1
|
Anil AT, Pandian R, Mishra SK. Introns with branchpoint-distant 3' splice sites: Splicing mechanism and regulatory roles. Biophys Chem 2024; 314:107307. [PMID: 39173313 DOI: 10.1016/j.bpc.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
The two transesterification reactions of pre-mRNA splicing require highly complex yet well-controlled rearrangements of small nuclear RNAs and proteins (snRNP) in the spliceosome. The efficiency and accuracy of these reactions are critical for gene expression, as almost all human genes pass through pre-mRNA splicing. Key parameters that determine the splicing outcome are the length of the intron, the strengths of its splicing signals and gaps between them, and the presence of splicing controlling elements. In particular, the gap between the branchpoint (BP) and the 3' splice site (ss) of introns is a major determinant of the splicing efficiency. This distance falls within a small range across the introns of an organism. The constraints exist possibly because BP and 3'ss are recognized by BP-binding proteins, U2 snRNP and U2 accessory factors (U2AF) in a coordinated manner. Furthermore, varying distances between the two signals may also affect the second transesterification reaction since the intervening RNA needs to be accurately positioned within the complex RNP machinery. Splicing such pre-mRNAs requires cis-acting elements in the RNA and many trans-acting splicing regulators. Regulated pre-mRNA splicing with BP-distant 3'ss adds another layer of control to gene expression and promotes alternative splicing.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306, Punjab, India.
| |
Collapse
|
2
|
Senn KA, Lipinski KA, Zeps NJ, Griffin AF, Wilkinson ME, Hoskins AA. Control of 3' splice site selection by the yeast splicing factor Fyv6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592262. [PMID: 38746449 PMCID: PMC11092753 DOI: 10.1101/2024.05.04.592262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pre-mRNA splicing is catalyzed in two steps: 5' splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (1 st and 2 nd step factors). We recently identified Fyv6 (FAM192A in humans) as a 2 nd step factor in S. cerevisiae ; however, we did not determine how widespread Fyv6's impact is on the transcriptome. To answer this question, we have used RNA-seq to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3' SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-EM structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only 2 nd step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the 1 st step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv61 suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3' SS.
Collapse
|
3
|
Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. RNA (NEW YORK, N.Y.) 2024; 30:1199-1212. [PMID: 38876504 PMCID: PMC11331412 DOI: 10.1261/rna.079886.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
Collapse
Affiliation(s)
- Jadwiga Meissner
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| | | | | | - Maria M Konarska
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| |
Collapse
|
4
|
Senn KA, Hoskins AA. Mechanisms and regulation of spliceosome-mediated pre-mRNA splicing in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1866. [PMID: 38972853 DOI: 10.1002/wrna.1866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pre-mRNA splicing, the removal of introns and ligation of flanking exons, is a crucial step in eukaryotic gene expression. The spliceosome, a macromolecular complex made up of five small nuclear RNAs (snRNAs) and dozens of proteins, assembles on introns via a complex pathway before catalyzing the two transesterification reactions necessary for splicing. All of these steps have the potential to be highly regulated to ensure correct mRNA isoform production for proper cellular function. While Saccharomyces cerevisiae (yeast) has a limited set of intron-containing genes, many of these genes are highly expressed, resulting in a large number of transcripts in a cell being spliced. As a result, splicing regulation is of critical importance for yeast. Just as in humans, yeast splicing can be influenced by protein components of the splicing machinery, structures and properties of the pre-mRNA itself, or by the action of trans-acting factors. It is likely that further analysis of the mechanisms and pathways of splicing regulation in yeast can reveal general principles applicable to other eukaryotes. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Katherine Anne Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
6
|
Cheng F, Chapman T, Zhang S, Morsch M, Chung R, Lee A, Rayner SL. Understanding age-related pathologic changes in TDP-43 functions and the consequence on RNA splicing and signalling in health and disease. Ageing Res Rev 2024; 96:102246. [PMID: 38401571 DOI: 10.1016/j.arr.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
TAR DNA binding protein-43 (TDP-43) is a key component in RNA splicing which plays a crucial role in the aging process. In neurodegenerative diseases such as amyotrophic lateral sclerosis, frontotemporal dementia and limbic-predominant age-related TDP-43 encephalopathy, TDP-43 can be mutated, mislocalised out of the nucleus of neurons and glial cells and form cytoplasmic inclusions. These TDP-43 alterations can lead to its RNA splicing dysregulation and contribute to mis-splicing of various types of RNA, such as mRNA, microRNA, and circular RNA. These changes can result in the generation of an altered transcriptome and proteome within cells, ultimately changing the diversity and quantity of gene products. In this review, we summarise the findings of novel atypical RNAs resulting from TDP-43 dysfunction and their potential as biomarkers or targets for therapeutic development.
Collapse
Affiliation(s)
- Flora Cheng
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| | - Tyler Chapman
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Selina Zhang
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Marco Morsch
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Roger Chung
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Albert Lee
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Stephanie L Rayner
- Motor Neuron Disease Research Centre, Macquarie Medical School, Macquarie University, Sydney, Australia.
| |
Collapse
|
7
|
Ares M, Igel H, Katzman S, Donohue JP. Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586863. [PMID: 38585890 PMCID: PMC10996645 DOI: 10.1101/2024.03.26.586863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - John P. Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| |
Collapse
|
8
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
9
|
Haack DB, Rudolfs B, Zhang C, Lyumkis D, Toor N. Structural basis of branching during RNA splicing. Nat Struct Mol Biol 2024; 31:179-189. [PMID: 38057551 PMCID: PMC10968580 DOI: 10.1038/s41594-023-01150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Branching is a critical step in RNA splicing that is essential for 5' splice site selection. Recent spliceosome structures have led to competing models for the recognition of the invariant adenosine at the branch point. However, there are no structures of any splicing complex with the adenosine nucleophile docked in the active site and positioned to attack the 5' splice site. Thus we lack a mechanistic understanding of adenosine selection and splice site recognition during RNA splicing. Here we present a cryo-electron microscopy structure of a group II intron that reveals that active site dynamics are coupled to the formation of a base triple within the branch-site helix that positions the 2'-OH of the adenosine for nucleophilic attack on the 5' scissile phosphate. This structure, complemented with biochemistry and comparative analyses to splicing complexes, supports a base triple model of adenosine recognition for branching within group II introns and the evolutionarily related spliceosome.
