisms.
Collapse
Affiliation(s)
- Cristina Parigini
- School of Mathematical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Te Pūnaha Ātea - Space Institute, University of Auckland, Auckland, New Zealand
| | - Philip Greulich
- School of Mathematical Sciences, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
20
|
Caetano A, Sharpe P. Redefining Mucosal Inflammation with Spatial Genomics. J Dent Res 2024; 103:129-137. [PMID: 38166489 PMCID: PMC10845836 DOI: 10.1177/00220345231216114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
The human oral mucosa contains one of the most complex cellular systems that are essential for normal physiology and defense against a wide variety of local pathogens. Evolving techniques and experimental systems have helped refine our understanding of this complex cellular network. Current single-cell RNA sequencing methods can resolve subtle differences between cell types and states, thus providing a great tool for studying the molecular and cellular repertoire of the oral mucosa in health and disease. However, it requires the dissociation of tissue samples, which means that the interrelationships between cells are lost. Spatial transcriptomic methods bypass tissue dissociation and retain this spatial information, thereby allowing gene expression to be assessed across thousands of cells within the context of tissue structural organization. Here, we discuss the contribution of spatial technologies in shaping our understanding of this complex system. We consider the impact on identifying disease cellular neighborhoods and how space defines cell state. We also discuss the limitations and future directions of spatial sequencing technologies with recent advances in machine learning. Finally, we offer a perspective on open questions about mucosal homeostasis that these technologies are well placed to address.
Collapse
Affiliation(s)
- A.J. Caetano
- Centre for Oral Immunobiology and Regenerative Medicine, Barts Centre for Squamous Cancer, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, UK
| |
Collapse
|
21
|
Kwon SJ, Khan MS, Kim SG. Intestinal Inflammation and Regeneration-Interdigitating Processes Controlled by Dietary Lipids in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:1311. [PMID: 38279309 PMCID: PMC10816399 DOI: 10.3390/ijms25021311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a disease of chronic inflammatory conditions of the intestinal tract due to disturbance of the inflammation and immune system. Symptoms of IBD include abdominal pain, diarrhea, bleeding, reduced weight, and fatigue. In IBD, the immune system attacks the intestinal tract's inner wall, causing chronic inflammation and tissue damage. In particular, interlukin-6 and interlukin-17 act on immune cells, including T cells and macrophages, to amplify the immune responses so that tissue damage and morphological changes occur. Of note, excessive calorie intake and obesity also affect the immune system due to inflammation caused by lipotoxicity and changes in lipids supply. Similarly, individuals with IBD have alterations in liver function after sustained high-fat diet feeding. In addition, excess dietary fat intake, along with alterations in primary and secondary bile acids in the colon, can affect the onset and progression of IBD because inflammatory cytokines contribute to insulin resistance; the factors include the release of inflammatory cytokines, oxidative stress, and changes in intestinal microflora, which may also contribute to disease progression. However, interfering with de novo fatty acid synthase by deleting the enzyme acetyl-CoA-carboxylase 1 in intestinal epithelial cells (IEC) leads to the deficiency of epithelial crypt structures and tissue regeneration, which seems to be due to Lgr5+ intestinal stem cell function. Thus, conflicting reports exist regarding high-fat diet effects on IBD animal models. This review will focus on the pathological basis of the link between dietary lipids intake and IBD and will cover the currently available pharmacological approaches.
Collapse
Affiliation(s)
| | | | - Sang Geon Kim
- Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang-si 10326, Gyeonggi-do, Republic of Korea; (S.J.K.); (M.S.K.)
| |
Collapse
|
22
|
Khorasani N, Sadeghi M. A computational model of stem cells' internal mechanism to recapitulate spatial patterning and maintain the self-organized pattern in the homeostasis state. Sci Rep 2024; 14:1528. [PMID: 38233402 PMCID: PMC10794714 DOI: 10.1038/s41598-024-51386-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
The complex functioning of multi-cellular tissue development relies on proper cell production rates to replace dead or differentiated specialized cells. Stem cells are critical for tissue development and maintenance, as they produce specialized cells to meet the tissues' demands. In this study, we propose a computational model to investigate the stem cell's mechanism, which generates the appropriate proportion of specialized cells, and distributes them to their correct position to form and maintain the organized structure in the population through intercellular reactions. Our computational model focuses on early development, where the populations overall behavior is determined by stem cells and signaling molecules. The model does not include complicated factors such as movement of specialized cells or outside signaling sources. The results indicate that in our model, the stem cells can organize the population into a desired spatial pattern, which demonstrates their ability to self-organize as long as the corresponding leading signal is present. We also investigate the impact of stochasticity, which provides desired non-genetic diversity; however, it can also break the proper boundaries of the desired spatial pattern. We further examine the role of the death rate in maintaining the system's steady state. Overall, our study sheds light on the strategies employed by stem cells to organize specialized cells and maintain proper functionality. Our findings provide insight into the complex mechanisms involved in tissue development and maintenance, which could lead to new approaches in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Najme Khorasani
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mehdi Sadeghi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
23
|
Beumer J, Clevers H. Hallmarks of stemness in mammalian tissues. Cell Stem Cell 2024; 31:7-24. [PMID: 38181752 PMCID: PMC10769195 DOI: 10.1016/j.stem.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
All adult tissues experience wear and tear. Most tissues can compensate for cell loss through the activity of resident stem cells. Although the cellular maintenance strategies vary greatly between different adult (read: postnatal) tissues, the function of stem cells is best defined by their capacity to replace lost tissue through division. We discuss a set of six complementary hallmarks that are key enabling features of this basic function. These include longevity and self-renewal, multipotency, transplantability, plasticity, dependence on niche signals, and maintenance of genome integrity. We discuss these hallmarks in the context of some of the best-understood adult stem cell niches.
