1
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021
| | - Thomas J Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY 12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
2
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
3
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
5
|
Zhang Y, Zhong F, Liu L. Single-cell transcriptional atlas of tumor-associated macrophages in breast cancer. Breast Cancer Res 2024; 26:129. [PMID: 39232806 PMCID: PMC11373130 DOI: 10.1186/s13058-024-01887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The internal heterogeneity of breast cancer, notably the tumor microenvironment (TME) consisting of malignant and non-malignant cells, has been extensively explored in recent years. The cells in this complex cellular ecosystem activate or suppress tumor immunity through phenotypic changes, secretion of metabolites and cell-cell communication networks. Macrophages, as the most abundant immune cells within the TME, are recruited by malignant cells and undergo phenotypic remodeling. Tumor-associated macrophages (TAMs) exhibit a variety of subtypes and functions, playing significant roles in impacting tumor immunity. However, their precise subtype delineation and specific function remain inadequately defined. METHODS The publicly available single-cell transcriptomes of 49,141 cells from eight breast cancer patients with different molecular subtypes and stages were incorporated into our study. Unsupervised clustering and manual cell annotation were employed to accurately classify TAM subtypes. We then conducted functional analysis and constructed a developmental trajectory for TAM subtypes. Subsequently, the roles of TAM subtypes in cell-cell communication networks within the TME were explored using endothelial cells (ECs) and T cells as key nodes. Finally, analyses were repeated in another independent publish scRNA datasets to validate our findings for TAM characterization. RESULTS TAMs are accurately classified into 7 subtypes, displaying anti-tumor or pro-tumor roles. For the first time, we identified a new TAM subtype capable of proliferation and expansion in breast cancer-TUBA1B+ TAMs playing a crucial role in TAMs diversity and tumor progression. The developmental trajectory illustrates how TAMs are remodeled within the TME and undergo phenotypic and functional changes, with TUBA1B+ TAMs at the initial point. Notably, the predominant TAM subtypes varied across different molecular subtypes and stages of breast cancer. Additionally, our research on cell-cell communication networks shows that TAMs exert effects by directly modulating intrinsic immunity, indirectly regulating adaptive immunity through T cells, as well as influencing tumor angiogenesis and lymphangiogenesis through ECs. CONCLUSIONS Our study establishes a precise single-cell atlas of breast cancer TAMs, shedding light on their multifaceted roles in tumor biology and providing resources for targeting TAMs in breast cancer immunotherapy.
Collapse
Affiliation(s)
- Yupeng Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fan Zhong
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lei Liu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
- Intelligent Medicine Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Long Y, Ren Y, Wei Q, Mobet Y, Liu Y, Zhao H, Liu T, Cheng L, Yi P. NAT10-mediated RNA acetylation enhances HNRNPUL1 mRNA stability to contribute cervical cancer progression. Int J Med Sci 2023; 20:1079-1090. [PMID: 37484809 PMCID: PMC10357443 DOI: 10.7150/ijms.83828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
N4-acetylcytidine (ac4C) is a lately discovered nucleotide modification that has been shown to be closely implicated in cancer. N-acetyltransferase10(NAT10) acts as an enzyme that regulates mRNA acetylation modifications. Currently, the role of NAT10-mediated RNA acetylation modification in cervical cancer remains to be elucidated. On the basis of transcriptome analysis of TCGA and GEO open datasets (GSE52904, GSE29570, GSE122697), NAT10 is upregulated in cervical cancer tissues and correlated with poor prognosis. Knockdown of NAT10 suppressed the cell proliferation, invasion, and migration of cervical cancer cells. The in vivo oncogenic function of NAT10 was also confirmed in xenograft models. Combined RNA-seq and acRIP-seq analysis revealed HNRNPUL1 as the target of NAT10 in cervical cancer. NAT10 positively regulate HNRNPUL1 expression by promoting ac4C modification and stability of HNRNPUL1 mRNA. Furthermore, depletion of HNRNPUL1 suppressed the cell division, invasion, and migration of cervical cancer. HNRNPUL1 overexpression partially restored cellular function in cervical cancer cells with NAT10 knockdown. Thus, this study demonstrates that NAT10 contributes to cervical cancer progression by enhancing HNRNPUL1 mRNA stability via ac4C modification, and NAT10-ac4C-HNRNPUL1 axis might be a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Yingfei Long
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Youchaou Mobet
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yujiao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Hongyan Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Lei Cheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
7
|
Culbertson B, Garcia K, Markett D, Asgharian H, Chen L, Fish L, Navickas A, Yu J, Woo B, Nanda AS, Choi B, Zhou S, Rabinowitz J, Goodarzi H. A sense-antisense RNA interaction promotes breast cancer metastasis via regulation of NQO1 expression. NATURE CANCER 2023; 4:682-698. [PMID: 37169843 PMCID: PMC10212767 DOI: 10.1038/s43018-023-00554-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Antisense RNAs are ubiquitous in human cells, yet their role is largely unexplored. Here we profiled antisense RNAs in the MDA-MB-231 breast cancer cell line and its highly lung metastatic derivative. We identified one antisense RNA that drives cancer progression by upregulating the redox enzyme NADPH quinone dehydrogenase 1 (NQO1), and named it NQO1-AS. Knockdown of either NQO1 or NQO1-AS reduced lung colonization in a mouse model, and investigation into the role of NQO1 indicated that it is broadly protective against oxidative damage and ferroptosis. Breast cancer cells in the lung are dependent on this pathway, and this dependence can be exploited therapeutically by inducing ferroptosis while inhibiting NQO1. Together, our findings establish a role for NQO1-AS in the progression of breast cancer by regulating its sense mRNA post-transcriptionally. Because breast cancer predominantly affects females, the disease models used in this study are of female origin and the results are primarily applicable to females.
Collapse
Affiliation(s)
- Bruce Culbertson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Markett
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Hosseinali Asgharian
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Fudan University, Shanghai, China
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny Yu
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Woo
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Arjun Scott Nanda
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Benedict Choi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shaopu Zhou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Rabinowitz
- Department of Chemistry, Lewis Sigler Institute for Integrative Genomics, Princeton, NJ, USA
- Ludwig Institute for Cancer Research, Princeton, NJ, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
Zhang Q, Xie J, Zhu X, Ma X, Yang T, Khan NU, Zhang S, Liu M, Li L, Liang Y, Pan Y, Li D, Li J, Li Z, Zhang H, Zhang Z. Natural variation in Tiller Number 1 affects its interaction with TIF1 to regulate tillering in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1044-1057. [PMID: 36705337 PMCID: PMC10106862 DOI: 10.1111/pbi.14017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 05/04/2023]
Abstract
Tiller number per plant-a cardinal component of ideal plant architecture-affects grain yield potential. Thus, alleles positively affecting tillering must be mined to promote genetic improvement. Here, we report a Tiller Number 1 (TN1) protein harbouring a bromo-adjacent homology domain and RNA recognition motifs, identified through genome-wide association study of tiller numbers. Natural variation in TN1 affects its interaction with TIF1 (TN1 interaction factor 1) to affect DWARF14 expression and negatively regulate tiller number in rice. Further analysis of variations in TN1 among indica genotypes according to geographical distribution revealed that low-tillering varieties with TN1-hapL are concentrated in Southeast Asia and East Asia, whereas high-tillering varieties with TN1-hapH are concentrated in South Asia. Taken together, these results indicate that TN1 is a tillering regulatory factor whose alleles present apparent preferential utilization across geographical regions. Our findings advance the molecular understanding of tiller development.
Collapse
Affiliation(s)
- Quan Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Jianyin Xie
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoyang Zhu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Xiaoqian Ma
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Tao Yang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Najeeb Ullah Khan
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Shuyang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Miaosong Liu
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Lin Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Yuntao Liang
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Yinghua Pan
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and BreedingRice Research Institute of Guangxi Academy of Agricultural SciencesNanningGuangxiChina
| | - Jinjie Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| | - Zichao Li
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Hongliang Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Sanya Nanfan Research Institute of Hainan UniversitySanyaChina
| | - Zhanying Zhang
- MOE Key Laboratory of Crop Heterosis and Utilization/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and BiotechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Santhanam B, Oikonomou P, Tavazoie S. Systematic assessment of prognostic molecular features across cancers. CELL GENOMICS 2023; 3:100262. [PMID: 36950380 PMCID: PMC10025453 DOI: 10.1016/j.xgen.2023.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Precision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations. Extending our analysis beyond existing curated gene modules, we find a large novel class of highly prognostic DNA/RNA cis-regulatory modules associated with dynamic gene expression within cancers. Remarkably, in more than 82% of cancers, modules substantially improve survival stratification compared with conventional clinical factors and prominent genomic aberrations. The prognostic potential of cancer modules generalizes to external cohorts better than conventionally used single-gene features. Finally, a machine-learning framework demonstrates the combined predictive power of multiple modules, yielding prognostic models that perform substantially better than existing histopathological and clinical factors in common use.