Collapse
Affiliation(s)
- Daniel B Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Cheng Zhang
- Salk Institute, La Jolla, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | | | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Roy KR, Gabunilas J, Neutel D, Ai M, Yeh Z, Samson J, Lyu G, Chanfreau GF. Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites. Nucleic Acids Res 2023; 51:12428-12442. [PMID: 37956322 PMCID: PMC10711555 DOI: 10.1093/nar/gkad968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The fidelity of splice site selection is critical for proper gene expression. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is challenging considering the low complexity of the 3'SS consensus sequence YAG. Here, we show that absence of the Prp18p splicing factor results in genome-wide activation of alternative 3'SS in S. cerevisiae, including highly unusual non-YAG sequences. Usage of these non-canonical 3'SS in the absence of Prp18p is enhanced by upstream poly(U) tracts and by their potential to interact with the first intronic nucleoside, allowing them to dock in the spliceosome active site instead of the normal 3'SS. The role of Prp18p in 3'SS fidelity is facilitated by interactions with Slu7p and Prp8p, but cannot be fulfilled by Slu7p, identifying a unique role for Prp18p in 3'SS fidelity. This fidelity function is synergized by the downstream proofreading activity of the Prp22p helicase, but is independent from another late splicing helicase, Prp43p. Our results show that spliceosomes exhibit remarkably relaxed 3'SS sequence usage in the absence of Prp18p and identify a network of spliceosomal interactions centered on Prp18p which are required to promote the fidelity of the recognition of consensus 3'SS sequences.
Collapse
Affiliation(s)
- Kevin R Roy
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Dean Neutel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle Ai
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe Yeh
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce Samson
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guochang Lyu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
11
|
Xu L, Liu T, Chung K, Pyle AM. Structural insights into intron catalysis and dynamics during splicing. Nature 2023; 624:682-688. [PMID: 37993708 PMCID: PMC10733145 DOI: 10.1038/s41586-023-06746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/13/2023] [Indexed: 11/24/2023]
Abstract
The group II intron ribonucleoprotein is an archetypal splicing system with numerous mechanistic parallels to the spliceosome, including excision of lariat introns1,2. Despite the importance of branching in RNA metabolism, structural understanding of this process has remained elusive. Here we present a comprehensive analysis of three single-particle cryogenic electron microscopy structures captured along the splicing pathway. They reveal the network of molecular interactions that specifies the branchpoint adenosine and positions key functional groups to catalyse lariat formation and coordinate exon ligation. The structures also reveal conformational rearrangements of the branch helix and the mechanism of splice site exchange that facilitate the transition from branching to ligation. These findings shed light on the evolution of splicing and highlight the conservation of structural components, catalytic mechanism and dynamical strategies retained through time in premessenger RNA splicing machines.
Collapse
Affiliation(s)
- Ling Xu
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Tianshuo Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Kevin Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Anna Marie Pyle
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Chung CS, Wai HL, Kao CY, Cheng SC. An ATP-independent role for Prp16 in promoting aberrant splicing. Nucleic Acids Res 2023; 51:10815-10828. [PMID: 37858289 PMCID: PMC10639067 DOI: 10.1093/nar/gkad861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
The spliceosome is assembled through a step-wise process of binding and release of its components to and from the pre-mRNA. The remodeling process is facilitated by eight DExD/H-box RNA helicases, some of which have also been implicated in splicing fidelity control. In this study, we unveil a contrasting role for the prototypic splicing proofreader, Prp16, in promoting the utilization of aberrant 5' splice sites and mutated branchpoints. Prp16 is not essential for the branching reaction in wild-type pre-mRNA. However, when a mutation is present at the 5' splice site or if Cwc24 is absent, Prp16 facilitates the reaction and encourages aberrant 5' splice site usage independently of ATP. Prp16 also promotes the utilization of mutated branchpoints while preventing the use of nearby cryptic branch sites. Our study demonstrates that Prp16 can either enhance or impede the utilization of faulty splice sites by stabilizing or destabilizing interactions with other splicing components. Thus, Prp16 exerts dual roles in 5' splice site and branch site selection, via ATP-dependent and ATP-independent activities. Furthermore, we provide evidence that these functions of Prp16 are mediated through the step-one factor Cwc25.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Ching-Yang Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
13
|
Lipinski KA, Senn KA, Zeps NJ, Hoskins AA. Biochemical and genetic evidence supports Fyv6 as a second-step splicing factor in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2023; 29:1792-1802. [PMID: 37625852 PMCID: PMC10578475 DOI: 10.1261/rna.079607.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of five small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the Saccharomyces cerevisiae functional and structural homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22 and decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation. When splicing is assayed in vitro, whole-cell extracts lacking Fyv6 accumulate first-step products and exhibit a defect in exon ligation. Moreover, loss of Fyv6 causes a change in 3' splice site (SS) selection in both a reporter gene and the endogenous SUS1 transcript in vivo. Together, these data suggest that Fyv6 is a component of the yeast spliceosome that influences 3' SS usage and the potential homolog of human FAM192A.
Collapse
Affiliation(s)
- Karli A Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Katherine A Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Natalie J Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aaron A Hoskins
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
14
|
Temaj G, Chichiarelli S, Saha S, Telkoparan-Akillilar P, Nuhii N, Hadziselimovic R, Saso L. An intricate rewiring of cancer metabolism via alternative splicing. Biochem Pharmacol 2023; 217:115848. [PMID: 37813165 DOI: 10.1016/j.bcp.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
All human genes undergo alternative splicing leading to the diversity of the proteins. However, in some cases, abnormal regulation of alternative splicing can result in diseases that trigger defects in metabolism, reduced apoptosis, increased proliferation, and progression in almost all tumor types. Metabolic dysregulations and immune dysfunctions are crucial factors in cancer. In this respect, alternative splicing in tumors could be a potential target for therapeutic cancer strategies. Dysregulation of alternative splicing during mRNA maturation promotes carcinogenesis and drug resistance in many cancer types. Alternative splicing (changing the target mRNA 3'UTR binding site) can result in a protein with altered drug affinity, ultimately leading to drug resistance.. Here, we will highlight the function of various alternative splicing factors, how it regulates the reprogramming of cancer cell metabolism, and their contribution to tumor initiation and proliferation. Also, we will discuss emerging therapeutics for treating tumors via abnormal alternative splicing. Finally, we will discuss the challenges associated with these therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | - Sarmistha Saha
- Department of Biotechnology, GLA University, Mathura 00185, Uttar Pradesh, India
| | | | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
15
|
Enders M, Neumann P, Dickmanns A, Ficner R. Structure and function of spliceosomal DEAH-box ATPases. Biol Chem 2023; 404:851-866. [PMID: 37441768 DOI: 10.1515/hsz-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
16
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
17
|
Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. SCIENCE ADVANCES 2023; 9:eadf1785. [PMID: 36867703 PMCID: PMC9984181 DOI: 10.1126/sciadv.adf1785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.
