1
|
Mikhalchenko A, Gutierrez NM, Frana D, Safaei Z, Van Dyken C, Li Y, Ma H, Koski A, Liang D, Lee SG, Amato P, Mitalipov S. Induction of somatic cell haploidy by premature cell division. SCIENCE ADVANCES 2024; 10:eadk9001. [PMID: 38457500 PMCID: PMC10923512 DOI: 10.1126/sciadv.adk9001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Canonical mitotic and meiotic cell divisions commence with replicated chromosomes consisting of two sister chromatids. Here, we developed and explored a model of premature cell division, where nonreplicated, G0/G1-stage somatic cell nuclei are transplanted to the metaphase cytoplasm of mouse oocytes. Subsequent cell division generates daughter cells with reduced ploidy. Unexpectedly, genome sequencing analysis revealed proper segregation of homologous chromosomes, resulting in complete haploid genomes. We observed a high occurrence of somatic genome haploidization in nuclei from inbred genetic backgrounds but not in hybrids, emphasizing the importance of sequence homology between homologs. These findings suggest that premature cell division relies on mechanisms similar to meiosis I, where genome haploidization is facilitated by homologous chromosome interactions, recognition, and pairing. Unlike meiosis, no evidence of recombination between somatic cell homologs was detected. Our study offers an alternative in vitro gametogenesis approach by directly reprogramming diploid somatic cells into haploid oocytes.
Collapse
Affiliation(s)
- Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Daniel Frana
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022 Anhui, China
| | - Sang-Goo Lee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
Wen MH, Barbosa Triana H, Butler R, Hu HW, Dai YH, Lawrence N, Hong JJ, Garrett N, Jones-Green R, Rawlins EL, Dong Z, Koziol MJ, Gurdon JB. Deterministic nuclear reprogramming of mammalian nuclei to a totipotency-like state by Amphibian meiotic oocytes for stem cell therapy in humans. Biol Open 2024; 13:bio060011. [PMID: 37982514 PMCID: PMC10924218 DOI: 10.1242/bio.060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The ultimate aim of nuclear reprogramming is to provide stem cells or differentiated cells from unrelated cell types as a cell source for regenerative medicine. A popular route towards this is transcription factor induction, and an alternative way is an original procedure of transplanting a single somatic cell nucleus to an unfertilized egg. A third route is to transplant hundreds of cell nuclei into the germinal vesicle (GV) of a non-dividing Amphibian meiotic oocyte, which leads to the activation of silent genes in 24 h and robustly induces a totipotency-like state in almost all transplanted cells. We apply this third route for potential therapeutic use and describe a procedure by which the differentiated states of cells can be reversed so that totipotency and pluripotency gene expression are regained. Differentiated cells are exposed to GV extracts and are reprogrammed to form embryoid bodies, which shows the maintenance of stemness and could be induced to follow new directions of differentiation. We conclude that much of the reprogramming effect of eggs is already present in meiotic oocytes and does not require cell division or selection of dividing cells. Reprogrammed cells by oocytes could serve as replacements for defective adult cells in humans.
Collapse
Affiliation(s)
- Ming-Hsuan Wen
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| | - Hector Barbosa Triana
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Hsiang-Wei Hu
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310401, Taiwan
| | - Yang-Hong Dai
- Department of Artificial Intelligence in Healthcare, International Academia of Biomedical Innovation Technology, Taipei 10488, Taiwan
- Department of Radiation Oncology, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Nicola Lawrence
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Jun-Jie Hong
- Scientific Research Services, Phalanx Biotech Group, Hsinchu 30077, Taiwan
| | - Nigel Garrett
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Rue Jones-Green
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L. Rawlins
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ziqi Dong
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Magdalena J. Koziol
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Chinese Institute for Brain Research, Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences Beijing 102206, China
| | - J. B. Gurdon
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology University of Cambridge, Cambridge CB2 1QN, UK
- Department of Zoology, University of Cambridge, Cambridge CB3 3EJ, UK
| |
Collapse
|
3
|
Busselez J, Uzbekov RE, Franco B, Pancione M. New insights into the centrosome-associated spliceosome components as regulators of ciliogenesis and tissue identity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1776. [PMID: 36717357 DOI: 10.1002/wrna.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 02/01/2023]
Abstract
Biomolecular condensates are membrane-less assemblies of proteins and nucleic acids. Centrosomes are biomolecular condensates that play a crucial role in nuclear division, cytoskeletal remodeling, and cilia formation in animal cells. Spatial omics technology is providing new insights into the dynamic exchange of spliceosome components between the nucleus and the centrosome/cilium. Intriguingly, centrosomes are emerging as cytoplasmic sites for information storage, enriched with RNA molecules and RNA-processing proteins. Furthermore, growing evidence supports the view that nuclear spliceosome components assembled at the centrosome function as potential coordinators of splicing subprograms, pluripotency, and cell differentiation. In this article, we first discuss the current understanding of the centrosome/cilium complex, which controls both stem cell differentiation and pluripotency. We next explore the molecular mechanisms that govern splicing factor assembly and disassembly around the centrosome and examine how RNA processing pathways contribute to ciliogenesis. Finally, we discuss numerous unresolved compelling questions regarding the centrosome-associated spliceosome components and transcript variants within the cytoplasm as sources of RNA-based secondary messages in the regulation of cell identity and cell fate determination. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > RNA Processing.