Collapse
Affiliation(s)
- Balaji Santhanam
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
10
|
Medeiros HCD, Yang C, Herrera CK, Broadwater D, Ensink E, Bates M, Lunt RR, Lunt SY. Phosphorescent Metal Halide Nanoclusters for Tunable Photodynamic Therapy. Chemistry 2023; 29:e202202881. [PMID: 36351205 PMCID: PMC9898232 DOI: 10.1002/chem.202202881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Photodynamic therapy (PDT) is currently limited by the inability of photosensitizers (PSs) to enter cancer cells and generate sufficient reactive oxygen species. Utilizing phosphorescent triplet states of novel PSs to generate singlet oxygen offers exciting possibilities for PDT. Here, we report phosphorescent octahedral molybdenum (Mo)-based nanoclusters (NC) with tunable toxicity for PDT of cancer cells without use of rare or toxic elements. Upon irradiation with blue light, these molecules are excited to their singlet state and then undergo intersystem crossing to their triplet state. These NCs display surprising tunability between their cellular cytotoxicity and phototoxicity by modulating the apical halide ligand with a series of short chain fatty acids from trifluoroacetate to heptafluorobutyrate. The NCs are effective in PDT against breast, skin, pancreas, and colon cancer cells as well as their highly metastatic derivatives, demonstrating the robustness of these NCs in treating a wide variety of aggressive cancer cells. Furthermore, these NCs are internalized by cancer cells, remain in the lysosome, and can be modulated by the apical ligand to produce singlet oxygen. Thus, (Mo)-based nanoclusters are an excellent platform for optimizing PSs. Our results highlight the profound impact of molecular nanocluster chemistry in PDT applications.
Collapse
Affiliation(s)
- Hyllana C. D. Medeiros
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Chenchen Yang
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Christopher K. Herrera
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Deanna Broadwater
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Elliot Ensink
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
| | - Matthew Bates
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| | - Richard R. Lunt
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
- Department of Physics and AstronomyMichigan State UniversityEast Lansing, MI48824USA
| | - Sophia Y. Lunt
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMI48824USA
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
11
|
Zhou JY, Liu JY, Tao Y, Chen C, Liu SL. LINC01526 Promotes Proliferation and Metastasis of Gastric Cancer by Interacting with TARBP2 to Induce GNG7 mRNA Decay. Cancers (Basel) 2022; 14:cancers14194940. [PMID: 36230863 PMCID: PMC9562272 DOI: 10.3390/cancers14194940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Many long noncoding RNAs play an important role in gastric cancer progression. In this study, we focused on LINC01526. Through expression and functional analyses, we obtained a preliminary understanding of the pro-cancer role of LINC01526 in gastric cancer. Furthermore, RNA pull-down and RNA immunoprecipitation chip assays demonstrated that LINC01526 interacts with TARBP2, an RNA-binding protein controlling mRNA stability. Moreover, TARBP2 could bind and destabilize GNG7 transcripts. Finally, the rescue assay disclosed that LINC01526 promoted gastric cancer progression by interacting with TARBP2, leading to the degradation of GNG7 mRNA. Abstract Gastric cancer is the most common malignancy of the human digestive system. Long noncoding RNAs (lncRNAs) influence the occurrence and development of gastric cancer in multiple ways. However, the function and mechanism of LINC01526 in gastric cancer remain unknown. Herein, we investigated the function of LINC01526 with respect to the malignant progression of gastric cancer. We found that LINC01526 was upregulated in gastric cancer cells and tissues. The function experiments in vitro and the Xenograft mouse model in vivo proved that LINC01526 could promote gastric cancer cell proliferation and migration. Furthermore, LINC01526 interacted with TAR (HIV-1) RNA-binding protein 2 (TARBP2) and decreased the mRNA stability of G protein gamma 7 (GNG7) through TARBP2. Finally, the rescue assay showed that downregulating GNG7 partially rescued the cell proliferation inhibited by LINC01526 or TARBP2 silencing. In summary, LINC01526 promoted gastric cancer progression by interacting with TARBP2, which subsequently degraded GNG7 mRNA. This study not only explores the role of LINC01526 in gastric cancer, but also provides a laboratory basis for its use as a new biomarker for diagnosis and therapeutic targets.
Collapse
Affiliation(s)
- Jin-Yong Zhou
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| | - Jin-Yan Liu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China
| | - Yu Tao
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Chen Chen
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shen-Lin Liu
- Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Correspondence: (J.-Y.Z.); (S.-L.L.)
| |
Collapse
|
12
|
Perron G, Jandaghi P, Moslemi E, Nishimura T, Rajaee M, Alkallas R, Lu T, Riazalhosseini Y, Najafabadi HS. Pan-cancer analysis of mRNA stability for decoding tumour post-transcriptional programs. Commun Biol 2022; 5:851. [PMID: 35987939 PMCID: PMC9392771 DOI: 10.1038/s42003-022-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Measuring mRNA decay in tumours is a prohibitive challenge, limiting our ability to map the post-transcriptional programs of cancer. Here, using a statistical framework to decouple transcriptional and post-transcriptional effects in RNA-seq data, we uncover the mRNA stability changes that accompany tumour development and progression. Analysis of 7760 samples across 18 cancer types suggests that mRNA stability changes are ~30% as frequent as transcriptional events, highlighting their widespread role in shaping the tumour transcriptome. Dysregulation of programs associated with >80 RNA-binding proteins (RBPs) and microRNAs (miRNAs) drive these changes, including multi-cancer inactivation of RBFOX and miR-29 families. Phenotypic activation or inhibition of RBFOX1 highlights its role in calcium signaling dysregulation, while modulation of miR-29 shows its impact on extracellular matrix organization and stemness genes. Overall, our study underlines the integral role of mRNA stability in shaping the cancer transcriptome, and provides a resource for systematic interrogation of cancer-associated stability pathways. The role of mRNA stability in shaping the cancer transcriptome is revealed using a statistical analysis of transcriptomic data.
Collapse
|
13
|
Peng T, He Y, Wang T, Yu J, Ma X, Zhou Z, Sheng Y, Li L, Peng H, Li S, Zou J, Yuan Y, Zhao Y, Shi H, Li F, Liu W, Hu K, Lu X, Zhang G, Wang F. Discovery of a Novel Small-Molecule Inhibitor Disrupting TRBP-Dicer Interaction against Hepatocellular Carcinoma via the Modulation of microRNA Biogenesis. J Med Chem 2022; 65:11010-11033. [PMID: 35695407 DOI: 10.1021/acs.jmedchem.2c00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are key players in human hepatocellular carcinoma (HCC) tumorigenesis. Therefore, small molecules targeting components of miRNA biogenesis may provide new therapeutic means for HCC treatment. By a high-throughput screening and structural simplification, we identified a small molecule, CIB-3b, which suppresses the growth and metastasis of HCC in vitro and in vivo by modulating expression profiles of miRNAome and proteome in HCC cells. Mechanistically, CIB-3b physically binds to transactivation response (TAR) RNA-binding protein 2 (TRBP) and disrupts the TRBP-Dicer interaction, thereby altering the activity of Dicer and mature miRNA production. Structure-activity relationship study via the synthesis of 45 CIB-3b derivatives showed that some compounds exhibited a similar inhibitory effect on miRNA biogenesis to CIB-3b. These results support TRBP as a potential therapeutic target in HCC and warrant further development of CIB-3b along with its analogues as a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao He
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Tao Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jialing Yu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sheng Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jiawei Zou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi Yuan
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yongyun Zhao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hailong Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaoxia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
14
|
Huang Y, Zheng Y, Yao L, Qiao F, Hou Y, Hu X, Li D, Shao Z. RNA binding protein POP7 regulates ILF3 mRNA stability and expression to promote breast cancer progression. Cancer Sci 2022; 113:3801-3813. [PMID: 35579257 DOI: 10.1111/cas.15430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
RNA Binding Proteins(RBPs)play pivotal roles in breast cancer (BC) development. As a RBP, Processing of precursor 7 (POP7) is one of the subunits of RNase P and RNase MRP, however, its exact function and mechanism in BC remain unknown. Here, we showed that expression of POP7 was frequently increased in breast cancer cells and in primary breast tumors. Up-regulated POP7 significantly promoted BC cell proliferation in vitro and primary tumor growth in vivo. POP7 also increased cell migration, invasion in vitro and lung metastasis in vivo. Through RNA-immunoprecipitation coupled with sequencing (RIP-seq), we found that POP7 bound preferentially to intron regions and POP7-binding peak associated genes were mainly enriched in cancer-related pathways. Further, POP7 regulated Interleukin Enhancer Binding Factor 3 (ILF3) expression through influencing its mRNA stability. Knockdown of ILF3 significantly impaired the increased malignant potential of POP7 over-expressing cells, suggesting that POP7 enhances BC progression through regulating ILF3 expression. Collectively, our findings provide the first evidence for the important role of POP7 and its regulation of ILF3 in promoting breast cancer progression.