Collapse
Affiliation(s)
- Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Marco Preußner
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Leyla El Ayoubi
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Vivi-Yun Feng
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Caroline Harnisch
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Kilian Merz
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Paula Leupold
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Peter Yudichev
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Dmitry E. Agafonov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cindy L. Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cyrille Girard
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany
| | - Berthold Kastner
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Florian Heyd
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
18
|
Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Life Sci Alliance 2023; 6:e202201593. [PMID: 36609432 PMCID: PMC9834665 DOI: 10.26508/lsa.202201593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Splicing is one of the most important post-transcriptional processing systems and is responsible for the generation of transcriptome diversity in all living eukaryotes. Splicing is regulated by the spliceosome machinery, which is responsible for each step of primary RNA processing. However, current molecules and stages involved in RNA splicing are still spread over different studies. Thus, a curated atlas of spliceosome-related molecules and all involved stages during RNA processing can provide all researchers with a reliable resource to better investigate this important mechanism. Here, we present IARA (website access: https://pucpr-bioinformatics.github.io/atlas/), an extensively curated and constantly updated catalog of molecules involved in spliceosome machinery. IARA has a map of the steps involved in the human splicing mechanism, and it allows a detailed overview of the molecules involved throughout the distinct steps of splicing.
Collapse
Affiliation(s)
- Kelren S Rodrigues
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Luiz P Petroski
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo H Utumi
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Adriano Ferrasa
- Informatics Department, Universidade Estadual de Ponta GrossaPonta Grossa, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Research Division, Buko Kaesemodel Institute, Curitiba, Brazil
| |
Collapse
|
19
|
Lipinski KA, Senn KA, Zeps NJ, Hoskins AA. Biochemical and Genetic Evidence Supports Fyv6 as a Second-Step Splicing Factor in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526368. [PMID: 36778415 PMCID: PMC9915624 DOI: 10.1101/2023.01.30.526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Precursor mRNA (pre-mRNA) splicing is an essential process for gene expression in eukaryotes catalyzed by the spliceosome in two transesterification steps. The spliceosome is a large, highly dynamic complex composed of 5 small nuclear RNAs and dozens of proteins, some of which are needed throughout the splicing reaction while others only act during specific stages. The human protein FAM192A was recently proposed to be a splicing factor that functions during the second transesterification step, exon ligation, based on analysis of cryo-electron microscopy (cryo-EM) density. It was also proposed that Fyv6 might be the functional S. cerevisiae homolog of FAM192A; however, no biochemical or genetic data has been reported to support this hypothesis. Herein, we show that Fyv6 is a splicing factor and acts during exon ligation. Deletion of FYV6 results in genetic interactions with the essential splicing factors Prp8, Prp16, and Prp22; decreases splicing in vivo of reporter genes harboring intron substitutions that limit the rate of exon ligation; and changes 3’ splice site (SS) selection. Together, these data suggest that Fyv6 is a component of the spliceosome and the potential functional and structural homolog of human FAM192A.
Collapse
Affiliation(s)
- Karli A. Lipinski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Katherine A. Senn
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Natalie J. Zeps
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Aaron A. Hoskins
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
20
|
Roy KR, Gabunilas J, Neutel D, Ai M, Samson J, Lyu G, Chanfreau GF. Spliceosomal mutations decouple 3' splice site fidelity from cellular fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523824. [PMID: 36711521 PMCID: PMC9882110 DOI: 10.1101/2023.01.12.523824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The fidelity of splice site selection is thought to be critical for proper gene expression and cellular fitness. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is a daunting task considering the low complexity of the 3'SS consensus sequence YAG. Here we show that inactivating the near-essential splicing factor Prp18p results in a global activation of alternative 3'SS, many of which harbor sequences that highly diverge from the YAG consensus, including some highly unusual non-AG 3'SS. We show that the role of Prp18p in 3'SS fidelity is promoted by physical interactions with the essential splicing factors Slu7p and Prp8p and synergized by the proofreading activity of the Prp22p helicase. Strikingly, structure-guided point mutations that disrupt Prp18p-Slu7p and Prp18p-Prp8p interactions mimic the loss of 3'SS fidelity without any impact on cellular growth, suggesting that accumulation of incorrectly spliced transcripts does not have a major deleterious effect on cellular viability. These results show that spliceosomes exhibit remarkably relaxed fidelity in the absence of Prp18p, and that new 3'SS sampling can be achieved genome-wide without a major negative impact on cellular fitness, a feature that could be used during evolution to explore new productive alternative splice sites.
Collapse
|
21
|
Guaita M, Watters SC, Loerch S. Recent advances and current trends in cryo-electron microscopy. Curr Opin Struct Biol 2022; 77:102484. [PMID: 36323134 DOI: 10.1016/j.sbi.2022.102484] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/13/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
All steps of cryogenic electron-microscopy (cryo-EM) workflows have rapidly evolved over the last decade. Advances in both single-particle analysis (SPA) cryo-EM and cryo-electron tomography (cryo-ET) have facilitated the determination of high-resolution biomolecular structures that are not tractable with other methods. However, challenges remain. For SPA, these include improved resolution in an additional dimension: time. For cryo-ET, these include accessing difficult-to-image areas of a cell and finding rare molecules. Finally, there is a need for automated and faster workflows, as many projects are limited by throughput. Here, we review current developments in SPA cryo-EM and cryo-ET that push these boundaries. Collectively, these advances are poised to propel our spatial and temporal understanding of macromolecular processes.
Collapse
Affiliation(s)
- Margherita Guaita
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Scott C Watters
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA
| | - Sarah Loerch
- University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, USA.
| |
Collapse
|
22
|
Abstract
The DEAH/RHA helicase Prp43 remodels protein-RNA complexes during pre-messenger RNA (mRNA) splicing and ribosome biogenesis. The helicase activity and ATP turnover are intrinsically low and become activated by G-patch (gp) factors in the specific cellular context. The gp motif connects the helicase core to the flexible C-terminal domains, but it is unclear how this affects RecA domain movement during catalysis and the unwinding of RNA substrates. We developed single-molecule Förster Resonance Energy Transfer (smFRET) reporters to study RecA domain movements within Prp43 in real time. Without Pfa1(gp), the domains approach each other adopting predominantly a closed conformation. The addition of Pfa1(gp) induces an open state, which becomes even more prevalent during interaction with RNA. In the open state, Prp43 has reduced contacts with bound nucleotide and shows rapid adenosine diphosphate (ADP) release accelerating the transition from the weak (ADP) to the strong (apo) RNA binding state. Using smFRET labels on the RNA to probe substrate binding and unwinding, we demonstrate that Pfa1(gp) enables Prp43(ADP) to switch between RNA-bound and RNA-unbound states instead of dissociating from the RNA. ATP binding to the apo-enzyme induces the translocation along the RNA, generating the unwinding force required to melt proximal RNA structures. During ATP turnover, Pfa1(gp) stimulates alternating of the RecA domains between open and closed states. Consequently, the translocation becomes faster than dissociation from the substrate in the ADP state, allowing processive movement along the RNA. We provide a mechanistic model of DEAH/RHA helicase motility and reveal the principles of Prp43 regulation by G-patch proteins.