Collapse
Affiliation(s)
- Joep Beumer
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| | - Hans Clevers
- Institute of Human Biology (IHB), Roche Pharma Research and Early Development, Basel, Switzerland.
| |
Collapse
|
24
|
Montazid S, Bandyopadhyay S, Hart DW, Gao N, Johnson B, Thrumurthy SG, Penn DJ, Wernisch B, Bansal M, Altrock PM, Rost F, Gazinska P, Ziolkowski P, Hayee B, Liu Y, Han J, Tessitore A, Koth J, Bodmer WF, East JE, Bennett NC, Tomlinson I, Irshad S. Adult stem cell activity in naked mole rats for long-term tissue maintenance. Nat Commun 2023; 14:8484. [PMID: 38123565 PMCID: PMC10733326 DOI: 10.1038/s41467-023-44138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The naked mole rat (NMR), Heterocephalus glaber, the longest-living rodent, provides a unique opportunity to explore how evolution has shaped adult stem cell (ASC) activity and tissue function with increasing lifespan. Using cumulative BrdU labelling and a quantitative imaging approach to track intestinal ASCs (Lgr5+) in their native in vivo state, we find an expanded pool of Lgr5+ cells in NMRs, and these cells specifically at the crypt base (Lgr5+CBC) exhibit slower division rates compared to those in short-lived mice but have a similar turnover as human LGR5+CBC cells. Instead of entering quiescence (G0), NMR Lgr5+CBC cells reduce their division rates by prolonging arrest in the G1 and/or G2 phases of the cell cycle. Moreover, we also observe a higher proportion of differentiated cells in NMRs that confer enhanced protection and function to the intestinal mucosa which is able to detect any chemical imbalance in the luminal environment efficiently, triggering a robust pro-apoptotic, anti-proliferative response within the stem/progenitor cell zone.
Collapse
Affiliation(s)
- Shamir Montazid
- Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Daniel W Hart
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, Republic of South Africa
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | - Brian Johnson
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, 92093, CA, USA
| | - Sri G Thrumurthy
- Endoscopy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Dustin J Penn
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, 1160, Austria
| | - Bettina Wernisch
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, 1160, Austria
| | | | - Philipp M Altrock
- Department for Theoretical Biology, Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307, Dresden, Germany
| | - Patrycja Gazinska
- Biobank Research Group, Lukasiewicz Research Network, PORT Polish Center for Technology Development, Wroclaw, Poland
| | - Piotr Ziolkowski
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-368, Wroclaw, Poland
| | - Bu'Hussain Hayee
- Endoscopy, King's College Hospital NHS Foundation Trust, London, SE5 9RS, UK
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, 07102, NJ, USA
| | | | - Jana Koth
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Walter F Bodmer
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - James E East
- Translational Gastroenterology Unit, Experimental Medicine Division, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, 0028, Republic of South Africa
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
| | - Shazia Irshad
- Nuffield Department of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK.
| |
Collapse
|
25
|
Kok RNU, Tans SJ, van Zon JS. Minimizing cell number fluctuations in self-renewing tissues with a stem-cell niche. Phys Rev E 2023; 108:064403. [PMID: 38243426 DOI: 10.1103/physreve.108.064403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/02/2023] [Indexed: 01/21/2024]
Abstract
Self-renewing tissues require that a constant number of proliferating cells is maintained over time. This maintenance can be ensured at the single-cell level or the population level. Maintenance at the population level leads to fluctuations in the number of proliferating cells over time. Often, it is assumed that those fluctuations can be reduced by increasing the number of asymmetric divisions, i.e., divisions where only one of the daughter cells remains proliferative. Here, we study a model of cell proliferation that incorporates a stem-cell niche of fixed size, and explicitly model the cells inside and outside the niche. We find that in this model, fluctuations are minimized when the difference in growth rate between the niche and the rest of the tissue is maximized and all divisions are symmetric divisions, producing either two proliferating or two nonproliferating daughters. We show that this optimal state leaves visible signatures in clone size distributions and could thus be detected experimentally.
Collapse
Affiliation(s)
- Rutger N U Kok
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sander J Tans
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Jeroen S van Zon
- Autonomous Matter, AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
26
|
Cui Z, Wei H, Goding C, Cui R. Stem cell heterogeneity, plasticity, and regulation. Life Sci 2023; 334:122240. [PMID: 37925141 DOI: 10.1016/j.lfs.2023.122240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
As a population of homogeneous cells with both self-renewal and differentiation potential, stem cell pools are highly compartmentalized and contain distinct subsets that exhibit stable but limited heterogeneity during homeostasis. However, their striking plasticity is showcased under natural or artificial stress, such as injury, transplantation, cancer, and aging, leading to changes in their phenotype, constitution, metabolism, and function. The complex and diverse network of cell-extrinsic niches and signaling pathways, together with cell-intrinsic genetic and epigenetic regulators, tightly regulate both the heterogeneity during homeostasis and the plasticity under perturbation. Manipulating these factors offers better control of stem cell behavior and a potential revolution in the current state of regenerative medicine. However, disruptions of normal regulation by genetic mutation or excessive plasticity acquisition may contribute to the formation of tumors. By harnessing innovative techniques that enhance our understanding of stem cell heterogeneity and employing novel approaches to maximize the utilization of stem cell plasticity, stem cell therapy holds immense promise for revolutionizing the future of medicine.