Collapse
Affiliation(s)
- Yanni Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Thyroid and Breast Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ling Yao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Daqiang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
15
|
TARBP2-stablized SNHG7 regulates blood-brain barrier permeability by acting as a competing endogenous RNA to miR-17-5p/NFATC3 in Aβ-microenvironment. Cell Death Dis 2022; 13:457. [PMID: 35562351 PMCID: PMC9106673 DOI: 10.1038/s41419-022-04920-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/14/2022]
Abstract
Breakdown of blood-brain barrier (BBB) is recognized as serious pathological marker of Alzheimer's disease development. Studies confirmed that β-amyloid (Aβ) deposition induced high BBB permeability by disrupting tight junction (TJ) proteins formed from endothelial cells (ECs). Here, we found TARBP2, SNHG7 and NFATC3 in expressions were increased and miR-17-5p expression was decreased in Aβ(1-42)-incubated ECs. Overexpression of TARBP2, SNHG7 and NFATC3 elevated BBB permeability and knockdown of them had converse results. Agomir-17-5p decreased BBB permeability and antagomir-17-5p increased BBB permeability. TARBP2 as a RNA-binding protein (RBP) bound to SNHG7 and resulted in longer half-life of SNHG7. The decreased expression of miR-17-5p had a negative post-transcriptional regulation to NFATC3, leading to the increased expression of NFATC3. In addition, SNHG7 regulated NFATC3 expression by acting as a molecule sponge targeting to miR-17-5p. NFATC3 inhibited TJ proteins expression by functioning as a transcription factor. TARBP2/SNHG7/miR-17-5p/NFATC3 pathway implied a potential mechanism in studies of BBB changes in AD pathological progression.
Collapse
|
16
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
17
|
Wang L, Li R, Lai X, Zhang X, Chen H, Zhao W. Mapping Regulatory Elements within 5' and 3' UTRs of SIGLEC15 with a Use of Reporter System. Mol Biol 2022. [DOI: 10.1134/s0026893322030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Chen C, Zhou H, Liu Z, Ma X. Dysregulation of Zinc Finger Protein 395 Contributes to the Pathogenesis of Chondrosarcoma. Onco Targets Ther 2021; 14:3545-3553. [PMID: 34113121 PMCID: PMC8183675 DOI: 10.2147/ott.s310164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction The transcription factor zinc finger protein 395 (ZNF395) is involved in several cellular responses and tumorigenesis. However, the potential role and clinical significance of ZNF395 in chondrosarcoma are not well investigated. This study determines the expression profile, prognostic value and biological function of ZNF395 in human chondrosarcoma. Methods The mRNA and protein expressions of ZNF395 in fresh chondrosarcomas and the matched adjacent non-tumor tissues were assessed using real-time PCR and immunoblotting, respectively. The protein expression of ZNF395 in chondrosarcoma specimens was evaluated by immunohistochemistry, and the relationships among its protein level, clinicopathological parameters and prognosis were further detected. Cell viability, colony formation, migration, invasion and apoptosis assay were evaluated in chondrosarcoma cells with depletion of ZNF395. Results The mRNA and protein expressions of ZNF395 in chondrosarcoma tissues were significantly higher than those in the matched adjacent non-tumor tissues and benign cartilage tumors. Clinical analysis displayed that ZNF395 was expressed at higher levels in chondrosarcoma patients with higher histological grade and advanced MSTS stage. Furthermore, we demonstrated that high expression of ZNF395 correlated with a worse overall survival of chondrosarcoma patients. Multivariate Cox regression analysis indicated that ZNF395 was an independent prognostic marker in chondrosarcoma patients. Functional studies revealed that depletion of ZNF395 markedly inhibited cell viability, colony formation, migration and invasion, and promoted apoptosis in chondrosarcoma. Conclusion These findings suggest that dysregulation of ZNF395 contributes to chondrosarcoma development, and ZNF395 may act as a potent oncogene and serve as a independently prognostic factor, highlight the potential of ZNF395 as a novel biomarker and therapeutic target for chondrosarcoma.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| |
Collapse
|
19
|
Zhou Z, Li Y, Ma X, Cao B, Peng T, Sheng Y, Peng H, Li R, Cao Y, Xi R, Li F, Wang M, Sun H, Zhang G, Zhang H, Hu K, Xiao W, Wang F. Identification of a Novel TAR RNA-Binding Protein 2 Modulator with Potential Therapeutic Activity against Hepatocellular Carcinoma. J Med Chem 2021; 64:7404-7421. [PMID: 34038111 DOI: 10.1021/acs.jmedchem.1c00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Imbalance miRNAs contribute to tumor formation; therefore, the development of small-molecule compounds that regulate miRNA biogenesis is an important strategy in oncotherapy. Here, (-)-Gomisin M1 (GM) was found to modulate miRNA biogenesis to inhibit the proliferation, migration, and invasion of hepatocellular carcinoma (HCC) cells. GM modulated expression profiles of miRNA and protein in HCC cells and suppressed tumor growth in a mouse model. Mechanistically, GM affected miRNA maturation by targeting TAR RNA-binding protein 2 (TRBP), with an efficacy higher than that of enoxacin, and promoted the binding of TRBP with Dicer. Structural simplification and a preliminary structure-activity relationship study via the synthesis of 20 GM derivatives showed that compound 9 exhibited more potent inhibitory activity in HCC cell proliferation and affinity for TRBP than did GM. These results suggest that TRBP may be a novel potential therapeutic target in HCC and compound 9 may be a potential drug candidate for the treatment of HCC.
Collapse
Affiliation(s)
- Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaofang Ma
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Biyun Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ting Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipan Peng
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runze Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Mengru Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Kaifeng Hu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Xiongan Institute of Innovation, Chinese Academy of Sciences, Hebei 071700, China
| |
Collapse
|
20
|
Fish L, Khoroshkin M, Navickas A, Garcia K, Culbertson B, Hänisch B, Zhang S, Nguyen HCB, Soto LM, Dermit M, Mardakheh FK, Molina H, Alarcón C, Najafabadi HS, Goodarzi H. A prometastatic splicing program regulated by SNRPA1 interactions with structured RNA elements. Science 2021; 372:eabc7531. [PMID: 33986153 PMCID: PMC8238114 DOI: 10.1126/science.abc7531] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Aberrant alternative splicing is a hallmark of cancer, yet the underlying regulatory programs that control this process remain largely unknown. Here, we report a systematic effort to decipher the RNA structural code that shapes pathological splicing during breast cancer metastasis. We discovered a previously unknown structural splicing enhancer that is enriched near cassette exons with increased inclusion in highly metastatic cells. We show that the spliceosomal protein small nuclear ribonucleoprotein polypeptide A' (SNRPA1) interacts with these enhancers to promote cassette exon inclusion. This interaction enhances metastatic lung colonization and cancer cell invasion, in part through SNRPA1-mediated regulation of PLEC alternative splicing, which can be counteracted by splicing modulating morpholinos. Our findings establish a noncanonical regulatory role for SNRPA1 as a prometastatic splicing enhancer in breast cancer.
Collapse
Affiliation(s)
- Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matvei Khoroshkin
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kristle Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce Culbertson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin Hänisch
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Steven Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hoang C B Nguyen
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Larisa M Soto
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Henrik Molina
- Proteome Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Claudio Alarcón
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
- McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Kurogi S, Hijiya N, Hidano S, Sato S, Uchida T, Tsukamoto Y, Nakada C, Yada K, Hirashita T, Inomata M, Murakami K, Takahashi N, Kobayashi T, Moriyama M. Downregulation of ZNF395 Drives Progression of Pancreatic Ductal Adenocarcinoma through Enhancement of Growth Potential. Pathobiology 2021; 88:374-382. [PMID: 33794543 DOI: 10.1159/000514593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Progression of pancreatic intraepithelial neoplasia (PanIN) to invasive carcinoma is a critical factor impacting the prognosis of patients with pancreatic tumors. However, the molecular mechanisms involved are not fully understood. We have reported that the process frequently involves loss of chromosome 8p, causing downregulation of DUSP4, thus conferring invasive ability on cancer cells. Here, we focus on ZNF395, whose expression was also found to be decreased by 8p loss and was predicted to be a growth suppressor gene. METHODS Pancreatic cancer cell lines inducibly expressing ZNF395 were established to assess the functional significance of ZNF395 in pancreatic carcinogenesis. Immunohistochemistry was also performed to analyze the expression levels of ZNF395 in pancreatic cancer tissues. RESULTS Induction of ZNF395 in pancreatic cancer cells resulted in marked activation of JNK and suppression of their proliferation through a delay in cell cycle progression. Immunohistochemistry revealed that ZNF395 was expressed ubiquitously in both normal pancreatic ducts and PanINs but was significantly reduced in invasive cancers, especially those showing poor differentiation. CONCLUSION ZNF395 acts as a novel tumor suppressor gene. Its downregulation caused by 8p loss in intraepithelial cells accelerates their proliferation through dysregulation of the cell cycle, leading to progression to invasive cancer.