Collapse
|
23
|
Gárate-Rascón M, Recalde M, Rojo C, Fernández-Barrena MG, Ávila MA, Arechederra M, Berasain C. SLU7: A New Hub of Gene Expression Regulation—From Epigenetics to Protein Stability in Health and Disease. Int J Mol Sci 2022; 23:ijms232113411. [PMID: 36362191 PMCID: PMC9658179 DOI: 10.3390/ijms232113411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3′ splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer.
Collapse
Affiliation(s)
- María Gárate-Rascón
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Miriam Recalde
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Carla Rojo
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Ávila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - María Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948-194700; Fax: +34-948-194717
| |
Collapse
|
24
|
Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1373-1383. [PMID: 36322420 PMCID: PMC9629490 DOI: 10.1107/s2059798322009755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The crystal structure of human AAR2 bound to the central spliceosomal factor PRPF8 and in vitro functional data yield insights into the structural basis of snRNP assembly in humans. Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2–PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.
Collapse
|
25
|
Lin MH, Jensen MK, Elrod ND, Huang KL, Welle KA, Wagner EJ, Tong L. Inositol hexakisphosphate is required for Integrator function. Nat Commun 2022; 13:5742. [PMID: 36180473 PMCID: PMC9525679 DOI: 10.1038/s41467-022-33506-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Integrator is a multi-subunit protein complex associated with RNA polymerase II (Pol II), with critical roles in noncoding RNA 3'-end processing and transcription attenuation of a broad collection of mRNAs. IntS11 is the endonuclease for RNA cleavage, as a part of the IntS4-IntS9-IntS11 Integrator cleavage module (ICM). Here we report a cryo-EM structure of the Drosophila ICM, at 2.74 Å resolution, revealing stable association of an inositol hexakisphosphate (IP6) molecule. The IP6 binding site is located in a highly electropositive pocket at an interface among all three subunits of ICM, 55 Å away from the IntS11 active site and generally conserved in other ICMs. We also confirmed IP6 association with the same site in human ICM. IP6 binding is not detected in ICM samples harboring mutations in this binding site. Such mutations or disruption of IP6 biosynthesis significantly reduced Integrator function in snRNA 3'-end processing and mRNA transcription attenuation. Our structural and functional studies reveal that IP6 is required for Integrator function in Drosophila, humans, and likely other organisms.
Collapse
Affiliation(s)
- Min-Han Lin
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Madeline K Jensen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Kai-Lieh Huang
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Kevin A Welle
- Center for Advanced Research Technologies, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, 77550, USA.
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA.
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
26
|
Anil AT, Choudhary K, Pandian R, Gupta P, Thakran P, Singh A, Sharma M, Mishra SK. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2. Nucleic Acids Res 2022; 50:10000-10014. [PMID: 36095128 PMCID: PMC9508853 DOI: 10.1093/nar/gkac769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/13/2022] Open
Abstract
Intron diversity facilitates regulated gene expression and alternative splicing. Spliceosomes excise introns after recognizing their splicing signals: the 5'-splice site (5'ss), branchpoint (BP) and 3'-splice site (3'ss). The latter two signals are recognized by U2 small nuclear ribonucleoprotein (snRNP) and its accessory factors (U2AFs), but longer spacings between them result in weaker splicing. Here, we show that excision of introns with a BP-distant 3'ss (e.g. rap1 intron 2) requires the ubiquitin-fold-activated splicing regulator Sde2 in Schizosaccharomyces pombe. By monitoring splicing-specific ura4 reporters in a collection of S. pombe mutants, Cay1 and Tls1 were identified as additional regulators of this process. The role of Sde2, Cay1 and Tls1 was further confirmed by increasing BP-3'ss spacings in a canonical tho5 intron. We also examined BP-distant exons spliced independently of these factors and observed that RNA secondary structures possibly bridged the gap between the two signals. These proteins may guide the 3'ss towards the spliceosome's catalytic centre by folding the RNA between the BP and 3'ss. Orthologues of Sde2, Cay1 and Tls1, although missing in the intron-poor Saccharomyces cerevisiae, are present in intron-rich eukaryotes, including humans. This type of intron-specific pre-mRNA splicing appears to have evolved for regulated gene expression and alternative splicing of key heterochromatin factors.
Collapse
Affiliation(s)
- Anupa T Anil
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Karan Choudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Rakesh Pandian
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Praver Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Poonam Thakran
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Arashdeep Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| | - Shravan Kumar Mishra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, 140306 Punjab, India
| |
Collapse
|
27
|
Tu J, Yu S, Li J, Ren M, Zhang Y, Luo J, Sun K, Lv Y, Han Y, Huang Y, Ren X, Jiang T, Tang Z, Williams MTS, Lu Q, Liu M. Dhx38 is required for the maintenance and differentiation of erythro-myeloid progenitors and hematopoietic stem cells by alternative splicing. Development 2022; 149:276218. [DOI: 10.1242/dev.200450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mutations that occur in RNA-splicing machinery may contribute to hematopoiesis-related diseases. How splicing factor mutations perturb hematopoiesis, especially in the differentiation of erythro-myeloid progenitors (EMPs), remains elusive. Dhx38 is a pre-mRNA splicing-related DEAH box RNA helicase, for which the physiological functions and splicing mechanisms during hematopoiesis currently remain unclear. Here, we report that Dhx38 exerts a broad effect on definitive EMPs as well as the differentiation and maintenance of hematopoietic stem and progenitor cells (HSPCs). In dhx38 knockout zebrafish, EMPs and HSPCs were found to be arrested in mitotic prometaphase, accompanied by a ‘grape’ karyotype, owing to the defects in chromosome alignment. Abnormal alternatively spliced genes related to chromosome segregation, the microtubule cytoskeleton, cell cycle kinases and DNA damage were present in the dhx38 mutants. Subsequently, EMPs and HSPCs in dhx38 mutants underwent P53-dependent apoptosis. This study provides novel insights into alternative splicing regulated by Dhx38, a process that plays a crucial role in the proliferation and differentiation of fetal EMPs and HSPCs.