Collapse
Affiliation(s)
- Johan Busselez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France
| | - Rustem E Uzbekov
- Faculté de Médecine, Université de Tours, Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples "Federico II", Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University Madrid, Madrid, Spain
| |
Collapse
|
4
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
5
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
6
|
Nuclear transfer system for the direct induction of embryonic transcripts from intra- and cross-species nuclei using mouse 4-cell embryos. STAR Protoc 2022; 3:101284. [PMID: 35463476 PMCID: PMC9019708 DOI: 10.1016/j.xpro.2022.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reprogramming of somatic nuclei toward the embryonic state has been studied using nuclear transfer (NT) to an oocyte at the metaphase II (MII) stage. In this NT, a somatic nucleus transplanted into an MII oocyte of the same species undergoes DNA replication and cell division before activating embryonic genes. Here, we describe a direct NT protocol using 4-cell stage mouse embryos that enables reprogramming of intra- and cross-species nuclei to express embryonic genes without requiring DNA replication and cell division. For complete details on the use and execution of this protocol, please refer to Tomikawa et al. (2021). Protocol to induce embryonic transcription from mammalian differentiated cells Nuclear transfer to mouse 4-cell embryos arrested at G2/M phase Cross-species nuclei are transcriptionally reprogrammed in mouse embryos Detection of newly transcribed genes from multi-species and -strains samples
Collapse
|
7
|
Efficient method for generating homozygous embryonic stem cells in mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Lee Y, Trout A, Marti-Gutierrez N, Kang S, Xie P, Mikhalchenko A, Kim B, Choi J, So S, Han J, Xu J, Koski A, Ma H, Yoon JD, Van Dyken C, Darby H, Liang D, Li Y, Tippner-Hedges R, Xu F, Amato P, Palermo GD, Mitalipov S, Kang E. Haploidy in somatic cells is induced by mature oocytes in mice. Commun Biol 2022; 5:95. [PMID: 35079104 PMCID: PMC8789866 DOI: 10.1038/s42003-022-03040-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Haploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN). Upon culture, 18% of somatic-sperm zygotes reach the blastocyst stage, and 16% of them possess heterozygous diploid genomes consisting of somatic haploid and sperm homologs across all chromosomes. We also generate embryonic stem cells and live offspring from somatic-sperm embryos. Our finding may offer an alternative strategy for generating oocytes carrying somatic genomes.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Aysha Trout
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoon Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Bitnara Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jiwan Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seongjun So
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jing Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Junchul David Yoon
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fuhua Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
| |
Collapse
|
9
|
FULKA H, LOI P, PALAZZESE L, BENC M, FULKA, Jr. J. Nucleus reprogramming/remodeling through selective enucleation (SE) of immature oocytes and zygotes: a nucleolus point of view. J Reprod Dev 2022; 68:165-172. [PMID: 35431279 PMCID: PMC9184824 DOI: 10.1262/jrd.2022-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is now approximately 25 years since the sheep Dolly, the first cloned mammal where the somatic cell nucleus from an adult donor was used for transfer, was born. So far, somatic cell
nucleus transfer, where G1-phase nuclei are transferred into cytoplasts obtained by enucleation of mature metaphase II (MII) oocytes followed by the activation of the reconstructed cells, is
the most efficient approach to reprogram/remodel the differentiated nucleus. In general, in an enucleated oocyte (cytoplast), the nuclear envelope (NE, membrane) of an injected somatic cell
nucleus breaks down and chromosomes condense. This condensation phase is followed, after subsequent activation, by chromatin decondensation and formation of a pseudo-pronucleus (i) whose
morphology should resemble the natural postfertilization pronuclei (PNs). Thus, the volume of the transferred nuclei increases considerably by incorporating the content released from the
germinal vesicles (GVs). In parallel, the transferred nucleus genes must be reset and function similarly as the relevant genes in normal embryo reprogramming. This, among others, covers the
relevant epigenetic modifications and the appropriate organization of chromatin in pseudo-pronuclei. While reprogramming in SCNT is often discussed, the remodeling of transferred nuclei is
much less studied, particularly in the context of the developmental potential of SCNT embryos. It is now evident that correct reprogramming mirrors appropriate remodeling. At the same time,
it is widely accepted that the process of rebuilding the nucleus following SCNT is instrumental to the overall success of this procedure. Thus, in our contribution, we will mostly focus on
the remodeling of transferred nuclei. In particular, we discuss the oocyte organelles that are essential for the development of SCNT embryos.
Collapse
Affiliation(s)
- Helena FULKA
- Institute of Experimental Medicine, Prague, Czech Republic
| | - Pasqualino LOI
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca PALAZZESE
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland
| | - Michal BENC
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Slovak Republic
| | | |
Collapse
|
10
|
Yoshizawa-Sugata N, Yamazaki S, Mita-Yoshida K, Ono T, Nishito Y, Masai H. Loss of full-length DNA replication regulator Rif1 in two-cell embryos is associated with zygotic transcriptional activation. J Biol Chem 2021; 297:101367. [PMID: 34736895 PMCID: PMC8686075 DOI: 10.1016/j.jbc.2021.101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Rif1 regulates DNA replication timing and double-strand break repair, and its depletion induces transcriptional bursting of two-cell (2C) zygote-specific genes in mouse ES cells. However, how Rif1 regulates zygotic transcription is unclear. We show here that Rif1 depletion promotes the formation of a unique Zscan4 enhancer structure harboring both histone H3 lysine 27 acetylation (H3K27ac) and moderate levels of silencing chromatin mark H3K9me3. Curiously, another enhancer mark H3K4me1 is missing, whereas DNA methylation is still maintained in the structure, which spreads across gene bodies and neighboring regions within the Zscan4 gene cluster. We also found by function analyses of Rif1 domains in ES cells that ectopic expression of Rif1 lacking N-terminal domain results in upregulation of 2C transcripts. This appears to be caused by dominant negative inhibition of endogenous Rif1 protein localization at the nuclear periphery through formation of hetero-oligomers between the N-terminally truncated and endogenous forms. Strikingly, in murine 2C embryos, most of Rif1-derived polypeptides are expressed as truncated forms in soluble nuclear or cytosolic fraction and are likely nonfunctional. Toward the morula stage, the full-length form of Rif1 gradually increased. Our results suggest that the absence of the functional full-length Rif1 due to its instability or alternative splicing and potential inactivation of Rif1 through dominant inhibition by N-terminally truncated Rif1 polypeptides may be involved in 2C-specific transcription program.