Collapse
Affiliation(s)
- Ziyang Cui
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing 100034, China.
| | - Hope Wei
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States of America
| | - Colin Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX37DQ, UK
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
27
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
28
|
Melamed D, Choi A, Reilein A, Tavaré S, Kalderon D. Spatial regulation of Drosophila ovarian Follicle Stem Cell division rates and cell cycle transitions. PLoS Genet 2023; 19:e1010965. [PMID: 37747936 PMCID: PMC10553835 DOI: 10.1371/journal.pgen.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/05/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Drosophila ovarian Follicle Stem Cells (FSCs) present a favorable paradigm for understanding how stem cell division and differentiation are balanced in communities where those activities are independent. FSCs also allow exploration of how this balance is integrated with spatial stem cell heterogeneity. Posterior FSCs become proliferative Follicle Cells (FCs), while anterior FSCs become quiescent Escort Cells (ECs) at about one fourth the frequency. A single stem cell can nevertheless produce both FCs and ECs because it can move between anterior and posterior locations. Studies based on EdU incorporation to approximate division rates suggested that posterior FSCs divide faster than anterior FSCs. However, direct measures of cell cycle times are required to ascertain whether FC output requires a net flow of FSCs from anterior to posterior. Here, by using live imaging and FUCCI cell-cycle reporters, we measured absolute division rates. We found that posterior FSCs cycle more than three times faster than anterior FSCs and produced sufficient new cells to match FC production. H2B-RFP dilution studies supported different cycling rates according to A/P location and facilitated live imaging, showing A/P exchange of FSCs in both directions, consistent with the dynamic equilibrium inferred from division rate measurements. Inversely graded Wnt and JAK-STAT pathway signals regulate FSC differentiation to ECs and FCs. JAK-STAT promotes both differentiation to FCs and FSC cycling, affording some coordination of these activities. When JAK-STAT signaling was manipulated to be spatially uniform, the ratio of posterior to anterior division rates was reduced but remained substantial, showing that graded JAK-STAT signaling only partly explains the graded cycling of FSCs. By using FUCCI markers, we found a prominent G2/M cycling restriction of posterior FSCs together with an A/P graded G1/S restriction, that JAK-STAT signaling promotes both G1/S and G2/M transitions, and that PI3 kinase signaling principally stimulates the G2/M transition.
Collapse
Affiliation(s)
- David Melamed
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Aaron Choi
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| | - Simon Tavaré
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
- Irving Institute for Cancer Dynamics & Department of Statistics, Columbia University, New York, New York State, United States of America
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, New York State, United States of America
| |
Collapse
|
29
|
Takeo M, Toyoshima KE, Fujimoto R, Iga T, Takase M, Ogawa M, Tsuji T. Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair. Nat Commun 2023; 14:4478. [PMID: 37542032 PMCID: PMC10403492 DOI: 10.1038/s41467-023-39605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
Biological rhythms are involved in almost all types of biological processes, not only physiological processes but also morphogenesis. Currently, how periodic morphological patterns of tissues/organs in multicellular organisms form is not fully understood. Here, using mouse zigzag hair, which has 3 bends, we found that a change in the combination of hair progenitors and their micro-niche and subsequent bend formation occur every three days. Chimeric loss-of-function and gain-of-function of Ptn and Aff3, which are upregulated immediately before bend formation, resulted in defects in the downward movement of the micro-niche and the rhythm of bend formation in an in vivo hair reconstitution assay. Our study demonstrates the periodic change in the combination between progenitors and micro-niche, which is vital for the unique infradian rhythm.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
- OrganTech Inc., Tokyo, 104-0028, Japan
| | - Riho Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tomoyo Iga
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Miki Takase
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | | | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.
- OrganTech Inc., Tokyo, 104-0028, Japan.
| |
Collapse
|
30
|
Debruyne AC, Okkelman IA, Dmitriev RI. Balance between the cell viability and death in 3D. Semin Cell Dev Biol 2023; 144:55-66. [PMID: 36117019 DOI: 10.1016/j.semcdb.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Cell death is a phenomenon, frequently perceived as an absolute event for cell, tissue and the organ. However, the rising popularity and complexity of such 3D multicellular 'tissue building blocks' as heterocellular spheroids, organoids, and 'assembloids' prompts to revise the definition and quantification of cell viability and death. It raises several questions on the overall viability of all the cells within 3D volume and on choosing the appropriate, continuous, and non-destructive viability assay enabling for a single-cell analysis. In this review, we look at cell viability and cell death modalities with attention to the intrinsic features of such 3D models as spheroids, organoids, and bioprints. Furthermore, we look at emerging and promising methodologies, which can help define and understand the balance between cell viability and death in dynamic and complex 3D environments. We conclude that the recent innovations in biofabrication, biosensor probe development, and fluorescence microscopy can help answer these questions.
Collapse
Affiliation(s)
- Angela C Debruyne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
31
|
Dong Z, Pang L, Liu Z, Sheng Y, Li X, Thibault X, Reilein A, Kalderon D, Huang J. Single-cell expression profile of Drosophila ovarian follicle stem cells illuminates spatial differentiation in the germarium. BMC Biol 2023; 21:143. [PMID: 37340484 PMCID: PMC10283321 DOI: 10.1186/s12915-023-01636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND How stem cell populations are organized and regulated within adult tissues is important for understanding cancer origins and for developing cell replacement strategies. Paradigms such as mammalian gut stem cells and Drosophila ovarian follicle stem cells (FSC) are characterized by population asymmetry, in which stem cell division and differentiation are separately regulated processes. These stem cells behave stochastically regarding their contributions to derivative cells and also exhibit dynamic spatial heterogeneity. Drosophila FSCs provide an excellent model for understanding how a community of active stem cells maintained by population asymmetry is regulated. Here, we use single-cell RNA sequencing to profile the gene expression patterns of FSCs and their immediate derivatives to investigate heterogeneity within the stem cell population and changes associated with differentiation. RESULTS We describe single-cell RNA sequencing studies of a pre-sorted population of cells that include FSCs and the neighboring cell types, escort cells (ECs) and follicle cells (FCs), which they support. Cell-type assignment relies on anterior-posterior (AP) location within the germarium. We clarify the previously determined location of FSCs and use spatially targeted lineage studies as further confirmation. The scRNA profiles among four clusters are consistent with an AP progression from anterior ECs through posterior ECs and then FSCs, to early FCs. The relative proportion of EC and FSC clusters are in good agreement with the prevalence of those cell types in a germarium. Several genes with graded profiles from ECs to FCs are highlighted as candidate effectors of the inverse gradients of the two principal signaling pathways, Wnt and JAK-STAT, that guide FSC differentiation and division. CONCLUSIONS Our data establishes an important resource of scRNA-seq profiles for FSCs and their immediate derivatives that is based on precise spatial location and functionally established stem cell identity, and facilitates future genetic investigation of regulatory interactions guiding FSC behavior.