Collapse
Affiliation(s)
- Shusaku Kurogi
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | | | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Yada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Yufu, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
22
|
Zhou M, Lu W, Li B, Liu X, Li A. TARBP2 promotes tumor angiogenesis and metastasis by destabilizing antiangiogenic factor mRNAs. Cancer Sci 2021; 112:1289-1299. [PMID: 33484209 PMCID: PMC7935780 DOI: 10.1111/cas.14820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a crucial step in the further growth and metastasis of solid tumors. However, its regulatory mechanism remains unclear. Here, we showed that TARBP2, an RNA‐binding protein, played a role in promoting tumor‐induced angiogenesis both in vitro and in vivo through degrading the mRNAs of antiangiogenic factors, including thrombospondin1/2 (THBS1/2), tissue inhibitor of metalloproteinases 1 (TIMP1), and serpin family F member 1 (SERPINF1), by targeting their 3′untranslated regions (3′UTRs). Overexpression of TARBP2 promotes tumor cell–induced angiogenesis, while its knockdown inhibits tumor angiogenesis. Clinical cohort analysis revealed that high expression level of TARBP2 was associated with poor survival of lung cancer and breast cancer patients. Mechanistically, TARBP2 physically interacts with the stem‐loop structure located in the 3′UTR of antiangiogenic transcripts, leading to mRNA destabilization by the dsRNA‐binding domains 1/2 (dsRBDs1/2). Notably, the expression level of TARBP2 in human tumor tissue is negatively correlated with the expression of antiangiogenic factors, including THBS1/2, and brain‐specific angiogenesis inhibitor 1 (BAI1). Moreover, TARBP2 expression is strongly associated with tumor angiogenesis in a group of human lung cancer samples. Collectively, our results highlight that TARBP2 is a novel tumor angiogenesis regulator that could promote tumor angiogenesis by selectively downregulating antiangiogenic gene expression.
Collapse
Affiliation(s)
- Meicen Zhou
- Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Clinical Medical College of Peking University, Beijing, China
| | - Wenbao Lu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Lee ES, Wolf EJ, Ihn SSJ, Smith HW, Emili A, Palazzo AF. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res 2021; 48:11645-11663. [PMID: 33091126 PMCID: PMC7672458 DOI: 10.1093/nar/gkaa919] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022] Open
Abstract
While splicing has been shown to enhance nuclear export, it has remained unclear whether mRNAs generated from intronless genes use specific machinery to promote their export. Here, we investigate the role of the major nuclear pore basket protein, TPR, in regulating mRNA and lncRNA nuclear export in human cells. By sequencing mRNA from the nucleus and cytosol of control and TPR-depleted cells, we provide evidence that TPR is required for the efficient nuclear export of mRNAs and lncRNAs that are generated from short transcripts that tend to have few introns, and we validate this with reporter constructs. Moreover, in TPR-depleted cells reporter mRNAs generated from short transcripts accumulate in nuclear speckles and are bound to Nxf1. These observations suggest that TPR acts downstream of Nxf1 recruitment and may allow mRNAs to leave nuclear speckles and properly dock with the nuclear pore. In summary, our study provides one of the first examples of a factor that is specifically required for the nuclear export of intronless and intron-poor mRNAs and lncRNAs.
Collapse
Affiliation(s)
- Eliza S Lee
- University of Toronto, Department of Biochemistry, Canada
| | - Eric J Wolf
- University of Toronto, Department of Molecular Genetics, Canada
| | - Sean S J Ihn
- University of Toronto, Department of Biochemistry, Canada
| | | | - Andrew Emili
- University of Toronto, Department of Molecular Genetics, Canada.,Boston University School of Medicine, Department of Biochemistry, Boston, MA, USA
| | | |
Collapse
|
24
|
Hao A, Wang Y, Zhang X, Li J, Li Y, Li D, Kulik G, Sui G. Long non-coding antisense RNA HYOU1-AS is essential to human breast cancer development through competitive binding hnRNPA1 to promote HYOU1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118951. [PMID: 33422616 DOI: 10.1016/j.bbamcr.2021.118951] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/08/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022]
Abstract
Triple negative breast cancer (TNBC) has poor prognosis due to lack of biomarker and therapeutic target. Emerging research has revealed long noncoding RNAs (lncRNAs) are involved in breast cancer progression, but their functions and regulatory mechanisms remain poorly understood, especially in TNBC. In this study, we performed lncRNA microarray analysis of five TNBC samples and their matched normal tissues, and discovered a number of differentially expressed lncRNAs. We identified an antisense lncRNA, HYOU1-AS, which is transcribed from the opposite strand of the hypoxia up-regulated 1 (HYOU1) gene, enriched in the nucleus and highly expressed in TNBC. HYOU1-AS knockdown could inhibit the proliferation and migration of the TNBC MDA-MB-231 cells, and reduce their xenograft tumor formation in nude mice. In mechanistic studies, we found that HYOU1-AS could promote the expression of HYOU1, a proliferative gene, through competitively binding to hnRNPA1, an RNA-binding protein, to relieve its post-transcriptional inhibition of the HYOU1 mRNA. Consistently, increased HYOU1 levels correlated with poor clinical outcomes of breast cancer patients based on our study of the TCGA database. Overall, our data indicated that the lncRNA HYOU1-AS promoted TNBC progression through upregulating HYOU1.
Collapse
Affiliation(s)
- Aixin Hao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jialiang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingzhou Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - George Kulik
- Department of Life Sciences, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
25
|
Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. Int J Mol Sci 2020; 22:ijms22010224. [PMID: 33379356 PMCID: PMC7795419 DOI: 10.3390/ijms22010224] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common cancer types worldwide. In cases of advanced-stage disease, sorafenib is considered the treatment of choice. However, resistance to sorafenib remains a major obstacle for effective clinical application. Based on integrated phosphoproteomic and The Cancer Genome Atlas (TCGA) data, we identified a transcription factor, Y-box binding protein-1 (YB-1), with elevated phosphorylation of Ser102 in sorafenib-resistant HuH-7R cells. Phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) were activated by sorafenib, which, in turn, increased the phosphorylation level of YB-1. In functional analyses, knockdown of YB-1 led to decreased cell migration and invasion in vitro. At the molecular level, inhibition of YB-1 induced suppression of zinc-finger protein SNAI1 (Snail), twist-related protein 1 (Twist1), zinc-finger E-box-binding homeobox 1 (Zeb1), matrix metalloproteinase-2 (MMP-2) and vimentin levels, implying a role of YB-1 in the epithelial-mesenchymal transition (EMT) process in HuH-7R cells. Additionally, YB-1 contributes to morphological alterations resulting from F-actin rearrangement through Cdc42 activation. Mutation analyses revealed that phosphorylation at S102 affects the migratory and invasive potential of HuH-7R cells. Our collective findings suggest that sorafenib promotes YB-1 phosphorylation through effect from the EGFR/PI3K/AKT pathway, leading to significant enhancement of hepatocellular carcinoma (HCC) cell metastasis. Elucidation of the specific mechanisms of action of YB-1 may aid in the development of effective strategies to suppress metastasis and overcome resistance.
Collapse
|
26
|
Chen CYA, Strouz K, Huang KL, Shyu AB. Tob2 phosphorylation regulates global mRNA turnover to reshape transcriptome and impact cell proliferation. RNA (NEW YORK, N.Y.) 2020; 26:1143-1159. [PMID: 32404348 PMCID: PMC7430666 DOI: 10.1261/rna.073528.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/08/2020] [Indexed: 05/24/2023]
Abstract
Tob2, an anti-proliferative protein, promotes deadenylation through recruiting Caf1 deadenylase to the mRNA poly(A) tail by simultaneously interacting with both Caf1 and poly(A)-binding protein (PABP). Previously, we found that changes in Tob2 phosphorylation can alter its PABP-binding ability and deadenylation-promoting function. However, it remained unknown regarding the relevant kinase(s). Moreover, it was unclear whether Tob2 phosphorylation modulates the transcriptome and whether the phosphorylation is linked to Tob2's anti-proliferative function. In this study, we found that c-Jun amino-terminal kinase (JNK) increases phosphorylation of Tob2 at many Ser/Thr sites in the intrinsically disordered region (IDR) that contains two separate PABP-interacting PAM2 motifs. JNK-induced phosphorylation or phosphomimetic mutations at these sites weaken the Tob2-PABP interaction. In contrast, JNK-independent phosphorylation of Tob2 at serine 254 (S254) greatly enhances Tob2 interaction with PABP and its ability to promote deadenylation. We discovered that both PAM2 motifs are required for Tob2 to display these features. Combining mass spectrometry analysis, poly(A) size-distribution profiling, transcriptome-wide mRNA turnover analyses, and cell proliferation assays, we found that the phosphomimetic mutation at S254 (S254D) enhances Tob2's association with PABP, leading to accelerated deadenylation and decay of mRNAs globally. Moreover, the Tob2-S254D mutant accelerates the decay of many transcripts coding for cell cycle related proteins and enhances anti-proliferation function. Our findings reveal a novel mechanism by which Ccr4-Not complex is recruited by Tob2 to the mRNA 3' poly(A)-PABP complex in a phosphorylation dependent manner to promote rapid deadenylation and decay across the transcriptome, eliciting transcriptome reprogramming and suppressed cell proliferation.