Collapse
Key Words
- 2c, two-cell (embryo)
- 4-oht, 4-hydroxytamoxifen
- dox, doxycycline
- erv, endogenous retrovirus
- es, embryonic stem
- hpf, hours post fertilization
- idr, intrinsic disordered region
- ivf, in vitro fertilization
- kd, knockdown
- ko, knockout
- rt, room temperature
Collapse
Affiliation(s)
| | - Satoshi Yamazaki
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kaoru Mita-Yoshida
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomio Ono
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
11
|
Cell division- and DNA replication-free reprogramming of somatic nuclei for embryonic transcription. iScience 2021; 24:103290. [PMID: 34849463 PMCID: PMC8609233 DOI: 10.1016/j.isci.2021.103290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
Nuclear transfer systems represent the efficient means to reprogram a cell and in theory provide a basis for investigating the development of endangered species. However, conventional nuclear transfer using oocytes of laboratory animals does not allow reprogramming of cross-species nuclei owing to defects in cell divisions and activation of embryonic genes. Here, we show that somatic nuclei transferred into mouse four-cell embryos arrested at the G2/M phase undergo reprogramming toward the embryonic state. Remarkably, genome-wide transcriptional reprogramming is induced within a day, and ZFP281 is important for this replication-free reprogramming. This system further enables transcriptional reprogramming of cells from Oryx dammah, now extinct in the wild. Thus, our findings indicate that arrested mouse embryos are competent to induce intra- and cross-species reprogramming. The direct induction of embryonic transcripts from diverse genomes paves a unique approach for identifying mechanisms of transcriptional reprogramming and genome activation from a diverse range of species.
Collapse
|
12
|
Roy PK, Qamar AY, Tanga BM, Fang X, Kim G, Bang S, Cho J. Enhancing Oocyte Competence With Milrinone as a Phosphodiesterase 3A Inhibitor to Improve the Development of Porcine Cloned Embryos. Front Cell Dev Biol 2021; 9:647616. [PMID: 33996810 PMCID: PMC8120234 DOI: 10.3389/fcell.2021.647616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to investigate the effect of milrinone supplementation as a phosphodiesterase 3A inhibitor during in vitro maturation (IVM) to coordinate the cytoplasmic and nuclear maturation of porcine oocytes and subsequent development of porcine cloned embryos. Brilliant cresyl blue (BCB)-stained (BCB +) oocytes, classified as well-developed, and BCB− oocytes were used in parthenogenesis (PA) and cloning, and their preimplantation development was compared. In PA embryos, BCB + oocytes had significantly higher rates of development than BCB− oocytes in terms of maturation (87.5 vs. 71.3%), cleavage (88.6 vs. 76.3%), and blastocyst development (34.3 vs. 25.3%) and also had higher cell numbers (46.9 vs. 38.9%), respectively (p < 0.05). In cloned embryos, the BCB + group also had a significantly higher blastocyst formation rate than the BCB− group (30.6 vs. 20.1%; p < 0.05). Supplementation with 75 μM milrinone during IVM of BCB− oocytes showed improvement in maturation and blastocyst development rates, which may be due to the coordinated maturation of the cytoplasm with the nucleus as an effect of milrinone. Moreover, the analysis of nuclear reprogramming via the examination of the expression levels of the reprogramming-related genes POU5F1, DPPA2, and NDP52IL in milrinone-supplemented BCB− oocytes showed higher expression levels than that in non-treated BCB− oocytes. These findings demonstrate that milrinone is useful in improving developmental competence in less competent oocytes during IVM and for proper nuclear reprogramming in the production of porcine cloned embryos by coordinating cytoplasmic and nucleus maturation.
Collapse
Affiliation(s)
- Pantu Kumar Roy
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Ahmad Yar Qamar
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.,College of Veterinary and Animal Sciences, Jhang, Sub-campus of University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea.,Faculty of Veterinary Medicine, Hawassa University, Hawassa, Ethiopia
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Ghangyong Kim
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
13
|
Parthenogenetic activation of buffalo ( Bubalus bubalis) oocytes: comparison of different activation reagents and different media on their developmental competence and quantitative expression of developmentally regulated genes. ZYGOTE 2020; 29:49-58. [PMID: 33004105 DOI: 10.1017/s0967199420000519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study was carried out to compare the efficacy of different methods to activate buffalo A + B and C + D quality oocytes parthenogenetically and to study the in vitro developmental competence of oocytes and expression of some important genes at the different developmental stages of parthenotes. The percentage of A + B oocytes (62.16 ± 5.06%, range 53.8-71.3%) was significantly higher (P < 0.001) compared with that of C + D oocytes (37.8 ± 5.00%, range 28.6-46.1%) retrieved from slaughterhouse buffalo ovaries. Among all combinations, ethanol activation followed by culture in research vitro cleave medium gave the highest cleavage and blastocyst yields for both A + B and C + D grade oocytes. Total cell numbers, inner cell mass/trophectoderm ratio and apoptotic index of A + B group blastocysts were significantly different (P < 0.05) from their C + D counterpart. To determine the status of expression patterns of developmentally regulated genes, the expression of cumulus-oocyte complexes, fertilization, developmental competence and apoptotic-related genes were also studied in parthenogenetically produced buffalo embryos at different stages, and indicated that the differential expression patterns of the above genes had a role in early embryonic development.