Collapse
Affiliation(s)
- Jiayi Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Shanshan Yu
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology 2 , Wuhan, Hubei 430065 , P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mengmeng Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yangjun Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 3 , Wuhan 430030 , P.R. China
| | - Jiong Luo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Kui Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yunqiao Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Xiang Ren
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mark Thomas Shaw Williams
- Charles Oakley Laboratories 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
- Glasgow Caledonian University 4 , Department of Biological and Biomedical Sciences , , Glasgow G4 0BA , UK
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology 1 , Wuhan 430074 , P.R. China
| |
Collapse
|
28
|
Gui X, Zhang P, Wang D, Ding Z, Wu X, Shi J, Shen QH, Xu YZ, Ma W, Qiao Y. Phytophthora effector PSR1 hijacks the host pre-mRNA splicing machinery to modulate small RNA biogenesis and plant immunity. THE PLANT CELL 2022; 34:3443-3459. [PMID: 35699507 PMCID: PMC9421478 DOI: 10.1093/plcell/koac176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 05/29/2023]
Abstract
Phytophthora effector PSR1 suppresses small RNA (sRNA)-mediated immunity in plants, but the underlying mechanism remains unknown. Here, we show that Phytophthora suppressor of RNA silencing 1 (PSR1) contributes to the pathogenicity of Phytophthora sojae and specifically binds to three conserved C-terminal domains of the eukaryotic PSR1-Interacting Protein 1 (PINP1). PINP1 encodes PRP16, a core pre-mRNA splicing factor that unwinds RNA duplexes and binds to primary microRNA transcripts and general RNAs. Intriguingly, PSR1 decreased both RNA helicase and RNA-binding activity of PINP1, thereby dampening sRNA biogenesis and RNA metabolism. The PSR1-PINP1 interaction caused global changes in alternative splicing (AS). A total of 5,135 genes simultaneously exhibited mis-splicing in both PSR1-overexpressing and PINP1-silenced plants. AS upregulated many mRNA transcripts that had their introns retained. The high occurrence of intron retention in AS-induced transcripts significantly promoted Phytophthora pathogen infection in Nicotiana benthamiana, and this might be caused by the production of truncated proteins. Taken together, our findings reveal a key role for PINP1 in regulating sRNA biogenesis and plant immunity.
Collapse
Affiliation(s)
- Xinmeng Gui
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Dan Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zhan Ding
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei 430072, China
| | - Xian Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei 430072, China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
Zhan X, Lu Y, Zhang X, Yan C, Shi Y. Mechanism of exon ligation by human spliceosome. Mol Cell 2022; 82:2769-2778.e4. [PMID: 35705093 DOI: 10.1016/j.molcel.2022.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Pre-mRNA splicing involves two sequential reactions: branching and exon ligation. The C complex after branching undergoes remodeling to become the C∗ complex, which executes exon ligation. Here, we report cryo-EM structures of two intermediate human spliceosomal complexes, pre-C∗-I and pre-C∗-II, both at 3.6 Å. In both structures, the 3' splice site is already docked into the active site, the ensuing 3' exon sequences are anchored on PRP8, and the step II factor FAM192A contacts the duplex between U2 snRNA and the branch site. In the transition of pre-C∗-I to pre-C∗-II, the step II factors Cactin, FAM32A, PRKRIP1, and SLU7 are recruited. Notably, the RNA helicase PRP22 is positioned quite differently in the pre-C∗-I, pre-C∗-II, and C∗ complexes, suggesting a role in 3' exon binding and proofreading. Together with information on human C and C∗ complexes, our studies recapitulate a molecular choreography of the C-to-C∗ transition, revealing mechanistic insights into exon ligation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; College of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
30
|
Cabezas-Fuster A, Micol-Ponce R, Fontcuberta-Cervera S, Ponce M. Missplicing suppressor alleles of Arabidopsis PRE-MRNA PROCESSING FACTOR 8 increase splicing fidelity by reducing the use of novel splice sites. Nucleic Acids Res 2022; 50:5513-5527. [PMID: 35639749 PMCID: PMC9177961 DOI: 10.1093/nar/gkac338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Efficient splicing requires a balance between high-fidelity splice-site (SS) selection and speed. In Saccharomyces cerevisiae, Pre-mRNA processing factor 8 (Prp8) helps to balance precise SS selection and rapid, efficient intron excision and exon joining. argonaute1-52 (ago1-52) and incurvata13 (icu13) are hypomorphic alleles of the Arabidopsis thaliana genes ARGONAUTE1 (AGO1) and AUXIN RESISTANT6 (AXR6) that harbor point mutations creating a novel 3'SS and 5'SS, respectively. The spliceosome recognizes these novel SSs, as well as the intact genuine SSs, producing a mixture of wild-type and aberrant mature mRNAs. Here, we characterized five novel mutant alleles of PRP8 (one of the two Arabidopsis co-orthologs of yeast Prp8), naming these alleles morphology of ago1-52 suppressed5 (mas5). In the mas5-1 background, the spliceosome preferentially recognizes the intact genuine 3'SS of ago1-52 and 5'SS of icu13. Since point mutations that damage genuine SSs make the spliceosome prone to recognizing cryptic SSs, we also tested alleles of four genes carrying damaged genuine SSs, finding that mas5-1 did not suppress their missplicing. The mas5-1 and mas5-3 mutations represent a novel class of missplicing suppressors that increase splicing fidelity by hampering the use of novel SSs, but do not alter general pre-mRNA splicing.
Collapse
Affiliation(s)
- Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
31
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
32
|
Jo SH, Park HJ, Lee A, Jung H, Park JM, Kwon SY, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. THE PLANT CELL 2022; 34:2383-2403. [PMID: 35262729 PMCID: PMC9134067 DOI: 10.1093/plcell/koac084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/05/2022] [Indexed: 05/13/2023]
Abstract
In plants, heat stress induces changes in alternative splicing, including intron retention; these events can rapidly alter proteins or downregulate protein activity, producing nonfunctional isoforms or inducing nonsense-mediated decay of messenger RNA (mRNA). Nuclear cyclophilins (CYPs) are accessory proteins in the spliceosome complexes of multicellular eukaryotes. However, whether plant CYPs are involved in pre-mRNA splicing remain unknown. Here, we found that Arabidopsis thaliana CYP18-1 is necessary for the efficient removal of introns that are retained in response to heat stress during germination. CYP18-1 interacts with Step II splicing factors (PRP18a, PRP22, and SWELLMAP1) and associates with the U2 and U5 small nuclear RNAs in response to heat stress. CYP18-1 binds to phospho-PRP18a, and increasing concentrations of CYP18-1 are associated with increasing dephosphorylation of PRP18a. Furthermore, interaction and protoplast transfection assays revealed that CYP18-1 and the PP2A-type phosphatase PP2A B'η co-regulate PRP18a dephosphorylation. RNA-seq and RT-qPCR analysis confirmed that CYP18-1 is essential for splicing introns that are retained under heat stress. Overall, we reveal the mechanism of action by which CYP18-1 activates the dephosphorylation of PRP18 and show that CYP18-1 is crucial for the efficient splicing of retained introns and rapid responses to heat stress in plants.