Collapse
Affiliation(s)
- Chyi-Ying A Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Krista Strouz
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Ann-Bin Shyu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
27
|
Fan X, Liu L, Shi Y, Guo F, Wang H, Zhao X, Zhong D, Li G. Integrated analysis of RNA-binding proteins in human colorectal cancer. World J Surg Oncol 2020; 18:222. [PMID: 32828126 PMCID: PMC7443297 DOI: 10.1186/s12957-020-01995-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/09/2020] [Indexed: 12/15/2022] Open
Abstract
Background Although RNA-binding proteins play an essential role in a variety of different tumours, there are still limited efforts made to systematically analyse the role of RNA-binding proteins (RBPs) in the survival of colorectal cancer (CRC) patients. Methods Analysis of CRC transcriptome data collected from the TCGA database was conducted, and RBPs were extracted from CRC. R software was applied to analyse the differentially expressed genes (DEGs) of RBPs. To identify related pathways and perform functional annotation of RBP DEGs, Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the database for annotation, visualization and integrated discovery. Protein-protein interactions (PPIs) of these DEGs were analysed based on the Search Tool for the Retrieval of Interacting Genes (STRING) database and visualized by Cytoscape software. Based on the Cox regression analysis of the prognostic value of RBPs (from the PPI network) with survival time, the RBPs related to survival were identified, and a prognostic model was constructed. To verify the model, the data stored in the TCGA database were designated as the training set, while the chip data obtained from the GEO database were treated as the test set. Then, both survival analysis and ROC curve verification were conducted. Finally, the risk curves and nomograms of the two groups were generated to predict the survival period. Results Among RBP DEGs, 314 genes were upregulated while 155 were downregulated, of which twelve RBPs (NOP14, MRPS23, MAK16, TDRD6, POP1, TDRD5, TDRD7, PPARGC1A, LIN28B, CELF4, LRRFIP2, MSI2) with prognostic value were obtained. Conclusions The twelve identified genes may be promising predictors of CRC and play an essential role in the pathogenesis of CRC. However, further investigation of the underlying mechanism is needed.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Fanghan Guo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Haining Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Xiuli Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
28
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
29
|
Yu J, Navickas A, Asgharian H, Culbertson B, Fish L, Garcia K, Olegario JP, Dermit M, Dodel M, Hänisch B, Luo Y, Weinberg EM, Dienstmann R, Warren RS, Mardakheh FK, Goodarzi H. RBMS1 Suppresses Colon Cancer Metastasis through Targeted Stabilization of Its mRNA Regulon. Cancer Discov 2020; 10:1410-1423. [PMID: 32513775 DOI: 10.1158/2159-8290.cd-19-1375] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 11/16/2022]
Abstract
Identifying master regulators that drive pathologic gene expression is a key challenge in precision oncology. Here, we have developed an analytic framework, named PRADA, that identifies oncogenic RNA-binding proteins through the systematic detection of coordinated changes in their target regulons. Application of this approach to data collected from clinical samples, patient-derived xenografts, and cell line models of colon cancer metastasis revealed the RNA-binding protein RBMS1 as a suppressor of colon cancer progression. We observed that silencing RBMS1 results in increased metastatic capacity in xenograft mouse models, and that restoring its expression blunts metastatic liver colonization. We have found that RBMS1 functions as a posttranscriptional regulator of RNA stability by directly binding its target mRNAs. Together, our findings establish a role for RBMS1 as a previously unknown regulator of RNA stability and as a suppressor of colon cancer metastasis with clinical utility for risk stratification of patients. SIGNIFICANCE: By applying a new analytic approach to transcriptomic data from clinical samples and models of colon cancer progression, we have identified RBMS1 as a suppressor of metastasis and as a post-transcriptional regulator of RNA stability. Notably, RBMS1 silencing and downregulation of its targets are negatively associated with patient survival.See related commentary by Carter, p. 1261.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Johnny Yu
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Albertas Navickas
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Hosseinali Asgharian
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Bruce Culbertson
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Lisa Fish
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Kristle Garcia
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - John Paolo Olegario
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Maria Dermit
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Martin Dodel
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Benjamin Hänisch
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Yikai Luo
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California.,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Ethan M Weinberg
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodrigo Dienstmann
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Robert S Warren
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.,Department of Surgery, University of California, San Francisco, San Francisco, California
| | - Faraz K Mardakheh
- Centre for Cancer Cell & Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California. .,Department of Urology, University of California, San Francisco, San Francisco, California.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
30
|
Chen G, Gu H, Fang T, Zhou K, Xu J, Yin X. Hypoxia-induced let-7f-5p/TARBP2 feedback loop regulates osteosarcoma cell proliferation and invasion by inhibiting the Wnt signaling pathway. Aging (Albany NY) 2020; 12:6891-6903. [PMID: 32305960 PMCID: PMC7202494 DOI: 10.18632/aging.103049] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is the most common bone tumor in children and adolescents and is characterized by high metastatic and recurrence rates. In the past, it has been shown that microRNAs may play critical roles in hypoxia-related OS proliferation and invasion. However, the mechanisms by which OS cells acquire this malignant phenotype have remained largely unknown. In the present study, we report that let-7f-5p and TARBP2 were expressed in lower amounts in human OS cell lines when compared with the hFOB normal human osteoblastic cell line; however, both types of cells were repressed by hypoxia. let-7f-5p and TARBP2 significantly inhibited the proliferation and invasion of OS cells. Furthermore, TARBP2 as a downstream and functional target of let-7f-5p regulated the expression of let-7f-5p, and there was a regulatory feedback loop between let-7f-5p and TARBP2. This loop reduced the expression of let-7f-5p and TARBP2 in OS cells to a very low level, which was induced by hypoxia. Furthermore, the hypoxia-induced let-7f-5p/TARBP2 feedback loop contributed to activation of the Wnt signaling pathway. Taken together, our data clearly showed that the feedback loop between let-7f-5p and TARBP2 induced by the hypoxia-promoted OS cell malignant phenotype increased with activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Huijie Gu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201100, P.R. China
| | - Kaifeng Zhou
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Jun Xu
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| | - Xiaofan Yin
- Department of Orthopaedics, Minhang Hospital, Fudan University, Shanghai 201199, P.R. China
| |
Collapse
|
31
|
Fang T, Zhao Z, Yuan F, He M, Sun J, Guo M, Huang P, Yang B, Xia J. Actinidia Chinensis Planch Root extract attenuates proliferation and metastasis of hepatocellular carcinoma by inhibiting the DLX2/TARBP2/JNK/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112529. [PMID: 31891797 DOI: 10.1016/j.jep.2019.112529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/18/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Many studies have confirmed that traditional Chinese herbs exert potential anti-tumor effects. Actinidia Chinensis Planch root has been used as a traditional Chinese medicine (TCM) for thousands of years. However, the mechanism of anti-tumor effects of Actinidia Chinensis Planch root has not been clearly clarified. AIM OF THE STUDY To explore the molecular biological mechanisms underlying the inhibitory effect of Actinidia Chinensis Planch root extract (acRoots) on hepatocellular carcinoma (HCC). MATERIALS AND METHODS In our previous study, we used mRNA chip analyses to identify genes regulated by acRoots. Further analyses of altered genes led to the identification of a key regulator of genes that responds to acRoots. We explored the effects of acRoots on the proliferation and invasion of HCC cells via cell counting as well as transwell assays, and further explored the molecular mechanisms underlying the effects of acRoots on HCC cells using qRT-PCR, western blot, and Chip-PCR. RESULTS Increasing the concentration of acRoots as well as prolonging its action time enhanced the inhibitory activity of acRoots as well as its cytotoxicity against HCC cells. High TARBP2 expression in HCC cells, which is associated with advanced-stage HCC and poor prognoses in HCC patients, was downregulated by treatment with acRoots. Furthermore, acRoots inhibited proliferation, invasion, and epithelial-to-mesenchymal transition by downregulating TARBP2 expression. HCC cells with higher TARBP2 expression were more sensitive to acRoots. The expression of TARBP2 and DLX2 in HCC patients and HCC cell lines was significantly positively correlated, and DLX2 as a transcription factor may promote TARBP2 expression, thereby further activating the JNK/AKT signaling pathway leading to the inhibition of HCC. CONCLUSIONS acRoots inhibited the malignant behavior of HCC cells by inhibiting TARBP2 expression, which is affected by the transcription factor DLX2, leading to a reduction in JNK/AKT signaling pathway activation.