Collapse
Affiliation(s)
- Zhi Dong
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lan Pang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Liu
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yifeng Sheng
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Xavier Thibault
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Amy Reilein
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Daniel Kalderon
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Jianhua Huang
- Institute of Insect Sciences, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
32
|
Cancedda R, Mastrogiacomo M. Transit Amplifying Cells (TACs): a still not fully understood cell population. Front Bioeng Biotechnol 2023; 11:1189225. [PMID: 37229487 PMCID: PMC10203484 DOI: 10.3389/fbioe.2023.1189225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Maintenance of tissue homeostasis and tissue regeneration after an insult are essential functions of adult stem cells (SCs). In adult tissues, SCs proliferate at a very slow rate within "stem cell niches", but, during tissue development and regeneration, before giving rise to differentiated cells, they give rise to multipotent and highly proliferative cells, known as transit-amplifying cells (TACs). Although differences exist in diverse tissues, TACs are not only a transitory phase from SCs to post-mitotic cells, but they also actively control proliferation and number of their ancestor SCs and proliferation and differentiation of their progeny toward tissue specific functional cells. Autocrine signals and negative and positive feedback and feedforward paracrine signals play a major role in these controls. In the present review we will consider the generation and the role played by TACs during development and regeneration of lining epithelia characterized by a high turnover including epidermis and hair follicles, ocular epithelial surfaces, and intestinal mucosa. A comparison between these different tissues will be made. There are some genes and molecular pathways whose expression and activation are common to most TACs regardless their tissue of origin. These include, among others, Wnt, Notch, Hedgehog and BMP pathways. However, the response to these molecular signals can vary in TACs of different tissues. Secondly, we will consider cultured cells derived from tissues of mesodermal origin and widely adopted for cell therapy treatments. These include mesenchymal stem cells and dedifferentiated chondrocytes. The possible correlation between cell dedifferentiation and reversion to a transit amplifying cell stage will be discussed.
Collapse
Affiliation(s)
- Ranieri Cancedda
- Emeritus Professor, Università degli Studi di Genova, Genoa, Italy
| | - Maddalena Mastrogiacomo
- Dipartimento di Medicina Interna e Specialità Mediche (DIMI), Università Degli Studi di Genova, Genova, Italy
| |
Collapse
|
33
|
Conway JR, Warren SC, Lee YK, McCulloch AT, Magenau A, Lee V, Metcalf XL, Stoehr J, Haigh K, Abdulkhalek L, Guaman CS, Reed DA, Murphy KJ, Pereira BA, Mélénec P, Chambers C, Latham SL, Lenthall H, Deenick EK, Ma Y, Phan T, Lim E, Joshua AM, Walters S, Grey ST, Shi YC, Zhang L, Herzog H, Croucher DR, Philp A, Scheele CL, Herrmann D, Sansom OJ, Morton JP, Papa A, Haigh JJ, Nobis M, Timpson P. Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. SCIENCE ADVANCES 2023; 9:eadf9063. [PMID: 37126544 PMCID: PMC10132756 DOI: 10.1126/sciadv.adf9063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.
Collapse
Affiliation(s)
- James R. W. Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sean C. Warren
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew T. McCulloch
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick Clinical Campus, Sydney, NSW, Australia
| | - Astrid Magenau
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Victoria Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Xanthe L. Metcalf
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Lea Abdulkhalek
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cristian S. Guaman
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel A. Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle J. Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cecilia Chambers
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sharissa L. Latham
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yuanqing Ma
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Tri Phan
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Stacey Walters
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Shane T. Grey
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David R. Croucher
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andy Philp
- School of Clinical Medicine, Randwick Clinical Campus, UNSW Sydney, Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Colinda L.G.J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Antonella Papa
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Max Nobis
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
34
|
Scharaw S, Sola-Carvajal A, Belevich I, Webb AT, Das S, Andersson S, Pentinmikko N, Villablanca EJ, Goldenring JR, Jokitalo E, Coffey RJ, Katajisto P. Golgi organization is a determinant of stem cell function in the small intestine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533814. [PMID: 36993731 PMCID: PMC10055334 DOI: 10.1101/2023.03.23.533814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cell-to-cell signalling between niche and stem cells regulates tissue regeneration. While the identity of many mediating factors is known, it is largely unknown whether stem cells optimize their receptiveness to niche signals according to the niche organization. Here, we show that Lgr5+ small intestinal stem cells (ISCs) regulate the morphology and orientation of their secretory apparatus to match the niche architecture, and to increase transport efficiency of niche signal receptors. Unlike the progenitor cells lacking lateral niche contacts, ISCs orient Golgi apparatus laterally towards Paneth cells of the epithelial niche, and divide Golgi into multiple stacks reflecting the number of Paneth cell contacts. Stem cells with a higher number of lateral Golgi transported Epidermal growth factor receptor (Egfr) with a higher efficiency than cells with one Golgi. The lateral Golgi orientation and enhanced Egfr transport required A-kinase anchor protein 9 (Akap9), and was necessary for normal regenerative capacity in vitro . Moreover, reduced Akap9 in aged ISCs renders ISCs insensitive to niche-dependent modulation of Golgi stack number and transport efficiency. Our results reveal stem cell-specific Golgi complex configuration that facilitates efficient niche signal reception and tissue regeneration, which is compromised in the aged epithelium.