Collapse
Affiliation(s)
- Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University
of Science and Technology, Daejeon 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo
Bio, Anseong 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology
Institute/Green Bio Science and Technology, Seoul National University,
Pyeongchang 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major
in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National
University, Seoul 08826, Korea
| | | |
Collapse
|
33
|
A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Cancers (Basel) 2022; 14:cancers14071750. [PMID: 35406522 PMCID: PMC8996931 DOI: 10.3390/cancers14071750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Splicing and alternative splicing play a major role in regulating gene expression, and mis-regulation of splicing can lead to several diseases, including cancer. The aim of this review is to summarize the current knowledge of a quality control mechanism of splice site selection termed Suppression of Splicing (SOS), proposed to protect cells from splicing at the numerous intronic unused 5′ splice sites, and emphasize its relevance to cancer. This relevance stems from the finding that SOS is abrogated under stress and in cancer resulting in the expression of thousands of aberrant nonsense mRNAs that may be toxic to cells. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies. Abstract Latent 5’ splice sites, highly abundant in human introns, are not normally used. This led to the proposal of a quality control mechanism, Suppression of Splicing (SOS), which protects cells from splicing at the numerous intronic latent sites, and whose activation can generate nonsense mRNAs. SOS was shown to be independent of Nonsense-Mediated mRNA Decay (NMD). Efforts to decipher the SOS mechanism revealed a pivotal role for initiator-tRNA, independent of protein translation. Recently, nucleolin (a multifunctional protein) was found to directly and specifically bind the initiator-tRNA in the nucleus and was shown to be a protein component of SOS, enabling an updated model of the SOS mechanism. Importantly, SOS is abrogated under stress and in cancer (e.g., in breast cancer cells and gliomas), generating thousands of nonsense mRNAs due to activation of latent splicing. The resulting affected human genes cover a variety of functional groups, including genes involved in cell proliferation and differentiation. Furthermore, in oligodendroglioma, the extent of activation of latent splicing increases with the severity of the cancer. Interesting examples are genes expressing aberrant nonsense mRNAs in both breast cancer and glioma, due to latent splicing activation. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies.
Collapse
|
34
|
Mero HR, Lyantagaye SL, Bongcam-Rudloff E. Cassava Brown Streak Viruses express second 6-kilodalton (6K2) protein with varied polarity and three dimensional (3D) structures: Basis for trait discrepancy between the virus species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105219. [PMID: 35066168 DOI: 10.1016/j.meegid.2022.105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
Cassava Brown Streak Virus (CBSV) and Ugandan Cassava Brown Streak Virus (UCBSV) are the two among six virus species speculated to cause the most catastrophic Brown Streak Disease of Cassava (CBSD) in Africa and Asia. Cassava Brown Streak Virus (CBSV) is hard to breed resistance for compared to Ugandan Cassava Brown Streak Virus (UCBSV) species. This is exemplified by incidences of CBSV species rather than UCBSV species in elite breeding line, KBH 2006/0026 at Bagamoyo, Tanzania. It is not yet understood as to why CBSV species could breakdown CBSD-resistance in the KBH 2006/0026 unlike the UCBSV species. This marks the first in silico study conducted to understand molecular basis for the trait discrepancy between CBSV and UCBSV species from structural biology view point. Following ab initio modelling and analysis of physical-chemical properties of second 6-kilodalton (6K2) protein encoded by CBSV and UCBSV species, using ROBETTA server and Protein Parameters tool, respectively we report that; three dimensional (3D) structures and polarity of the protein differs significantly between the two virus species. (95% and 5%) and (85% and 15%) strains of 20 CBSV and 20 UCBSV species respectively, expressed the protein in homo-trimeric and homo-tetrameric forms, correspondingly. 95% and 85% of studied strain population of the two virus species expressed hydrophilic and hydrophobic 6K2, respectively. Based on findings of the curent study, we hypothesize that; (i) The hydrophilic 6K2 expressed by the CBSV species, favour its faster systemic movement via vascular tissues of cassava host and hence result into higher tissue titres than the UCBSV species encoding hydrophobic form of the protein. t and (ii) The hydrophilic 6K2 expressed byCBSV species have additional interaction advantage with Nuclear Inclusion b protease domain (NIb) and Viral genome-linked protein (VPg), components of Virus Replication Complex (VRC) and hence contributing to faster replication of viral genome than the hydrophobic 6K2 expressed by the UCBSV species. Experimental studies are needed to resolve the 3D structures of the 6K2, VPg and NIb and comprehend complex molecular interactions between them. We suggest that, the 6K2 gene should be targeted for improvement of RNA interference (RNAi)-directed transgenesis of virus-resistant cassava as a more effective way to control the CBSD besides breeding.
Collapse
Affiliation(s)
- Herieth Rhodes Mero
- University of Dar es Salaam, Mkwawa University College of Education (MUCE), P. O. Box 2513, Iringa, Tanzania; Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, P. 0. BOX 7054, 750 07 Uppsala, Sweden.
| | | | - Erik Bongcam-Rudloff
- Swedish University of Agricultural Sciences (SLU), SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, P. 0. BOX 7054, 750 07 Uppsala, Sweden
| |
Collapse
|
35
|
Kaur H, van der Feltz C, Sun Y, Hoskins AA. Network theory reveals principles of spliceosome structure and dynamics. Structure 2022; 30:190-200.e2. [PMID: 34592160 PMCID: PMC8741635 DOI: 10.1016/j.str.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Cryoelectron microscopy has revolutionized spliceosome structural biology, and structures representing much of the splicing process have been determined. Comparison of these structures is challenging due to extreme dynamics of the splicing machinery and the thousands of changing interactions during splicing. We have used network theory to analyze splicing factor interactions by constructing structure-based networks from protein-protein, protein-RNA, and RNA-RNA interactions found in eight different spliceosome structures. Our analyses reveal that connectivity dynamics result in step-specific impacts of factors on network topology. The spliceosome's connectivity is focused on the active site, in part due to contributions from nonglobular proteins. Many essential factors exhibit large shifts in centralities during splicing. Others show transiently high betweenness centralities at certain stages, thereby suggesting mechanisms for regulating splicing by briefly bridging otherwise poorly connected network nodes. These observations provide insights into organizing principles of the spliceosome and provide frameworks for comparative analysis of other macromolecular machines.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706 USA,These authors contributed equally
| | - Clarisse van der Feltz
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706 USA,College of Arts and Sciences, Northwest University, Kirkland, Washington, 98033 USA,These authors contributed equally
| | - Yichen Sun
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706 USA
| | - Aaron A. Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706 USA,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706 USA,Correspondence:
| |
Collapse
|
36
|
Liu L, Amorín R, Moriel P, DiLorenzo N, Lancaster PA, Peñagaricano F. Maternal methionine supplementation during gestation alters alternative splicing and DNA methylation in bovine skeletal muscle. BMC Genomics 2021; 22:780. [PMID: 34717556 PMCID: PMC8557564 DOI: 10.1186/s12864-021-08065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023] Open
Abstract
Background The evaluation of alternative splicing, including differential isoform expression and differential exon usage, can provide some insights on the transcriptional changes that occur in response to environmental perturbations. Maternal nutrition is considered a major intrauterine regulator of fetal developmental programming. The objective of this study was to assess potential changes in splicing events in the longissimus dorsi muscle of beef calves gestated under control or methionine-rich diets. RNA sequencing and whole-genome bisulfite sequencing were used to evaluate muscle transcriptome and methylome, respectively. Results Alternative splicing patterns were significantly altered by maternal methionine supplementation. Most of the altered genes were directly implicated in muscle development, muscle physiology, ATP activities, RNA splicing and DNA methylation, among other functions. Interestingly, there was a significant association between DNA methylation and differential exon usage. Indeed, among the set of genes that showed differential exon usage, significant differences in methylation level were detected between significant and non-significant exons, and between contiguous and non-contiguous introns to significant exons. Conclusions Overall, our findings provide evidence that a prenatal diet rich in methyl donors can significantly alter the offspring transcriptome, including changes in isoform expression and exon usage, and some of these changes are mediated by changes in DNA methylation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08065-4.