Collapse
Affiliation(s)
- Tingting Fang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Zhiying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Feifei Yuan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Mingyan He
- Department of gastroenterology, The First Affiliated Hospital of Nanchang university, Jiangxi, 330006, PR China
| | - Jialei Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Mengzhou Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Peixin Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China
| | - Biwei Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China.
| | - Jinglin Xia
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 201100, PR China; Minhang Hospital, Shanghai Medical School of Fudan University, Shanghai, 201100, PR China.
| |
Collapse
|
32
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
33
|
Manning M, Jiang Y, Wang R, Liu L, Rode S, Bonahoom M, Kim S, Yang ZQ. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biol 2020; 17:474-486. [PMID: 31957540 PMCID: PMC7237164 DOI: 10.1080/15476286.2019.1708549] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA methylation, catalysed by a set of RNA methyltransferases (RNMTs), modulates RNA structures, properties, and biological functions. RNMTs are increasingly documented to be dysregulated in various human diseases, particularly developmental disorders and cancer. However, the genomic and transcriptomic alterations of RNMTs, as well as their functional roles in human cancer, are limited. In this study, we utilized an unbiased approach to examine copy number alterations and mutation rates of 58 RNMTs in more than 10,000 clinical samples across 32 human cancer types. We also investigated these alterations and RNMT expression level as they related to clinical features such as tumour subtype, grade, and survival in a large cohort of tumour samples, focusing on breast cancer. Loss-of-function analysis was performed to examine RNMT candidates with important roles in growth and viability of breast cancer cells. We identified a subset of RNMTs, notably TRMT12, NSUN2, TARBP1, and FTSJ3, that were amplified or mutated in a subset of human cancers. Several RNMTs were significantly associated with breast cancer aggressiveness and poor prognosis. Loss-of-function analysis indicated FTSJ3, a 2'-O-Me methyltransferase, as a candidate RNMT with functional roles in promoting cancer growth and survival. A subset of RNMTs, like FTSJ3, represents promising novel targets for anticancer drug discovery. Our findings provide a framework for further study of the functional consequences of RNMT alterations in human cancer and for developing therapies that target cancer-promoting RNMTs in the future.
Collapse
Affiliation(s)
- Morenci Manning
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuanyuan Jiang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Rui Wang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Diagnostics of Chinese Medicine, Hebei University of Chinese Medicine, Hebei, China
| | - Lanxin Liu
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shomita Rode
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison Bonahoom
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Zeng-Quan Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
34
|
Liu D, Xu L, Wang W, Jia S, Jin S, Gao J. OsRRM, an RNA-Binding Protein, Modulates Sugar Transport in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2020; 11:605276. [PMID: 33363560 PMCID: PMC7752781 DOI: 10.3389/fpls.2020.605276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2020] [Indexed: 05/09/2023]
Abstract
Sugar allocation between vegetative and reproductive tissues is vital to plant development, and sugar transporters play fundamental roles in this process. Although several transcription factors have been identified that control their transcription levels, the way in which the expression of sugar transporter genes is controlled at the posttranscriptional level is unknown. In this study, we showed that OsRRM, an RNA-binding protein, modulates sugar allocation in tissues on the source-to-sink route. The OsRRM expression pattern partly resembles that of several sugar transporter and transcription factor genes that specifically affect sugar transporter gene expression. The messenger RNA levels of almost all of the sugar transporter genes are severely reduced in the osrrm mutant, and this alters sugar metabolism and sugar signaling, which further affects plant height, flowering time, seed size, and starch synthesis. We further showed that OsRRM binds directly to messenger RNAs encoded by sugar transporter genes and thus may stabilize their transcripts. Therefore, we have uncovered the physiological function of OsRRM, which sheds new light on sugar metabolism and sugar signaling.
Collapse
Affiliation(s)
- Derui Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lina Xu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Wang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Shuwen Jia
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sukui Jin
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jiping Gao
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Jiping Gao,
| |
Collapse
|
35
|
Zhang J, Zheng Z, Wu M, Zhang L, Wang J, Fu W, Xu N, Zhao Z, Lao Y, Xu H. The natural compound neobractatin inhibits tumor metastasis by upregulating the RNA-binding-protein MBNL2. Cell Death Dis 2019; 10:554. [PMID: 31320607 PMCID: PMC6639345 DOI: 10.1038/s41419-019-1789-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/21/2022]
Abstract
Tumor metastasis is the predominant cause of lethality in cancer. We found that Neobractatin (NBT), a natural compound isolated from Garcinia bracteata, could efficiently inhibit breast and lung cancer cells metastasis. However, the mechanisms of NBT inhibiting cancer metastasis remain unclear. Based on the RNA-sequencing result and transcriptome analysis, Muscleblind-like 2 (MBNL2) was found to be significantly upregulated in the cells treated with NBT. The Cancer Genome Atlas (TCGA) database analysis indicated that the expression of MBNL2 in breast and lung carcinoma tumor tissues was significantly lower compared to normal tissues. We thus conducted to investigate the antimetastatic role of MBNL2. MBNL2 overexpression mimicked the effect of NBT on breast cancer and lung cancer cell motility and metastasis, in addition significantly enhanced the inhibition effect of NBT. MBNL2 knockdown furthermore partially eliminated the inhibitory effect of NBT on metastasis. Mechanistically, we demonstrated that NBT- and MBNL2-mediated antimetastasis regulation significantly correlated with the pAKT/epithelial-mesenchymal transition (EMT) pathway. Subsequent in vivo study showed the same metastasis inhibition effect in NBT and MBNL2 in MDA-MB-231 xenografts mouse model. This study suggest that NBT possesses significant antitumor activity in breast and lung cancer cells that is partly mediated through the MBNL2 expression and enhancement in metastasis via the pAKT/EMT signaling pathway.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Zhaoqing Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Jing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Naihan Xu
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, P.R. China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, P.R. China. .,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, 201203, Shanghai, P.R. China.
| |
Collapse
|
36
|
Fish L, Navickas A, Culbertson B, Xu Y, Nguyen HCB, Zhang S, Hochman M, Okimoto R, Dill BD, Molina H, Najafabadi HS, Alarcón C, Ruggero D, Goodarzi H. Nuclear TARBP2 Drives Oncogenic Dysregulation of RNA Splicing and Decay. Mol Cell 2019; 75:967-981.e9. [PMID: 31300274 DOI: 10.1016/j.molcel.2019.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 12/31/2022]
Abstract
Post-transcriptional regulation of RNA stability is a key step in gene expression control. We describe a regulatory program, mediated by the RNA binding protein TARBP2, that controls RNA stability in the nucleus. TARBP2 binding to pre-mRNAs results in increased intron retention, subsequently leading to targeted degradation of TARBP2-bound transcripts. This is mediated by TARBP2 recruitment of the m6A RNA methylation machinery to its target transcripts, where deposition of m6A marks influences the recruitment of splicing regulators, inhibiting efficient splicing. Interactions between TARBP2 and the nucleoprotein TPR then promote degradation of these TARBP2-bound transcripts by the nuclear exosome. Additionally, analysis of clinical gene expression datasets revealed a functional role for TARBP2 in lung cancer. Using xenograft mouse models, we find that TARBP2 affects tumor growth in the lung and that this is dependent on TARBP2-mediated destabilization of ABCA3 and FOXN3. Finally, we establish ZNF143 as an upstream regulator of TARBP2 expression.
Collapse
Affiliation(s)
- Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Albertas Navickas
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruce Culbertson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yichen Xu
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hoang C B Nguyen
- Laboratory of Systems Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Steven Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Myles Hochman
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ross Okimoto
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian D Dill
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- Proteome Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Claudio Alarcón
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Yale Cancer Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Long Y, Marian TA, Wei Z. ZFR promotes cell proliferation and tumor development in colorectal and liver cancers. Biochem Biophys Res Commun 2019; 513:1027-1034. [PMID: 31010678 DOI: 10.1016/j.bbrc.2019.04.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/14/2019] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) and liver cancer are the second and fourth leading causes of cancer-related deaths in the whole world, respectively, and each year over 1.6 million people die from these diseases. To identify driver genes in CRC and liver cancer, we have performed Sleeping Beauty transposon mutagenesis screens in mouse models. Zinc finger RNA binding protein, ZFR, was one of the novel candidate cancer genes identified in these forward genetic screens. Consistent with this discovery, a pan-cancer analysis of sequencing results of thousands of human cancer genomes demonstrated that ZFR is a potential potent oncogene. In this study, we aimed to investigate ZFR's roles in both types of cancer and found that overexpression of ZFR in CRC and liver cancer cells led to accelerated tumor development. Consistently, knockdown of ZFR resulted in significantly decelerated tumor development. ZFR overexpression also promoted tumor development of immortalized mouse liver cells. ZFR overexpression and shRNA knockdown led to accelerated and decelerated cell proliferation, respectively, indicating that ZFR promotes tumor development mainly by regulating cell proliferation. To identify ZFR's targets in transcription, we performed whole transcriptome sequencing using ZFR small interfering RNAs in a primary human colon cell line. All potential target genes were validated by real time PCR. FAM49B was a tumor suppressor candidate for ZFR targets. When we knocked down the expression of FAM49B in CRC and liver cancer cells, we observed significantly accelerated cell proliferation, consistent with the results with ZFR overexpression. The results presented here demonstrate the oncogenic role of ZFR in both CRC and liver cancer, providing a potential drug target for both cancers' treatment. We also identified ZFR's potential transcriptional targets, and further investigations on those targets, especially FAM49B, will help us understand more about the important role of ZFR in digestive system cancers.