Collapse
|
35
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
36
|
Evano B, Sarde L, Tajbakhsh S. Temporal static and dynamic imaging of skeletal muscle in vivo. Exp Cell Res 2023; 424:113484. [PMID: 36693490 DOI: 10.1016/j.yexcr.2023.113484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
A major challenge in the study of living systems is understanding how tissues and organs are established, maintained during homeostasis, reconstituted following injury or deteriorated during disease. Most of the studies that interrogate in vivo cell biological properties of cell populations within tissues are obtained through static imaging approaches. However, in vertebrates, little is known about which, when, and how extracellular and intracellular signals are dynamically integrated to regulate cell behaviour and fates, due largely to technical challenges. Intravital imaging of cellular dynamics in mammalian models has exposed surprising properties that have been missed by conventional static imaging approaches. Here we highlight some selected examples of intravital imaging in mouse intestinal stem cells, hematopoietic stem cells, hair follicle stem cells, and neural stem cells in the brain, each of which have distinct features from an anatomical and niche-architecture perspective. Intravital imaging of mouse skeletal muscles is comparatively less advanced due to several technical constraints that will be discussed, yet this approach holds great promise as a complementary investigative method to validate findings obtained by static imaging, as well as a method for discovery.
Collapse
Affiliation(s)
- Brendan Evano
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France
| | - Liza Sarde
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France; Sorbonne Université, Complexité Du Vivant, F-75005, Paris, France
| | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental & Stem Cell Biology, Institut Pasteur, Université Paris Cité, Paris, 75015, France; CNRS UMR 3738, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
37
|
Honda M, Kadohisa M, Yoshii D, Komohara Y, Hibi T. Intravital imaging of immune responses in intestinal inflammation. Inflamm Regen 2023; 43:9. [PMID: 36737792 PMCID: PMC9896837 DOI: 10.1186/s41232-023-00262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
To date, many kinds of immune cells have been identified, but their precise roles in intestinal immunity remain unclear. Understanding the in vivo behavior of these immune cells and their function in gastrointestinal inflammation, including colitis, inflammatory bowel disease, ischemia-reperfusion injury, and neutrophil extracellular traps, is critical for gastrointestinal research to proceed to the next step. Additionally, understanding the immune responses involved in gastrointestinal tumors and tissue repair is becoming increasingly important for the elucidation of disease mechanisms that have been unknown. In recent years, the application of intravital microscopy in gastrointestinal research has provided novel insights into the mechanisms of intestine-specific events including innate and adaptive immunities. In this review, we focus on the emerging role of intravital imaging in gastrointestinal research and describe how to observe the intestines and immune cells using intravital microscopy. Additionally, we outline novel findings obtained by this new technique.
Collapse
Affiliation(s)
- Masaki Honda
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Masashi Kadohisa
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| | - Daiki Yoshii
- grid.411152.20000 0004 0407 1295Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshihiro Komohara
- grid.274841.c0000 0001 0660 6749Department of Cell Pathology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Taizo Hibi
- grid.274841.c0000 0001 0660 6749Department of Pediatric Surgery and Transplantation, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-Ku, Kumamoto, 860-8556 Japan
| |
Collapse
|
38
|
Cook D, Manchel A, Ogunnaike BA, Vadigepalli R. Elucidating the Mechanisms of Dynamic and Robust Control of the Liver Homeostatic Renewal Process: Cell Network Modeling and Analysis. Ind Eng Chem Res 2023; 62:2275-2287. [PMID: 36787103 PMCID: PMC9912253 DOI: 10.1021/acs.iecr.2c03579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
Recent experimental investigations of liver homeostatic renewal have identified high replication capacity hepatocyte populations as the primary maintainers of liver mass. However, the molecular and cellular processes controlling liver homeostatic renewal remain unknown. To address this problem, we developed and analyzed a mathematical model describing cellular network interactions underlying liver homeostatic renewal. Model simulation results demonstrate that without feedback control, basic homeostatic renewal is not robust to disruptions, leading to tissue loss under persistent/repetitive insults. Consequently, we extended our basic model to incorporate putative regulatory interactions and investigated how such interactions may confer robustness on the homeostatic renewal process. We utilized a Design of Experiments approach to identify the combination of feedback interactions that yields a cell network model of homeostatic renewal capable of maintaining liver mass robustly during persistent/repetitive injury. Simulations of this robust model indicate that repeated injury destabilizes liver homeostasis within several months, which differs from epidemiological observations of a much slower decay of liver function occurring over several years. To address this discrepancy, we extended the model to include feedback control by liver nonparenchymal cells. Simulations and analysis of the final multicellular feedback control network suggest that achieving robust liver homeostatic renewal requires intrinsic stability in a hepatocellular network combined with feedback control by nonparenchymal cells.
Collapse
Affiliation(s)
- Daniel Cook
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States,Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States,SimBioSys,
Inc., Chicago, Illinois60601, United
States
| | - Alexandra Manchel
- Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States
| | - Babatunde A. Ogunnaike
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Rajanikanth Vadigepalli
- Daniel
Baugh Institute for Functional Genomics and Computational Biology,
Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania19107, United States,Rajanikanth
Vadigepalli E-mail:
| |
Collapse
|
39
|
Role of Wnt signaling in the maintenance and regeneration of the intestinal epithelium. Curr Top Dev Biol 2023; 153:281-326. [PMID: 36967198 DOI: 10.1016/bs.ctdb.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal epithelium plays a key role in digestion and protection against external pathogens. This tissue presents a high cellular turnover with the epithelium being completely renewed every 5days, driven by intestinal stem cells (ISCs) residing in the crypt bases. To sustain this dynamic renewal of the intestinal epithelium, the maintenance, proliferation, and differentiation of ISCs must be precisely controlled. One of the central pathways supporting ISC maintenance and dynamics is the Wnt pathway. In this chapter, we examine the role of Wnt signaling in intestinal epithelial homeostasis and tissue regeneration, including mechanisms regulating ISC identity and fine-tuning of Wnt pathway activation. We extensively discuss the contribution of the stem cell niche in maintaining Wnt signaling in the intestinal crypts that support ISC functions. The integration of these findings highlights the complex interplay of multiple niche signals and cellular components sustaining ISC behavior and maintenance, which together supports the immense plasticity of the intestinal epithelium.