Collapse
Affiliation(s)
- Lihe Liu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Rocío Amorín
- University of Florida Genetics Institute, University of Florida, 32611, Gainesville, FL, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, 33865, Ona, FL, USA
| | - Nicolás DiLorenzo
- North Florida Research and Education Center, University of Florida, 32351, Marianna, FL, USA
| | - Phillip A Lancaster
- Department of Clinical Sciences, Kansas State University, 66506, Manhattan, KS, USA
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Urabe VK, Stevers M, Ghosh AK, Jurica MS. U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. PLoS One 2021; 16:e0258551. [PMID: 34648557 PMCID: PMC8516221 DOI: 10.1371/journal.pone.0258551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly. We previously found that the first SF3B inhibited-complex is less stable than A-complex and hypothesized that SF3B inhibitors interfere with U2 snRNA secondary structure changes required to form the branch helix. Using RNA chemical modifiers, we probed U2 snRNA structure in A-complex and SF3B inhibited splicing complexes. The reactivity pattern for U2 snRNA in the SF3B inhibited-complex is indistinguishable from that of A-complex, suggesting that they have the same secondary structure conformation, including the branch helix. This observation suggests SF3B inhibited-complex instability does not stem from an alternate RNA conformation and instead points to the inhibitors interfering with protein component interactions that normally stabilize U2 snRNP’s association with an intron. In addition, we probed U2 snRNA in the free U2 snRNP in the presence of SF3B inhibitor and again saw no differences. However, increased protection of nucleotides upstream of Stem I in the absence of SF3A and SF3B proteins suggests a change of secondary structure at the very 5′ end of U2 snRNA. Chemical probing of synthetic U2 snRNA in the absence of proteins results in similar protections and predicts a previously uncharacterized extension of Stem I. Because this stem must be disrupted for SF3A and SF3B proteins to stably join the snRNP, the structure has the potential to influence snRNP assembly and recycling after spliceosome disassembly.
Collapse
Affiliation(s)
- Veronica K. Urabe
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Meredith Stevers
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
| | - Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Melissa S. Jurica
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, California, United States of America
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
38
|
A broad analysis of splicing regulation in yeast using a large library of synthetic introns. PLoS Genet 2021; 17:e1009805. [PMID: 34570750 PMCID: PMC8496845 DOI: 10.1371/journal.pgen.1009805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/07/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022] Open
Abstract
RNA splicing is a key process in eukaryotic gene expression, in which an intron is spliced out of a pre-mRNA molecule to eventually produce a mature mRNA. Most intron-containing genes are constitutively spliced, hence efficient splicing of an intron is crucial for efficient regulation of gene expression. Here we use a large synthetic oligo library of ~20,000 variants to explore how different intronic sequence features affect splicing efficiency and mRNA expression levels in S. cerevisiae. Introns are defined by three functional sites, the 5’ donor site, the branch site, and the 3’ acceptor site. Using a combinatorial design of synthetic introns, we demonstrate how non-consensus splice site sequences in each of these sites affect splicing efficiency. We then show that S. cerevisiae splicing machinery tends to select alternative 3’ splice sites downstream of the original site, and we suggest that this tendency created a selective pressure, leading to the avoidance of cryptic splice site motifs near introns’ 3’ ends. We further use natural intronic sequences from other yeast species, whose splicing machineries have diverged to various extents, to show how intron architectures in the various species have been adapted to the organism’s splicing machinery. We suggest that the observed tendency for cryptic splicing is a result of a loss of a specific splicing factor, U2AF1. Lastly, we show that synthetic sequences containing two introns give rise to alternative RNA isoforms in S. cerevisiae, demonstrating that merely a synthetic fusion of two introns might be suffice to facilitate alternative splicing in yeast. Our study reveals novel mechanisms by which introns are shaped in evolution to allow cells to regulate their transcriptome. In addition, it provides a valuable resource to study the regulation of constitutive and alternative splicing in a model organism. RNA splicing is a process in which parts of a new pre-mRNA are spliced out of the mRNA molecule to produce eventually a mature mRNA. Those RNA segments that are spliced out are termed introns, and they are found in most genes in eukaryotic organisms. Hence regulation of this process has a major role in the control of gene expression. The budding yeast S. cerevisiae is a popular model organism for eukaryotic cell biology, but in terms of splicing it differs, as it has only few intron-containing genes. Nevertheless, this species has been used to study basic principles of splicing regulation based on its ~300 introns. Here we used the technology of a large synthetic genetic library to introduce many new intron-containing genes to the yeast genome, to explore splicing regulation at a wider scope than was possible so far. Reassuringly, our results confirm known regulatory mechanisms, and further expand our understanding of splicing regulation, specifically how the yeast splicing machinery interacts with the end of introns, and how through evolution introns have evolved to avoid unwanted misidentifications of this end. We further demonstrate the potential of the yeast splicing machinery to alternatively splice a two-intron gene, which is common in other eukaryotes but rare in yeast. Our work presents a first-of-its-kind resource for the systematic study of splicing in live cells.
Collapse
|
39
|
Artemyeva-Isman OV, Porter ACG. U5 snRNA Interactions With Exons Ensure Splicing Precision. Front Genet 2021; 12:676971. [PMID: 34276781 PMCID: PMC8283771 DOI: 10.3389/fgene.2021.676971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Imperfect conservation of human pre-mRNA splice sites is necessary to produce alternative isoforms. This flexibility is combined with the precision of the message reading frame. Apart from intron-termini GU_AG and the branchpoint A, the most conserved are the exon-end guanine and +5G of the intron start. Association between these guanines cannot be explained solely by base-pairing with U1 snRNA in the early spliceosome complex. U6 succeeds U1 and pairs +5G in the pre-catalytic spliceosome, while U5 binds the exon end. Current U5 snRNA reconstructions by CryoEM cannot explain the conservation of the exon-end G. Conversely, human mutation analyses show that guanines of both exon termini can suppress splicing mutations. Our U5 hypothesis explains the mechanism of splicing precision and the role of these conserved guanines in the pre-catalytic spliceosome. We propose: (1) optimal binding register for human exons and U5-the exon junction positioned at U5Loop1 C39|C38; (2) common mechanism for base-pairing of human U5 snRNA with diverse exons and bacterial Ll.LtrB intron with new loci in retrotransposition-guided by base pair geometry; and (3) U5 plays a significant role in specific exon recognition in the pre-catalytic spliceosome. Statistical analyses showed increased U5 Watson-Crick pairs with the 5'exon in the absence of +5G at the intron start. In 5'exon positions -3 and -5, this effect is specific to U5 snRNA rather than U1 snRNA of the early spliceosome. Increased U5 Watson-Crick pairs with 3'exon position +1 coincide with substitutions of the conserved -3C at the intron 3'end. Based on mutation and X-ray evidence, we propose that -3C pairs with U2 G31 juxtaposing the branchpoint and the 3'intron end. The intron-termini pair, formed in the pre-catalytic spliceosome to be ready for transition after branching, and the early involvement of the 3'intron end ensure that the 3'exon contacts U5 in the pre-catalytic complex. We suggest that splicing precision is safeguarded cooperatively by U5, U6, and U2 snRNAs that stabilize the pre-catalytic complex by Watson-Crick base pairing. In addition, our new U5 model explains the splicing effect of exon-start +1G mutations: U5 Watson-Crick pairs with exon +2C/+3G strongly promote exon inclusion. We discuss potential applications for snRNA therapeutics and gene repair by reverse splicing.
