1
|
Zhu Q, Chen C, Yao J. Kearns–Sayre syndrome with a novel large-scale deletion: a case report. BMC Ophthalmol 2022; 22:35. [PMID: 35073857 PMCID: PMC8785533 DOI: 10.1186/s12886-021-02224-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background Kearns–Sayre syndrome (KSS) is a rare, multisystem mitochondrial encephalomyopathy. We report a case of KSS with a novel 7.6-kb deletion as assessed through a long-range polymerase chain reaction (PCR) study in the blood. In addition, optical coherence tomography angiography (OCTA) confirmed deep retinal capillary atrophy for the first time. Case presentation A 13-year-old patient presented with progressive vision loss and difficulty with eye opening and was diagnosed with progressive external ophthalmoplegia and retinitis pigmentosa (RP). The patient also experienced heart block, vestibular dysfunction, growth retardation and multiple demyelinating lesions. A long-range PCR study in the blood revealed a large-scale Chrm: 6341–13,993 deletion, which was first reported and broadened the genetic spectrum of this disease. The patient underwent complete ophthalmic examination, medical history review and gene detection, resulting in a confirmation of the diagnosis of KSS. The patient was given a pair of applicable glasses to wear and was followed up every 3 months. An implantable pacemaker was also installed based on the advice of the physician. Conclusions We reported a novel large-scale deletion in the mitochondrial DNA of KSS, and OCTA was used for the first time to confirm deep retinal capillary atrophy. Furthermore, because ophthalmic symptoms are often the primary manifestation of KSS, the relationship between ophthalmology and mitochondrial diseases should be emphasised.
Collapse
|
2
|
Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 2020; 11:322. [PMID: 31949167 PMCID: PMC6965120 DOI: 10.1038/s41467-019-14201-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc1 complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav Grigorjev
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Noora Aho
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Department of Chemistry, University of Jyväskylä, P.O. Box 35 (Survontie 9B), FI-40014, Jyväskylä, Finland
| | - Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarina Truvé
- Sahlgrenska Academy, University of Gothenburg, P.O. Box 413 (Medicinaregatan 3), 41390, Gothenburg, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Sciences, Pediatrics, BMC F12, Lund University, 221 84, Lund, Sweden.,Children's Hospital, Helsinki University Hospital, P.O. Box 281 (Stenbäckinkatu 11), FI-00029, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
3
|
Jankauskas SS, Silachev DN, Andrianova NV, Pevzner IB, Zorova LD, Popkov VA, Plotnikov EY, Zorov DB. Aged kidney: can we protect it? Autophagy, mitochondria and mechanisms of ischemic preconditioning. Cell Cycle 2018; 17:1291-1309. [PMID: 29963970 DOI: 10.1080/15384101.2018.1482149] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The anti-aging strategy is one of the main challenges of the modern biomedical science. The term "aging" covers organisms, cells, cellular organelles and their constituents. In general term, aging system admits the existence of nonfunctional structures which by some reasons have not been removed by a clearing system, e.g., through autophagy/mitophagy marking and destroying unwanted cells or mitochondria. This directly relates to the old kidney which normal functioning is critical for the viability of the organism. One of the main problems in biomedical studies is that in their majority, young organisms serve as a standard with further extrapolation on the aged system. However, some protective systems, which demonstrate their efficiency in young systems, lose their beneficial effect in aged organisms. It is true for ischemic preconditioning of the kidney, which is almost useless for an old kidney. The pharmacological intervention could correct the defects of the senile system provided that the complete understanding of all elements involved in aging will be achieved. We discuss critical elements which determine the difference between young and old phenotypes and give directions to prevent or cure lesions occurring in aged organs including kidney. ABBREVIATIONS AKI: acute kidney injury; I/R: ischemia/reperfusion; CR: caloric restriction; ROS: reactive oxygen species; RC: respiratory chain.
Collapse
Affiliation(s)
- Stanislovas S Jankauskas
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Denis N Silachev
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Nadezda V Andrianova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Irina B Pevzner
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Ljubava D Zorova
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Vasily A Popkov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,c Faculty of Bioengineering and Bioinformatics , M.V. Lomonosov Moscow State University , Moscow , Russian Federation
| | - Egor Y Plotnikov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| | - Dmitry B Zorov
- a A.N. Belozersky Institute of Physico-Chemical Biology , M.V. Lomonosov Moscow State University , Moscow , Russian Federation.,b Department of Molecular Mechanisms of Adaptation , V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology , Moscow , Russian Federation
| |
Collapse
|