Collapse
|
40
|
Corominas-Murtra B, Hannezo E. Modelling the dynamics of mammalian gut homeostasis. Semin Cell Dev Biol 2022:S1084-9521(22)00317-2. [DOI: 10.1016/j.semcdb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/26/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
41
|
Huelsz-Prince G, Kok RNU, Goos Y, Bruens L, Zheng X, Ellenbroek S, Van Rheenen J, Tans S, van Zon JS. Mother cells control daughter cell proliferation in intestinal organoids to minimize proliferation fluctuations. eLife 2022; 11:e80682. [PMID: 36445322 PMCID: PMC9708068 DOI: 10.7554/elife.80682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
During renewal of the intestine, cells are continuously generated by proliferation. Proliferation and differentiation must be tightly balanced, as any bias toward proliferation results in uncontrolled exponential growth. Yet, the inherently stochastic nature of cells raises the question how such fluctuations are limited. We used time-lapse microscopy to track all cells in crypts of growing mouse intestinal organoids for multiple generations, allowing full reconstruction of the underlying lineage dynamics in space and time. Proliferative behavior was highly symmetric between sister cells, with both sisters either jointly ceasing or continuing proliferation. Simulations revealed that such symmetric proliferative behavior minimizes cell number fluctuations, explaining our observation that proliferating cell number remained constant even as crypts increased in size considerably. Proliferative symmetry did not reflect positional symmetry but rather lineage control through the mother cell. Our results indicate a concrete mechanism to balance proliferation and differentiation with minimal fluctuations that may be broadly relevant for other tissues.
Collapse
Affiliation(s)
| | | | | | - Lotte Bruens
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | | | - Saskia Ellenbroek
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | - Jacco Van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer InstituteAmterdamNetherlands
| | | | | |
Collapse
|
42
|
Scheele CLGJ, Herrmann D, Yamashita E, Celso CL, Jenne CN, Oktay MH, Entenberg D, Friedl P, Weigert R, Meijboom FLB, Ishii M, Timpson P, van Rheenen J. Multiphoton intravital microscopy of rodents. NATURE REVIEWS. METHODS PRIMERS 2022; 2:89. [PMID: 37621948 PMCID: PMC10449057 DOI: 10.1038/s43586-022-00168-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2022] [Indexed: 08/26/2023]
Abstract
Tissues are heterogeneous with respect to cellular and non-cellular components and in the dynamic interactions between these elements. To study the behaviour and fate of individual cells in these complex tissues, intravital microscopy (IVM) techniques such as multiphoton microscopy have been developed to visualize intact and live tissues at cellular and subcellular resolution. IVM experiments have revealed unique insights into the dynamic interplay between different cell types and their local environment, and how this drives morphogenesis and homeostasis of tissues, inflammation and immune responses, and the development of various diseases. This Primer introduces researchers to IVM technologies, with a focus on multiphoton microscopy of rodents, and discusses challenges, solutions and practical tips on how to perform IVM. To illustrate the unique potential of IVM, several examples of results are highlighted. Finally, we discuss data reproducibility and how to handle big imaging data sets.
Collapse
Affiliation(s)
- Colinda L. G. J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Erika Yamashita
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Cristina Lo Celso
- Department of Life Sciences and Centre for Hematology, Imperial College London, London, UK
- Sir Francis Crick Institute, London, UK
| | - Craig N. Jenne
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
- David H. Koch Center for Applied Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franck L. B. Meijboom
- Department of Population Health Sciences, Sustainable Animal Stewardship, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- Faculty of Humanities, Ethics Institute, Utrecht University, Utrecht, Netherlands
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Department, Sydney, New South Wales, Australia
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jacco van Rheenen
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
43
|
Stojanović O, Miguel-Aliaga I, Trajkovski M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 2022; 4:1444-1458. [PMID: 36396854 DOI: 10.1038/s42255-022-00679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Ozren Stojanović
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
44
|
Ishikawa K, Sugimoto S, Oda M, Fujii M, Takahashi S, Ohta Y, Takano A, Ishimaru K, Matano M, Yoshida K, Hanyu H, Toshimitsu K, Sawada K, Shimokawa M, Saito M, Kawasaki K, Ishii R, Taniguchi K, Imamura T, Kanai T, Sato T. Identification of Quiescent LGR5 + Stem Cells in the Human Colon. Gastroenterology 2022; 163:1391-1406.e24. [PMID: 35963362 DOI: 10.1053/j.gastro.2022.07.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS In the mouse intestinal epithelium, Lgr5+ stem cells are vulnerable to injury, owing to their predominantly cycling nature, and their progenies de-differentiate to replenish the stem cell pool. However, how human colonic stem cells behave in homeostasis and during regeneration remains unknown. METHODS Transcriptional heterogeneity among colonic epithelial cells was analyzed by means of single-cell RNA sequencing analysis of human and mouse colonic epithelial cells. To trace the fate of human colonic stem or differentiated cells, we generated LGR5-tdTomato, LGR5-iCasase9-tdTomato, LGR5-split-Cre, and KRT20-ERCreER knock-in human colon organoids via genome engineering. p27+ dormant cells were further visualized with the p27-mVenus reporter. To analyze the dynamics of human colonic stem cells in vivo, we orthotopically xenotransplanted fluorescence-labeled human colon organoids into immune-deficient mice. The cell cycle dynamics in xenograft cells were evaluated using 5-ethynyl-2'-deoxyuridine pulse-chase analysis. The clonogenic capacity of slow-cycling human stem cells or differentiated cells was analyzed in the context of homeostasis, LGR5 ablation, and 5-fluorouracil-induced mucosal injury. RESULTS Single-cell RNA sequencing analysis illuminated the presence of nondividing LGR5+ stem cells in the human colon. Visualization and lineage tracing of slow-cycling LGR5+p27+ cells and orthotopic xenotransplantation validated their homeostatic lineage-forming capability in vivo, which was augmented by 5-FU-induced mucosal damage. Transforming growth factor-β signaling regulated the quiescent state of LGR5+ cells. Despite the plasticity of differentiated KRT20+ cells, they did not display clonal growth after 5-FU-induced injury, suggesting that occupation of the niche environment by LGR5+p27+ cells prevented neighboring differentiated cells from de-differentiating. CONCLUSIONS Our results highlight the quiescent nature of human LGR5+ colonic stem cells and their contribution to post-injury regeneration.