Collapse
|
14
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
15
|
Hu K. On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote? Stem Cells Dev 2020; 28:897-906. [PMID: 31122174 PMCID: PMC6648208 DOI: 10.1089/scd.2019.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian zygote is described as a totipotent cell in the literature, but this characterization is elusive ignoring the molecular underpinnings. Totipotency can connote genetic totipotency, epigenetic totipotency, or the reprogramming capacity of a cell to epigenetic totipotency. Here, the implications of these concepts are discussed in the context of the properties of the zygote. Although genetically totipotent as any diploid somatic cell is, a zygote seems not totipotent transcriptionally, epigenetically, or functionally. Yet, a zygote may retain most of the key factors from its parental oocyte to reprogram an implanted differentiated genome or the zygote genome toward totipotency. This totipotent reprogramming process may extend to blastomeres in the two-cell-stage embryo. Thus, a revised alternative model of mammalian cellular totipotency is proposed, in which an epigenetically totipotent cell exists after the major embryonic genome activation and before the separation of the first two embryonic lineages.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
16
|
High Homology-Directed Repair Using Mitosis Phase and Nucleus Localizing Signal. Int J Mol Sci 2020; 21:ijms21113747. [PMID: 32466470 PMCID: PMC7312558 DOI: 10.3390/ijms21113747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/24/2020] [Indexed: 12/26/2022] Open
Abstract
In homology-directed repair, mediated knock-in single-stranded oligodeoxynucleotides (ssODNs) can be used as a homologous template and present high efficiency, but there is still a need to improve efficiency. Previous studies have mainly focused on controlling double-stranded break size, ssODN stability, and the DNA repair cycle. Nevertheless, there is a lack of research on the correlation between the cell cycle and single-strand template repair (SSTR) efficiency. Here, we investigated the relationship between cell cycle and SSTR efficiency. We found higher SSTR efficiency during mitosis, especially in the metaphase and anaphase. A Cas9 protein with a nuclear localization signal (NLS) readily migrated to the nucleus; however, the nuclear envelope inhibited the nuclear import of many nucleotide templates. This seemed to result in non-homologous end joining (NHEJ) before the arrival of the homologous template. Thus, we assessed whether NLS-tagged ssODNs and free NLS peptides could circumvent problems posed by the nuclear envelope. NLS-tagging ssODNs enhanced SSTR and indel efficiency by 4-fold compared to the control. Our results suggest the following: (1) mitosis is the optimal phase for SSTR, (2) the donor template needs to be delivered to the nucleus before nuclease delivery, and (3) NLS-tagging ssODNs improve SSTR efficiency, especially high in mitosis.
Collapse
|
17
|
Ma H, Hayama T, Van Dyken C, Darby H, Koski A, Lee Y, Gutierrez NM, Yamada S, Li Y, Andrews M, Ahmed R, Liang D, Gonmanee T, Kang E, Nasser M, Kempton B, Brigande J, McGill TJ, Terzic A, Amato P, Mitalipov S. Deleterious mtDNA mutations are common in mature oocytes. Biol Reprod 2020; 102:607-619. [PMID: 31621839 PMCID: PMC7068114 DOI: 10.1093/biolre/ioz202] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Heritable mitochondrial DNA (mtDNA) mutations are common, yet only a few recurring pathogenic mtDNA variants account for the majority of known familial cases in humans. Purifying selection in the female germline is thought to be responsible for the elimination of most harmful mtDNA mutations during oogenesis. Here we show that deleterious mtDNA mutations are abundant in ovulated mature mouse oocytes and preimplantation embryos recovered from PolG mutator females but not in their live offspring. This implies that purifying selection acts not in the maternal germline per se, but during post-implantation development. We further show that oocyte mtDNA mutations can be captured and stably maintained in embryonic stem cells and then reintroduced into chimeras, thereby allowing examination of the effects of specific mutations on fetal and postnatal development.
Collapse
Affiliation(s)
- Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Tomonari Hayama
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Yeonmi Lee
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Nuria Marti Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Michael Andrews
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Riffat Ahmed
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Thanasup Gonmanee
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Eunju Kang
- Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil Songpa-gu, Seoul 05505, Republic of Korea
| | - Mohammed Nasser
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| | - Beth Kempton
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - John Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Trevor J McGill
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, 3375 S.W. Terwilliger Blvd, Portland, Oregon 97239, USA
| | - Andre Terzic
- Department of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97239, USA
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health & Science University, 3303 S.W. Bond Avenue, Portland, Oregon 97239, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 N.W. 185th Avenue, Beaverton, Oregon 97006, USA
| |
Collapse
|
18
|
Abstract
Maternal factors stored in eggs and oocytes are necessary for reprogramming sperm for embryonic development. This reprogramming activity of maternal factors also works towards somatic cells, including terminally differentiated cells. Several different experimental systems utilizing egg and oocyte materials have been applied to study nuclear reprogramming by maternal factors. Among these systems, the most widely used is the transfer of a somatic cell nucleus to an oocyte arrested at the metaphase II stage, leading to the production of a cloned animal. Nuclear transfer to an unfertilized oocyte thus provides a unique opportunity to examine reprogramming processes involved in acquiring totipotency. Other experimental systems are also available to study maternal reprogramming, such as nuclear transfer to Xenopus laevis oocytes at the germinal vesicle stage, treatment with extracts obtained from eggs or oocytes, and induced pluripotency with overexpressed maternal factors. Each system can be used for answering different types of scientific questions. This review describes currently available reprogramming systems using egg and oocyte materials and discusses how we can deepen our understanding of reprogramming mechanisms by taking advantage of these various experimental systems.