Collapse
Affiliation(s)
- Yanrong Long
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Teresa A Marian
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Zhubo Wei
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA; Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
38
|
Lai HH, Li CW, Hong CC, Sun HY, Chiu CF, Ou DL, Chen PS. TARBP2-mediated destabilization of Nanog overcomes sorafenib resistance in hepatocellular carcinoma. Mol Oncol 2019; 13:928-945. [PMID: 30657254 PMCID: PMC6441883 DOI: 10.1002/1878-0261.12449] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/09/2018] [Accepted: 12/30/2018] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal human malignancy and a leading cause of cancer‐related death worldwide. Patients with HCC are often diagnosed at an advanced stage, and the prognosis is usually poor. The multikinase inhibitor sorafenib is the first‐line treatment for patients with advanced HCC. However, cases of primary or acquired resistance to sorafenib have gradually increased, leading to a predicament in HCC therapy. Thus, it is critical to investigate the mechanism underlying sorafenib resistance. Transactivation response element RNA‐binding protein 2 (TARBP2) is a multifaceted miRNA biogenesis factor that regulates cancer stem cell (CSC) properties. The tumorigenicity and drug resistance of cancer cells are often enhanced due to the acquisition of CSC features. However, the role of TARBP2 in sorafenib resistance in HCC remains unknown. Our results demonstrate that TARBP2 is significantly downregulated in sorafenib‐resistant HCC cells. The TARBP2 protein was destabilized through autophagic–lysosomal proteolysis, thereby stabilizing the expression of the CSC marker protein Nanog, which facilitates sorafenib resistance in HCC cells. In summary, here we reveal a novel miRNA‐independent role of TARBP2 in regulating sorafenib resistance in HCC cells.
Collapse
Affiliation(s)
- Hui-Huang Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wei Li
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Chen Hong
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Yu Sun
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taiwan
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
39
|
TARBP2-Enhanced Resistance during Tamoxifen Treatment in Breast Cancer. Cancers (Basel) 2019; 11:cancers11020210. [PMID: 30759864 PMCID: PMC6406945 DOI: 10.3390/cancers11020210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen is the most widely used hormone therapy in estrogen receptor-positive (ER+) breast cancer, which accounts for approximately 70% of all breast cancers. Although patients who receive tamoxifen therapy benefit with respect to an improved overall prognosis, resistance and cancer recurrence still occur and remain important clinical challenges. A recent study identified TAR (HIV-1) RNA binding protein 2 (TARBP2) as an oncogene that promotes breast cancer metastasis. In this study, we showed that TARBP2 is overexpressed in hormone therapy-resistant cells and breast cancer tissues, where it enhances tamoxifen resistance. Tamoxifen-induced TARBP2 expression results in the desensitization of ER+ breast cancer cells. Mechanistically, tamoxifen post-transcriptionally stabilizes TARBP2 protein through the downregulation of Merlin, a TARBP2-interacting protein known to enhance its proteasomal degradation. Tamoxifen-induced TARBP2 further stabilizes SOX2 protein to enhance desensitization of breast cancer cells to tamoxifen, while similar to TARBP2, its induction in cancer cells was also observed in metastatic tumor cells. Our results indicate that the TARBP2-SOX2 pathway is upregulated by tamoxifen-mediated Merlin downregulation, which subsequently induces tamoxifen resistance in ER+ breast cancer.
Collapse
|
40
|
Fish L, Zhang S, Yu JX, Culbertson B, Zhou AY, Goga A, Goodarzi H. Cancer cells exploit an orphan RNA to drive metastatic progression. Nat Med 2018; 24:1743-1751. [PMID: 30397354 PMCID: PMC6223318 DOI: 10.1038/s41591-018-0230-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
In this study we performed a systematic search to identify breast cancer-specific small non-coding RNAs, which we have collectively termed orphan non-coding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3’ end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its pro-metastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the pro-metastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also play a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies.
Collapse
Affiliation(s)
- Lisa Fish
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Zhang
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny X Yu
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Culbertson
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alicia Y Zhou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Andrei Goga
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA. .,Department of Urology, University of California, San Francisco, San Francisco, CA, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
41
|
Association of variants of miRNA processing genes with cervical precancerous lesion risk in a southern Chinese population. Biosci Rep 2018; 38:BSR20171565. [PMID: 29853562 PMCID: PMC6435547 DOI: 10.1042/bsr20171565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/16/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The miRNA processing genes play essential roles in the biosynthesis of mammalian miRNAs, and their genetic variants are involved in the development of various cancers. Our study aimed to determine the potential association between miRNA processing gene polymorphisms and cervical precancerous lesions. Five single nucleotide polymorphisms (SNPs), including Ran-GTP (RAN) rs14035, exportin-5 (XPO5) rs11077, DICER1 rs3742330, DICER1 rs13078, and TARBP2 rs784567, were genotyped in a case-control study to estimate risk factors of cervical precancerous lesions. The gene-environment interactions and haplotype association were estimated. We identified a 27% decreased risk of cervical precancerous lesions for individuals with minor G allele in DICER1 rs3742330 (odds ratio (OR) = 0.73, 95% confidence interval (95% CI) = 0.58-0.92, P = 0.009). The AG and AG/GG genotypes in DICER1 rs3742330 were also found to decrease the risk of cervical precancerous lesions (AG compared with AA: OR = 0.51, 95% CI = 0.35-0.73, P <0.001; AG/GG compared with AA: OR = 0.54, 95% CI = 0.39-0.77, P = 0.001). The GT haplotype in DICER1 had a risk effect on cervical precancerous lesions compared with the AT haplotype (OR = 1.36, 95% CI = 1.08-1.73, P = 0.010). A two-factor (DICER1 rs3742330 and human papillomavirus (HPV) infection) and two three-factor (model 1: rs3742330, passive smoking, and HPV infection; model 2: rs3742330, abortion history, and HPV infection) interaction models for cervical precancerous lesions were identified. In conclusion, the genetic variants in the miRNA processing genes and interactions with certain environmental factors might contribute to the risk of cervical precancerous lesions in southern Chinese women.
Collapse
|
42
|
Perron G, Jandaghi P, Solanki S, Safisamghabadi M, Storoz C, Karimzadeh M, Papadakis AI, Arseneault M, Scelo G, Banks RE, Tost J, Lathrop M, Tanguay S, Brazma A, Huang S, Brimo F, Najafabadi HS, Riazalhosseini Y. A General Framework for Interrogation of mRNA Stability Programs Identifies RNA-Binding Proteins that Govern Cancer Transcriptomes. Cell Rep 2018; 23:1639-1650. [PMID: 29742422 DOI: 10.1016/j.celrep.2018.04.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/03/2018] [Accepted: 04/06/2018] [Indexed: 01/13/2023] Open
Abstract
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC.
Collapse
Affiliation(s)
- Gabrielle Perron
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Pouria Jandaghi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Shraddha Solanki
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maryam Safisamghabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Cristina Storoz
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mehran Karimzadeh
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Andreas I Papadakis
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Madeleine Arseneault
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Ghislaine Scelo
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas, Lyon 69008, France
| | - Rosamonde E Banks
- Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St. James's University Hospital, Leeds LS9 7TF, UK
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Simon Tanguay
- Department of Urology, McGill University, Montreal, QC H3G 1A4, Canada
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Sidong Huang
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Fadi Brimo
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada.
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, QC H3A 1B1, Canada; McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
43
|
Goodarzi H. Charting the "unknown unknowns" of cancer progression. Sci Transl Med 2018; 9:9/400/eaao0959. [PMID: 28747512 DOI: 10.1126/scitranslmed.aao0959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 11/02/2022]
Abstract
Integrated computational and experimental strategies reveal previously unknown regulatory programs underlying metastatic disease.
Collapse
Affiliation(s)
- Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Functional Redundancy of DICER Cofactors TARBP2 and PRKRA During Murine Embryogenesis Does Not Involve miRNA Biogenesis. Genetics 2018; 208:1513-1522. [PMID: 29467169 PMCID: PMC5887145 DOI: 10.1534/genetics.118.300791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/10/2018] [Indexed: 12/21/2022] Open
Abstract
Several in vitro studies have suggested that canonical microRNA (miRNA) biogenesis requires the DICER cofactors TARBP2 and PRKRA for processing of pre-miRNAs to mature miRNAs. To investigate the roles of TARBP2 and PRKRA in miRNA biogenesis in vivo, and to determine possible functional redundancy, we first compared the phenotypes of Tarbp2 and Prkra single and double mutants. In contrast to Dicer −/− embryos, which die by embryonic day 7.5 (E7.5), single Tarbp2 −/− and Prkra −/− mice survive beyond E7.5 and either die perinatally or survive and exhibit cranial/facial abnormalities, respectively. In contrast, only a few Tarbp2 −/−; Prkra −/− double mutants survived beyond E12.5, suggesting genetic redundancy between Tarbp2 and Prkra during embryonic development. Sequencing of miRNAs from single-mutant embryos at E15.5 revealed changes in abundance and isomiR type in Tarbp2 −/−, but not Prkra −/−, embryos, demonstrating that TARBP2, but not PRKRA, functions in miRNA biogenesis of a subclass of miRNAs, and suggesting that functional redundancy between TARBP2 and PRKRA does not involve miRNA biogenesis.