Collapse
Affiliation(s)
- Keiko Ishikawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Ai Takano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuhiro Ishimaru
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Hanyu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kohta Toshimitsu
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Center for Integrated Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Mariko Shimokawa
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga, Japan
| | - Kenta Kawasaki
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan; Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Koji Taniguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
45
|
Solovieva T, Wilson V, Stern CD. A niche for axial stem cells - A cellular perspective in amniotes. Dev Biol 2022; 490:13-21. [PMID: 35779606 PMCID: PMC10497457 DOI: 10.1016/j.ydbio.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/19/2022] [Accepted: 06/25/2022] [Indexed: 11/24/2022]
Abstract
The head-tail axis in birds and mammals develops from a growth zone in the tail-end, which contains the node. This growth zone then forms the tailbud. Labelling experiments have shown that while many cells leave the node and tailbud to contribute to axial (notochord, floorplate) and paraxial (somite) structures, some cells remain resident in the node and tailbud. Could these cells be resident axial stem cells? If so, do the node and tailbud represent an instructive stem cell niche that specifies and maintains these stem cells? Serial transplantation and single cell labelling studies support the existence of self-renewing stem cells and heterotopic transplantations suggest that the node can instruct such self-renewing behaviour. However, only single cell manipulations can reveal whether self-renewing behaviour occurs at the level of a cell population (asymmetric or symmetric cell divisions) or at the level of single cells (asymmetric divisions only). We combine data on resident cells in the node and tailbud and review it in the context of axial development in chick and mouse, summarising our current understanding of axial stem cells and their niche and highlighting future directions of interest.
Collapse
Affiliation(s)
- Tatiana Solovieva
- Department of Cell and Developmental Biology, University College London, UK
| | - Valerie Wilson
- Centre for Regenerative Medicine, The University of Edinburgh, UK
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, UK.
| |
Collapse
|
46
|
Laws KM, Bashaw GJ. Diverse roles for axon guidance pathways in adult tissue architecture and function. NATURAL SCIENCES (WEINHEIM, GERMANY) 2022; 2:e20220021. [PMID: 37456985 PMCID: PMC10346896 DOI: 10.1002/ntls.20220021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Classical axon guidance ligands and their neuronal receptors were first identified due to their fundamental roles in regulating connectivity in the developing nervous system. Since their initial discovery, it has become clear that these signaling molecules play important roles in the development of a broad array of tissue and organ systems across phylogeny. In addition to these diverse developmental roles, there is a growing appreciation that guidance signaling pathways have important functions in adult organisms, including the regulation of tissue integrity and homeostasis. These roles in adult organisms include both tissue-intrinsic activities of guidance molecules, as well as systemic effects on tissue maintenance and function mediated by the nervous and vascular systems. While many of these adult functions depend on mechanisms that mirror developmental activities, such as regulating adhesion and cell motility, there are also examples of adult roles that may reflect signaling activities that are distinct from known developmental mechanisms, including the contributions of guidance signaling pathways to lineage commitment in the intestinal epithelium and bone remodeling in vertebrates. In this review, we highlight studies of guidance receptors and their ligands in adult tissues outside of the nervous system, focusing on in vivo experimental contexts. Together, these studies lay the groundwork for future investigation into the conserved and tissue-specific mechanisms of guidance receptor signaling in adult tissues.
Collapse
Affiliation(s)
- Kaitlin M. Laws
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Current address: Department of Biology, Randolph-Macon College, Ashland, VA 23005, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Colozza G, Park SY, Koo BK. Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Exp Mol Med 2022; 54:1367-1378. [PMID: 36117218 PMCID: PMC9534868 DOI: 10.1038/s12276-022-00854-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
The small intestine is among the fastest self-renewing tissues in adult mammals. This rapid turnover is fueled by the intestinal stem cells residing in the intestinal crypt. Wnt signaling plays a pivotal role in regulating intestinal stem cell renewal and differentiation, and the dysregulation of this pathway leads to cancer formation. Several studies demonstrate that intestinal stem cells follow neutral drift dynamics, as they divide symmetrically to generate other equipotent stem cells. Competition for niche space and extrinsic signals in the intestinal crypt is the governing mechanism that regulates stemness versus cell differentiation, but the underlying molecular mechanisms are still poorly understood, and it is not yet clear how this process changes during disease. In this review, we highlight the mechanisms that regulate stem cell homeostasis in the small intestine, focusing on Wnt signaling and its regulation by RNF43 and ZNRF3, key inhibitors of the Wnt pathway. Furthermore, we summarize the evidence supporting the current model of intestinal stem cell regulation, highlighting the principles of neutral drift at the basis of intestinal stem cell homeostasis. Finally, we discuss recent studies showing how cancer cells bypass this mechanism to gain a competitive advantage against neighboring normal cells. Stem cells in the gut rapidly renew themselves through processes that cancer cells co-opt to trigger tumor development. Gabriele Colozza from the Institute of Molecular Biotechnology in Vienna, Austria, and colleagues review how a network of critical molecular signals and competition for limited space help to regulate the dynamics of stem cells in the intestines. The correct balance between self-renewal and differentiation is tightly controlled by the so-called Wnt signaling pathway and its inhibitors. Competition between dividing cells in the intestinal crypts, the locations between finger-like protrusions in the gut where stem cells are found, provides another protective mechanism against runaway stem cell growth. However, intestinal cancer cells, thanks to their activating mutations, bypass these safeguards to gain a survival advantage. Drugs that target these ‘super-competitive’ behaviors could therefore help combat tumor proliferation.