Collapse
Affiliation(s)
- Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
19
|
Wu F, Liu Y, Wu Q, Li D, Zhang L, Wu X, Wang R, Zhang D, Gao S, Li W. Long non-coding RNAs potentially function synergistically in the cellular reprogramming of SCNT embryos. BMC Genomics 2018; 19:631. [PMID: 30139326 PMCID: PMC6107955 DOI: 10.1186/s12864-018-5021-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/15/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), a type of epigenetic regulator, are thought to play important roles in embryonic development in mice, and several developmental defects are associated with epigenetic modification disorders. The most dramatic epigenetic reprogramming event occurs during somatic cell nuclear transfer (SCNT) when the expression profile of a differentiated cell is abolished, and a newly embryo-specific expression profile is established. However, the molecular mechanism underlying somatic reprogramming remains unclear, and the dynamics and functions of lncRNAs in this process have not yet been illustrated, resulting in inefficient reprogramming. RESULTS In this study, 63 single-cell RNA-seq libraries were first generated and sequenced. A total of 7009 mouse polyadenylation lncRNAs (including 5204 novel lncRNAs) were obtained, and a comprehensive analysis of in vivo and SCNT mouse pre-implantation embryo lncRNAs was further performed based on our single-cell RNA sequencing data. Expression profile analysis revealed that lncRNAs were expressed in a developmental stage-specific manner during mouse early-stage embryonic development, whereas a more temporal and spatially specific expression pattern was identified in mouse SCNT embryos with changes in the state of chromatin during somatic cell reprogramming, leading to incomplete zygotic genome activation, oocyte to embryo transition and 2-cell to 4-cell transition. No obvious differences between other stages and mouse NTC or NTM embryos at the same stage were observed. Gene oncology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and weighted gene co-expression network analysis (WGCNA) of lncRNAs and their association with known protein-coding genes suggested that several lncRNAs and their associated with known protein-coding genes might be involved in mouse embryonic development and cell reprogramming. CONCLUSIONS This is a novel report on the expression landscapes of lncRNAs of mouse NT embryos by scRNA-seq analysis. This study will provide insight into the molecular mechanism underlying the involvement of lncRNAs in mouse pre-implantation embryonic development and epigenetic reprogramming in mammalian species after SCNT-based cloning.
Collapse
Affiliation(s)
- Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Qingqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Dengkun Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xiaoqing Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Di Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Shaorong Gao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|
20
|
Gonzalez-Munoz E, Cibelli JB. Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells Dev 2018; 27:871-887. [DOI: 10.1089/scd.2018.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Elena Gonzalez-Munoz
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN), Málaga, Spain
| | - Jose B. Cibelli
- LARCEL, Andalusian Laboratory of Cell Reprogramming (LARCel), Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
- Department of Animal Science, Michigan State University, East Lansing, MI
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI
| |
Collapse
|
21
|
Min B, Park JS, Kang YK. Determination of Oocyte-Manipulation, Zygote-Manipulation, and Genome-Reprogramming Effects on the Transcriptomes of Bovine Blastocysts. Front Genet 2018; 9:143. [PMID: 29740477 PMCID: PMC5928200 DOI: 10.3389/fgene.2018.00143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/06/2018] [Indexed: 12/21/2022] Open
Abstract
Somatic cell nuclear transfer (scNT) embryos suffer from damage caused by micro-operation (manipulation) and inefficient genome reprograming that hinder their normal development at different levels and in distinct ways. These two effects are inseparable in the nature of the scNT embryo, although methods to separately measure them are needed to improve scNT technology and evaluate incoming reprogramming tools. As an attempt to meet these demands, we made bovine sham nuclear-transfer (shNT) blastocysts, special embryos made with a standard nuclear-transfer procedure at the zygote stage, while retaining an intact genome. We compared their transcriptomes with those of other blastocysts derived by in-vitro fertilization (IVF) or scNT. Correlation analysis revealed a singularity of shNT blastocysts as they separately gathered from the others. Analysis of developmentally important genes revealed that, in shNTs, the stemness-associated differentially expressed genes (DEGs), including OCT4, were mostly underrepresented. Overrepresented epi-driver genes were largely associated with heterochromatin establishment and maintenance. By multilateral comparisons of their transcriptomes, we classified DEGs into three groups: 561 manipulation-associated DEGs (MADs) common to shNTs and scNTs, 764 donor genome-associated DEGs (DADs) specific to scNTs, and 1743 zygote manipulation-associated DEGs (zMADs) specific to shNTs. GO enrichment analysis generated various terms involving “cell-cell adhesion,” “translation,” and “transcription” for MADs and “cell differentiation” and “embryo implantation” for DADs. Because of the transcriptomic specificity of shNTs, we studied zMADs in detail. GO enrichment analysis with the 854 zMADs underrepresented in shNTs yielded terms related to protein and mitochondria homeostasis, while GO enrichment analysis of 889 shNT-high zMADs yielded terms related to endoplasmic reticulum stress and protein transport. We summarized the DEGs, which, with further investigation, may help improve our understanding of molecular events occurring in cloned embryos and our ability to control clonal reprogramming.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| | - Jung S Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
22
|
Soufi A, Dalton S. Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development 2017; 143:4301-4311. [PMID: 27899507 DOI: 10.1242/dev.142075] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A strong connection exists between the cell cycle and mechanisms required for executing cell fate decisions in a wide-range of developmental contexts. Terminal differentiation is often associated with cell cycle exit, whereas cell fate switches are frequently linked to cell cycle transitions in dividing cells. These phenomena have been investigated in the context of reprogramming, differentiation and trans-differentiation but the underpinning molecular mechanisms remain unclear. Most progress to address the connection between cell fate and the cell cycle has been made in pluripotent stem cells, in which the transition through mitosis and G1 phase is crucial for establishing a window of opportunity for pluripotency exit and the initiation of differentiation. This Review will summarize recent developments in this area and place them in a broader context that has implications for a wide range of developmental scenarios.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute of Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Stephen Dalton
- Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
23
|
Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat Cell Biol 2017; 19:282-291. [PMID: 28263958 DOI: 10.1038/ncb3485] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023]
Abstract
Somatic cells can be reprogrammed to a pluripotent state by nuclear transfer into oocytes, yet developmental arrest often occurs. While incomplete transcriptional reprogramming is known to cause developmental failure, reprogramming also involves concurrent changes in cell cycle progression and nuclear structure. Here we study cellular reprogramming events in human and mouse nuclear transfer embryos prior to embryonic genome activation. We show that genetic instability marked by frequent chromosome segregation errors and DNA damage arise prior to, and independent of, transcriptional activity. These errors occur following transition through DNA replication and are repaired by BRCA1. In the absence of mitotic nuclear remodelling, DNA replication is delayed and errors are exacerbated in subsequent mitosis. These results demonstrate that independent of gene expression, cell-type-specific features of cell cycle progression constitute a barrier sufficient to prevent the transition from one cell type to another during reprogramming.