Collapse
|
45
|
Alkallas R, Fish L, Goodarzi H, Najafabadi HS. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer's disease. Nat Commun 2017; 8:909. [PMID: 29030541 PMCID: PMC5714957 DOI: 10.1038/s41467-017-00867-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/28/2017] [Indexed: 12/24/2022] Open
Abstract
The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer’s disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer’s disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer’s disease with age and gender. “mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer’s disease.”
Collapse
Affiliation(s)
- Rached Alkallas
- Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7.,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.,Department of Urology, University of California, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA.,Department of Urology, University of California, San Francisco, CA, 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC, Canada, H3A 0C7. .,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, H3A 0G1.
| |
Collapse
|
46
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
47
|
Jiang Z, Slater CM, Zhou Y, Devarajan K, Ruth KJ, Li Y, Cai KQ, Daly M, Chen X. LincIN, a novel NF90-binding long non-coding RNA, is overexpressed in advanced breast tumors and involved in metastasis. Breast Cancer Res 2017; 19:62. [PMID: 28558830 PMCID: PMC5450112 DOI: 10.1186/s13058-017-0853-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent genome-wide profiling by sequencing and distinctive chromatin signatures has identified thousands of long non-coding RNA (lncRNA) species (>200 nt). LncRNAs have emerged as important regulators of gene expression, involving in both developmental and pathological processes. While altered expression of lncRNAs has been observed in breast cancer development, their roles in breast cancer progression and metastasis are still poorly understood. METHODS To identify novel breast cancer-associated lncRNA candidates, we employed a high-density SNP array-based approach to uncover intergenic lncRNA genes that are aberrantly expressed in breast cancer. We first evaluated the potential value as a breast cancer prognostic biomarker for one breast cancer-associated lncRNA, LincIN, using a breast cancer cohort retrieved from The Cancer Genome Atlas (TCGA) Data Portal. Then we characterized the role of LincIN in breast cancer progression and metastasis by in vitro invasion assay and a mouse tail vein injection metastasis model. To study the action of LincIN, we identified LincIN-interacting protein partner(s) by RNA pull-down experiments followed with protein identification by mass spectrometry. RESULTS High levels of LincIN expression are frequently observed in tumors compared to adjacent normal tissues, and are strongly associated with aggressive breast cancer. Importantly, analysis of TCGA data further suggest that high expression of LincIN is associated with poor overall survival in patients with breast cancer (P = 0.044 and P = 0.011 after adjustment for age). The functional experiments demonstrate that knockdown of LincIN inhibits tumor cell migration and invasion in vitro, which is supported by the results of transcriptome analysis in the LincIN-knockdown cells. Furthermore, knockdown of LincIN diminishes lung metastasis in a mouse tail vein injection model. We also identified a LincIN-binding protein, NF90, through which overexpression of LincIN may repress p21 protein expression by inhibiting its translation, and upregulation of p21 by LincIN knockdown may be associated with less aggressive metastasis phenotypes. CONCLUSIONS Our studies provide clear evidence to support LincIN as a new regulator of tumor progression-metastasis at both transcriptional and translational levels and as a promising prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: Department of Medicine, Irving Cancer Research Center, Columbia University, New York, NY, 10032, USA
| | - Carolyn M Slater
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Karen J Ruth
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yueran Li
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.,Present Address: The Third Xiangya Hospital of Central South University, Changsha, China
| | - Kathy Q Cai
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Mary Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Xiaowei Chen
- Cancer Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| |
Collapse
|
48
|
ZNF395 Is an Activator of a Subset of IFN-Stimulated Genes. Mediators Inflamm 2017; 2017:1248201. [PMID: 28316371 PMCID: PMC5339479 DOI: 10.1155/2017/1248201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Activation of the interferon (IFN) pathway in response to infection with pathogens results in the induction of IFN-stimulated genes (ISGs) including proinflammatory cytokines, which mount the proper antiviral immune response. However, aberrant expression of these genes is pathogenic to the host. In addition to IFN-induced transcription factors non-IFN-regulated factors contribute to the transcriptional control of ISGs. Here, we show by genome wide expression analysis, siRNA-mediated suppression and Doxycycline-induced overexpression that the cellular transcription factor ZNF395 activates a subset of ISGs including the chemokines CXCL10 and CXCL11 in keratinocytes. We found that ZNF395 acts independently of IFN but enhances the IFN-induced expression of CXCL10 and CXCL11. Luciferase reporter assays revealed a requirement of intact NFκB-binding sites for ZNF395 to stimulate the CXCL10 promoter. The transcriptional activation of CXCL10 and CXCL11 by ZNF395 was abolished after inhibition of IKK by BMS-345541, which increased the stability of ZNF395. ZNF395 encodes at least two motifs that mediate the enhanced degradation of ZNF395 in response to IKK activation. Thus, IKK is required for ZNF395-mediated activation of transcription and enhances its turn-over to keep the activity of ZNF395 low. Our results support a previously unrecognized role of ZNF395 in the innate immune response and inflammation.
Collapse
|
49
|
Wanka H, Lutze P, Staar D, Peters B, Morch A, Vogel L, Chilukoti RK, Homuth G, Sczodrok J, Bäumgen I, Peters J. (Pro)renin receptor (ATP6AP2) depletion arrests As4.1 cells in the G0/G1 phase thereby increasing formation of primary cilia. J Cell Mol Med 2017; 21:1394-1410. [PMID: 28215051 PMCID: PMC5487920 DOI: 10.1111/jcmm.13069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/24/2016] [Indexed: 01/07/2023] Open
Abstract
The (pro)renin receptor [(P)RR, ATP6AP2] is a multifunctional transmembrane protein that activates local renin-angiotensin systems, but also interacts with Wnt pathways and vacuolar H+ -ATPase (V-ATPase) during organogenesis. The aim of this study was to characterize the role of ATP6AP2 in the cell cycle in more detail. ATP6AP2 down-regulation by siRNA in renal As4.1 cells resulted in a reduction in the rate of proliferation and a G0/G1 phase cell cycle arrest. We identified a number of novel target genes downstream of ATP6AP2 knock-down that were related to the primary cilium (Bbs-1, Bbs-3, Bbs-7, Rabl5, Ttc26, Mks-11, Mks-5, Mks-2, Tctn2, Nme7) and the cell cycle (Pierce1, Clock, Ppif). Accordingly, the number of cells expressing the primary cilium was markedly increased. We found no indication that these effects were dependent of V-ATPase activity, as ATP6AP2 knock-down did not affect lysosomal pH and bafilomycin A neither influenced the ciliary expression pattern nor the percentage of ciliated cells. Furthermore, ATP6AP2 appears to be essential for mitosis. ATP6AP2 translocated from the endoplasmatic reticulum to mitotic spindle poles (pro-, meta- and anaphase) and the central spindle bundle (telophase) and ATP6AP2 knock-down results in markedly deformed spindles. We conclude that ATP6AP2 is necessary for cell division, cell cycle progression and mitosis. ATP6AP2 also inhibits ciliogenesis, thus promoting proliferation and preventing differentiation.
Collapse
Affiliation(s)
- Heike Wanka
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Philipp Lutze
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Doreen Staar
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Barbara Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Anica Morch
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Lukas Vogel
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst Moritz Arndt-University Greifswald, Greifswald, Germany
| | - Jaroslaw Sczodrok
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Inga Bäumgen
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Jörg Peters
- Department of Physiology, University Medicine Greifswald, Karlsburg, Germany
| |
Collapse
|
50
|
Patel SA, Vanharanta S. Epigenetic determinants of metastasis. Mol Oncol 2017; 11:79-96. [PMID: 27756687 PMCID: PMC5423227 DOI: 10.1016/j.molonc.2016.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 02/06/2023] Open
Abstract
Genetic analyses of cancer progression in patient samples and model systems have thus far failed to identify specific mutational drivers of metastasis. Yet, at least in experimental systems, metastatic cancer clones display stable traits that can facilitate progression through the many steps of metastasis. How cancer cells establish and maintain the transcriptional programmes required for metastasis remains mostly unknown. Emerging evidence suggests that metastatic traits may arise from epigenetically altered transcriptional output of the oncogenic signals that drive tumour initiation and early progression. Molecular dissection of such mechanisms remains a central challenge for a comprehensive understanding of the origins of metastasis.
Collapse
Affiliation(s)
- Saroor A Patel
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom
| | - Sakari Vanharanta
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|