Collapse
|
48
|
Yamamoto T, Cockburn K, Greco V, Kawaguchi K. Probing the rules of cell coordination in live tissues by interpretable machine learning based on graph neural networks. PLoS Comput Biol 2022; 18:e1010477. [PMID: 36067226 PMCID: PMC9481156 DOI: 10.1371/journal.pcbi.1010477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/16/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Robustness in developing and homeostatic tissues is supported by various types of spatiotemporal cell-to-cell interactions. Although live imaging and cell tracking are powerful in providing direct evidence of cell coordination rules, extracting and comparing these rules across many tissues with potentially different length and timescales of coordination requires a versatile framework of analysis. Here we demonstrate that graph neural network (GNN) models are suited for this purpose, by showing how they can be applied to predict cell fate in tissues and utilized to infer the cell interactions governing the multicellular dynamics. Analyzing the live mammalian epidermis data, where spatiotemporal graphs constructed from cell tracks and cell contacts are given as inputs, GNN discovers distinct neighbor cell fate coordination rules that depend on the region of the body. This approach demonstrates how the GNN framework is powerful in inferring general cell interaction rules from live data without prior knowledge of the signaling involved.
Collapse
Affiliation(s)
- Takaki Yamamoto
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Katie Cockburn
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Biochemistry and Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kyogo Kawaguchi
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- RIKEN Cluster for Pioneering Research, Kobe, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
49
|
Robinson PS, Thomas LE, Abascal F, Jung H, Harvey LMR, West HD, Olafsson S, Lee BCH, Coorens THH, Lee-Six H, Butlin L, Lander N, Truscott R, Sanders MA, Lensing SV, Buczacki SJA, Ten Hoopen R, Coleman N, Brunton-Sim R, Rushbrook S, Saeb-Parsy K, Lalloo F, Campbell PJ, Martincorena I, Sampson JR, Stratton MR. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat Commun 2022; 13:3949. [PMID: 35803914 PMCID: PMC9270427 DOI: 10.1038/s41467-022-31341-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/14/2022] [Indexed: 12/21/2022] Open
Abstract
Cellular DNA damage caused by reactive oxygen species is repaired by the base excision repair (BER) pathway which includes the DNA glycosylase MUTYH. Inherited biallelic MUTYH mutations cause predisposition to colorectal adenomas and carcinoma. However, the mechanistic progression from germline MUTYH mutations to MUTYH-Associated Polyposis (MAP) is incompletely understood. Here, we sequence normal tissue DNAs from 10 individuals with MAP. Somatic base substitution mutation rates in intestinal epithelial cells were elevated 2 to 4-fold in all individuals, except for one showing a 31-fold increase, and were also increased in other tissues. The increased mutation burdens were of multiple mutational signatures characterised by C > A changes. Different mutation rates and signatures between individuals are likely due to different MUTYH mutations or additional inherited mutations in other BER pathway genes. The elevated base substitution rate in normal cells likely accounts for the predisposition to neoplasia in MAP. Despite ubiquitously elevated mutation rates, individuals with MAP do not display overt evidence of premature ageing. Thus, accumulation of somatic mutations may not be sufficient to cause the global organismal functional decline of ageing.
Collapse
Affiliation(s)
- Philip S Robinson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Laura E Thomas
- Institute of Life Science, Swansea University, Swansea, SA28PP, UK
| | - Federico Abascal
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hyunchul Jung
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Luke M R Harvey
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Hannah D West
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Sigurgeir Olafsson
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Bernard C H Lee
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Hereditary Gastrointestinal Cancer Genetic Diagnosis Laboratory, Department of Pathology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tim H H Coorens
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Henry Lee-Six
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Laura Butlin
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Nicola Lander
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Rebekah Truscott
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Haematology, Erasmus University Medical Centre, 3015 CN, Rotterdam, The Netherlands
| | - Stefanie V Lensing
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Simon J A Buczacki
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Simon Rushbrook
- Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Oxford Road, Manchester, UK
| | - Peter J Campbell
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Iñigo Martincorena
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Julian R Sampson
- Institute of Medical Genetics, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
| |
Collapse
|
50
|
Fowler JC, Jones PH. Somatic Mutation: What Shapes the Mutational Landscape of Normal Epithelia? Cancer Discov 2022; 12:1642-1655. [PMID: 35397477 PMCID: PMC7613026 DOI: 10.1158/2159-8290.cd-22-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
Epithelial stem cells accumulate mutations throughout life. Some of these mutants increase competitive fitness and may form clones that colonize the stem cell niche and persist to acquire further genome alterations. After a transient expansion, mutant stem cells must revert to homeostatic behavior so normal tissue architecture is maintained. Some positively selected mutants may promote cancer development, whereas others inhibit carcinogenesis. Factors that shape the mutational landscape include wild-type and mutant stem cell dynamics, competition for the niche, and environmental exposures. Understanding these processes may give new insight into the basis of cancer risk and opportunities for cancer prevention. SIGNIFICANCE Recent advances in sequencing have found somatic mutations in all epithelial tissues studied to date. Here we review how the mutational landscape of normal epithelia is shaped by clonal competition within the stem cell niche combined with environmental exposures. Some of the selected mutant genes are oncogenic, whereas others may be inhibitory of transformation. Discoveries in this area leave many open questions, such as the definition of cancer driver genes, the mechanisms by which tissues constrain a high proportion of oncogenic mutant cells, and whether clonal fitness can be modulated to decrease cancer risk.
Collapse
Affiliation(s)
| | - Philip H Jones
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| |
Collapse
|