Collapse
|
24
|
Rissi VB, Glanzner WG, Mujica LKS, Antoniazzi AQ, Gonçalves PBD, Bordignon V. Effect of Cell Cycle Interactions and Inhibition of Histone Deacetylases on Development of Porcine Embryos Produced by Nuclear Transfer. Cell Reprogram 2016; 18:8-16. [PMID: 27281695 DOI: 10.1089/cell.2015.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The aim of this study was to evaluate if the positive effects of inhibiting histone deacetylase enzymes on cell reprogramming and development of somatic cell nuclear transfer (SCNT) embryos is affected by the cell cycle stage of nuclear donor cells and host oocytes at the time of embryo reconstruction. SCNT embryos were produced with metaphase II (MII) or telophase II (TII) cytoplasts and nuclear donor cells that were either at the G1-0 or G2/M stages. Embryos reconstructed with the different cell cycle combinations were treated or not with the histone deacetylase inhibitor (HDACi) Scriptaid for 15 h and then cultured in vitro for 7 days. Embryos reconstructed with MII-G1-0 and TII-G2/M developed to the blastocyst stage with a higher frequency compared to the other groups, confirming the importance of cell cycle interactions on cell reprogramming and SCNT embryo development. Treatment with HDACi improved development of SCNT embryos produced with MII but not TII cytoplasts, independently of the cell cycle stage of nuclear donor cells. These findings provide evidence that the positive effect of HDACi treatment on development of SCNT embryos depends upon cell cycle interactions between the host cytoplast and the nuclear donor cells.
Collapse
Affiliation(s)
- Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Werner G Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Lady K S Mujica
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Alfredo Q Antoniazzi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, RS 97105-900, Brazil
| | - Vilceu Bordignon
- 2 Department of Animal Science, McGill University , Ste. Anne de Bellevue, Quebec, Canada , H9X 3V9
| |
Collapse
|
25
|
Coulombel L. [Mitotic reprogramming of sperm injected into haploid parthenogenotes embryos]. Med Sci (Paris) 2016; 32:903-910. [PMID: 27758757 DOI: 10.1051/medsci/20163210026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Laure Coulombel
- Directrice de recherche émérite, Inserm U1130, conseillère scientifique de médecine/sciences, Paris, France
| |
Collapse
|
26
|
Mice produced by mitotic reprogramming of sperm injected into haploid parthenogenotes. Nat Commun 2016; 7:12676. [PMID: 27623537 PMCID: PMC5027272 DOI: 10.1038/ncomms12676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
Sperm are highly differentiated and the activities that reprogram them for embryonic development during fertilization have historically been considered unique to the oocyte. We here challenge this view and demonstrate that mouse embryos in the mitotic cell cycle can also directly reprogram sperm for full-term development. Developmentally incompetent haploid embryos (parthenogenotes) injected with sperm developed to produce healthy offspring at up to 24% of control rates, depending when in the embryonic cell cycle injection took place. This implies that most of the first embryonic cell cycle can be bypassed in sperm genome reprogramming for full development. Remodelling of histones and genomic 5′-methylcytosine and 5′-hydroxymethylcytosine following embryo injection were distinct from remodelling in fertilization and the resulting 2-cell embryos consistently possessed abnormal transcriptomes. These studies demonstrate plasticity in the reprogramming of terminally differentiated sperm nuclei and suggest that different epigenetic pathways or kinetics can establish totipotency. It is unclear what regulates gamete reprogramming competence. Here, the authors inject sperm into parthenogenetic embryos, generating viable offspring and show that mouse embryos in the mitotic cell cycle can reprogram sperm for full term development.
Collapse
|
27
|
Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. Cell Metab 2016; 24:283-94. [PMID: 27425585 PMCID: PMC4981548 DOI: 10.1016/j.cmet.2016.06.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/29/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022]
Abstract
Vertebrate cells carry two different genomes, nuclear (nDNA) and mitochondrial (mtDNA), both encoding proteins involved in oxidative phosphorylation. Because of the extensive interactions, adaptive coevolution of the two genomes must occur to ensure normal mitochondrial function. To investigate whether incompatibilities between these two genomes could contribute to interspecies reproductive barriers, we performed reciprocal mtDNA replacement (MR) in zygotes between widely divergent Mus m. domesticus (B6) and conplastic Mus m. musculus (PWD) mice. Transfer of MR1 cybrid embryos (B6nDNA-PWDmtDNA) supported normal development of F1 offspring with reduced male fertility but unaffected reproductive fitness in females. Furthermore, donor PWD mtDNA was faithfully transmitted through the germline into F2 and F3 generations. In contrast, reciprocal MR2 (PWDnDNA-B6mtDNA) produced high embryonic loss and stillborn rates, suggesting an association between mitochondrial function and infertility. These results strongly suggest that functional incompatibility between nuclear and mitochondrial genomes contributes to interspecies reproductive isolation in mammals.
Collapse
|
28
|
Lee JH, Chun JL, Kim KJ, Kim EY, Kim DH, Lee BM, Han KW, Park KS, Lee KB, Kim MK. Effect of Acteoside as a Cell Protector to Produce a Cloned Dog. PLoS One 2016; 11:e0159330. [PMID: 27428333 PMCID: PMC4948914 DOI: 10.1371/journal.pone.0159330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/30/2016] [Indexed: 11/18/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) is a well-known laboratory technique. The principle of the SCNT involves the reprogramming a somatic nucleus by injecting a somatic cell into a recipient oocyte whose nucleus has been removed. Therefore, the nucleus donor cells are considered as a crucial factor in SCNT. Cell cycle synchronization of nucleus donor cells at G0/G1 stage can be induced by contact inhibition or serum starvation. In this study, acteoside, a phenylpropanoid glycoside compound, was investigated to determine whether it is applicable for inducing cell cycle synchronization, cytoprotection, and improving SCNT efficiency in canine fetal fibroblasts. Primary canine fetal fibroblasts were treated with acteoside (10, 30, 50 μM) for various time periods (24, 48 and 72 hours). Cell cycle synchronization at G0/G1 stage did not differ significantly with the method of induction: acteoside treatment, contact inhibition or serum starvation. However, of these three treatments, serum starvation resulted in significantly increased level of reactive oxygen species (ROS) (99.5 ± 0.3%) and apoptosis. The results also revealed that acteoside reduced ROS and apoptosis processes including necrosis in canine fetal fibroblasts, and improved the cell survival. Canine fetal fibroblasts treated with acteoside were successfully arrested at the G0/G1 stage. Moreover, the reconstructed embryos using nucleus donor cells treated with acteoside produced a healthy cloned dog, but not the embryos produced using nucleus donor cells subjected to contact inhibition. In conclusion, acteoside induced cell cycle synchronization of nucleus donor cells would be an alternative method to improve the efficiency of canine SCNT because of its cytoprotective effects.
Collapse
Affiliation(s)
- Ji Hye Lee
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Ju Lan Chun
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Keun Jung Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Young Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Dong-hee Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Bo Myeong Lee
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kil Woo Han
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kang-Sun Park
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung-Bon Lee
- Department of Biology Education, College of Education, Chonnam National University, Gwangju, Republic of Korea
| | - Min Kyu Kim
- Division of Animal & Dairy Science, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
29
|
Cytoplasmic Determination of Meiotic Spindle Size Revealed by a Unique Inter-Species Germinal Vesicle Transfer Model. Sci Rep 2016; 6:19827. [PMID: 26813698 PMCID: PMC4728387 DOI: 10.1038/srep19827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/07/2015] [Indexed: 11/08/2022] Open
Abstract
Spindle sizes are different in diverse species and cell types. In frogs, the meiotic spindle size is positively correlated with the egg cell volume. Across species, relatively small mouse oocytes (70–80 μm) have a relatively large spindle while larger pig oocytes (about 120 μm) have a considerably smaller spindle. In this study we investigated whether species-specific oocyte spindle size was determined by cytoplasmic or nuclear factors. By exchanging the germinal vesicle between mouse and pig oocytes, we obtained two kinds of reconstructed oocytes: one with mouse ooplasm and pig GV (mCy-pGV oocyte), and the other with pig ooplasm and mouse GV (pCy-mGV oocyte). We show that the MII spindle size of the mCy-pGV oocyte is similar to that of the mouse meiotic spindle and significantly larger than that of the pig meiotic spindle. The timing of oocyte maturation also followed that of the species from which the oocyte cytoplasm arose, although some impact of the origin of the GV was observed. These data suggest that spindle size and the timing of meiotic progression are governed by cytoplasmic components rather than cytoplasmic volume and GV materials.
Collapse
|
30
|
Martinez CA, Nohalez A, Cuello C, Vazquez JM, Roca J, Martinez EA, Gil MA. The use of mineral oil during in vitro maturation, fertilization, and embryo culture does not impair the developmental competence of pig oocytes. Theriogenology 2015; 83:693-702. [DOI: 10.1016/j.theriogenology.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 11/15/2022]
|
31
|
Abstract
In mammals, pluripotent stem cells can give rise to every cell type of embryonic lineage, and hold great potential in regenerative medicine and disease modeling. Guided by the mechanism underlying pluripotency, pluripotent stem cells have been successfully induced through manipulating the transcriptional and epigenetic networks of various differentiated cell types. However, the factors that confer totipotency, the ability to give rise to cells in both embryonic and extra-embryonic lineages, still remain poorly understood. It is currently unknown whether totipotency can be induced and maintained in vitro. In this review, we summarize the current progress in the field, with the aim of providing a foundation for understanding the mechanisms that regulate totipotency.
Collapse
Affiliation(s)
- Falong Lu
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115 ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115 ; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115 ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115 ; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115 ; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
32
|
Zhang M, Chai Y, Liu T, Xu N, Yang C. Synergistic effects of Buyang Huanwu decoction and embryonic neural stem cell transplantation on the recovery of neurological function in a rat model of spinal cord injury. Exp Ther Med 2015; 9:1141-1148. [PMID: 25780400 PMCID: PMC4353797 DOI: 10.3892/etm.2015.2248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/09/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to investigate the therapeutic effect of a combined treatment of Buyang Huanwu decoction (BYHWD), a well-known formula of traditional Chinese medicine, and neural stem cells (NSCs) on spinal cord injury (SCI) and the associated underlying mechanisms. A SCI model was established by surgery via a complete transection of the T10 vertebra of female Sprague-Dawley rats. Gelatin sponges were used to absorb NSCs labeled with the thymidine analog, 5-bromo-2-deoxyuridine (BrdU), and were transferred into the transected spinal cords. BYHWD was administered once a day by introgastric infusion. Motor functions of the hind limbs were evaluated using the 21-point locomotor rating scale developed by Basso, Beattie and Bresnahan (BBB). The fate of the transplanted NSCs under the various conditions was examined by double immunofluorescence staining, using markers for neurons, astrocytes and oligodendrocytes, with BrdU. Ultrastructural changes of the SCI site following the various treatments were examined under a transmission electron microscope. The number of double positive cells for glial fibrillary acidic protein and BrdU in the BYHWD + NSC group was significantly decreased when compared with that in the NSC group (P<0.05). However, the number of cells that were labeled double positive for myelin basic protein and BrdU, as well as neuron specific enolase and BrdU, was greater in the BYHWD + NSC group when compared with the NSC group. Electron microscopy demonstrated that treatment with BYHWD combined with NSCs significantly alleviated demyelination. Results from the BBB motor function test exhibited a significant improvement in the BYHWD + NSC group when compared with the SCI, BYHWD and NSC only groups. In conclusion, the results demonstrated that the traditional Chinese medicine formula, BYHWD, exerted an effect on the differentiation and migration of NSCs. Combining the administration of BYHWD with NSCs was shown to have a synergistic effect on the recovery of neurological function, mitigating the progress of demyelination or ameliorating the recovery of myelination.
Collapse
Affiliation(s)
- Min Zhang
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yong Chai
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Tongshen Liu
- Morphology Laboratory, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Ning Xu
- Department of Oncology, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Cheng Yang
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
33
|
Zhou LQ, Dean J. Reprogramming the genome to totipotency in mouse embryos. Trends Cell Biol 2015; 25:82-91. [PMID: 25448353 PMCID: PMC4312727 DOI: 10.1016/j.tcb.2014.09.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 02/03/2023]
Abstract
Despite investigative interest, the artificial derivation of pluripotent stem cells remains inefficient and incomplete reprogramming hinders its potential as a reliable tool in regenerative medicine. By contrast, fusion of terminally differentiated gametes at fertilization activates efficient epigenetic reprogramming to ensure totipotency of early embryos. Understanding the epigenetic mechanisms required for the transition from the fertilized egg to the embryo can improve efforts to reprogram differentiated cells to pluripotent/totipotent cells for therapeutic use. We review recent discoveries that are providing insight into the molecular mechanisms required for epigenetic reprogramming to totipotency in vivo.
Collapse
Affiliation(s)
- Li-quan Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Erratum: Corrigendum: Nuclear reprogramming by interphase cytoplasm of two-cell mouse embryos. Nature 2014. [DOI: 10.1038/nature14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bioessays 2014; 37:52-9. [PMID: 25328107 DOI: 10.1002/bies.201400072] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian egg employs a wide spectrum of epigenome modification machinery to reprogram the sperm nucleus shortly after fertilization. This event is required for transcriptional activation of the paternal/zygotic genome and progression through cleavage divisions. Reprogramming of paternal nuclei requires replacement of sperm protamines with canonical and non-canonical histones, covalent modification of histone tails, and chemical modification of DNA (notably oxidative demethylation of methylated cytosines). In this essay we highlight the role maternal histone variants play during developmental reprogramming following fertilization. We discuss how reduced maternal histone variant incorporation in somatic nuclear transfer experiments may explain the reduced viability of resulting embryos and how knowledge of repressive and activating maternal factors may be used to improve somatic cell reprogramming.
Collapse
Affiliation(s)
- Peng Yang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
36
|
Shen L, Inoue A, He J, Liu Y, Lu F, Zhang Y. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 2014; 15:459-471. [PMID: 25280220 PMCID: PMC4201500 DOI: 10.1016/j.stem.2014.09.002] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023]
Abstract
With the exception of imprinted genes and certain repeats, DNA methylation is globally erased during preimplantation development. Recent studies have suggested that Tet3-mediated oxidation of 5-methylcytosine (5mC) and DNA replication-dependent dilution both contribute to global paternal DNA demethylation, but demethylation of the maternal genome occurs via replication. Here we present genome-scale DNA methylation maps for both the paternal and maternal genomes of Tet3-depleted and/or DNA replication-inhibited zygotes. In both genomes, we found that inhibition of DNA replication blocks DNA demethylation independently from Tet3 function and that Tet3 facilitates DNA demethylation largely by coupling with DNA replication. For both genomes, our data indicate that replication-dependent dilution is the major contributor to demethylation, but Tet3 plays an important role, particularly at certain loci. Our study thus defines the respective functions of Tet3 and DNA replication in paternal DNA demethylation and reveals an unexpected contribution of Tet3 to demethylation of the maternal genome.
Collapse
Affiliation(s)
- Li Shen
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Azusa Inoue
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Jin He
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yuting Liu
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Falong Lu
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Ma JY, Zhang T, Shen W, Schatten H, Sun QY. Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome. Protein Cell 2014; 5:827-36. [PMID: 25152302 PMCID: PMC4225482 DOI: 10.1007/s13238-014-0095-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 12/02/2022] Open
Abstract
The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos.
Collapse
Affiliation(s)
- Jun-Yu Ma
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | | | | | | | | |
Collapse
|
38
|
Eisenstein M. Embryonic matchmaking. Nat Methods 2014; 11:472-3. [PMID: 24820363 DOI: 10.1038/nmeth.2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|