Collapse
Affiliation(s)
- Olga V Artemyeva-Isman
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Andrew C G Porter
- Gene Targeting Group, Centre for Haematology, Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
40
|
Martelly W, Fellows B, Kang P, Vashisht A, Wohlschlegel JA, Sharma S. Synergistic roles for human U1 snRNA stem-loops in pre-mRNA splicing. RNA Biol 2021; 18:2576-2593. [PMID: 34105434 DOI: 10.1080/15476286.2021.1932360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
During spliceosome assembly, interactions that bring the 5' and 3' ends of an intron in proximity are critical for the production of mature mRNA. Here, we report synergistic roles for the stem-loops 3 (SL3) and 4 (SL4) of the human U1 small nuclear RNA (snRNA) in maintaining the optimal U1 snRNP function, and formation of cross-intron contact with the U2 snRNP. We find that SL3 and SL4 bind distinct spliceosomal proteins and combining a U1 snRNA activity assay with siRNA-mediated knockdown, we demonstrate that SL3 and SL4 act through the RNA helicase UAP56 and the U2 protein SF3A1, respectively. In vitro analysis using UV crosslinking and splicing assays indicated that SL3 likely promotes the SL4-SF3A1 interaction leading to enhancement of A complex formation and pre-mRNA splicing. Overall, these results highlight the vital role of the distinct contacts of SL3 and SL4 in bridging the pre-mRNA bound U1 and U2 snRNPs during the early steps of human spliceosome assembly.
Collapse
Affiliation(s)
- William Martelly
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Bernice Fellows
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Paul Kang
- Department of Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Ajay Vashisht
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
41
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
42
|
Wilkinson ME, Fica SM, Galej WP, Nagai K. Structural basis for conformational equilibrium of the catalytic spliceosome. Mol Cell 2021; 81:1439-1452.e9. [PMID: 33705709 PMCID: PMC8022279 DOI: 10.1016/j.molcel.2021.02.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
The ATPase Prp16 governs equilibrium between the branching (B∗/C) and exon ligation (C∗/P) conformations of the spliceosome. Here, we present the electron cryomicroscopy reconstruction of the Saccharomyces cerevisiae C-complex spliceosome at 2.8 Å resolution and identify a novel C-complex intermediate (Ci) that elucidates the molecular basis for this equilibrium. The exon-ligation factors Prp18 and Slu7 bind to Ci before ATP hydrolysis by Prp16 can destabilize the branching conformation. Biochemical assays suggest that these pre-bound factors prime the C complex for conversion to C∗ by Prp16. A complete model of the Prp19 complex (NTC) reveals how the branching factors Yju2 and Isy1 are recruited by the NTC before branching. Prp16 remodels Yju2 binding after branching, allowing Yju2 to remain tethered to the NTC in the C∗ complex to promote exon ligation. Our results explain how Prp16 action modulates the dynamic binding of step-specific factors to alternatively stabilize the C or C∗ conformation and establish equilibrium of the catalytic spliceosome. Cryo-EM reveals new Ci spliceosome intermediate between branching and exon ligation Binding of branching and exon-ligation factors to Ci governs spliceosome equilibrium Exon-ligation factors Slu7 and Prp18 bind Ci weakly before Prp16 action After Prp16 action, pre-bound Slu7 and Prp18 bind strongly to promote exon ligation
Collapse
Affiliation(s)
- Max E Wilkinson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - Wojciech P Galej
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
43
|
Strittmatter LM, Capitanchik C, Newman AJ, Hallegger M, Norman CM, Fica SM, Oubridge C, Luscombe NM, Ule J, Nagai K. psiCLIP reveals dynamic RNA binding by DEAH-box helicases before and after exon ligation. Nat Commun 2021; 12:1488. [PMID: 33674615 PMCID: PMC7935899 DOI: 10.1038/s41467-021-21745-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022] Open
Abstract
RNA helicases remodel the spliceosome to enable pre-mRNA splicing, but their binding and mechanism of action remain poorly understood. To define helicase-RNA contacts in specific spliceosomal states, we develop purified spliceosome iCLIP (psiCLIP), which reveals dynamic helicase-RNA contacts during splicing catalysis. The helicase Prp16 binds along the entire available single-stranded RNA region between the branchpoint and 3'-splice site, while Prp22 binds diffusely downstream of the branchpoint before exon ligation, but then switches to more narrow binding in the downstream exon after exon ligation, arguing against a mechanism of processive translocation. Depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, suggesting that proofreading by Prp22 may sense the stability of the spliceosome during exon ligation. Thus, psiCLIP complements structural studies by providing key insights into the binding and proofreading activity of spliceosomal RNA helicases.
Collapse
Affiliation(s)
| | | | | | - Martina Hallegger
- The Francis Crick Institute, London, UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | | | | | | | - Nicholas M Luscombe
- The Francis Crick Institute, London, UK
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
- Okinawa Institute of Science & Technology Graduate University, Okinawa, Japan
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.
| | | |
Collapse
|
44
|
De Bortoli F, Espinosa S, Zhao R. DEAH-Box RNA Helicases in Pre-mRNA Splicing. Trends Biochem Sci 2021; 46:225-238. [PMID: 33272784 PMCID: PMC8112905 DOI: 10.1016/j.tibs.2020.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNA splicing is catalyzed by the spliceosome, a highly dynamic molecular machinery that undergoes dramatic conformational and compositional rearrangements throughout the splicing cycle. These crucial rearrangements are largely driven by eight DExD/H-box RNA helicases. Interestingly, the four helicases participating in the late stages of splicing are all DEAH-box helicases that share structural similarities. This review aims to provide an overview of the structure and function of these DEAH-box helicases, including new information provided by recent cryo-electron microscopy structures of the spliceosomal complexes.
Collapse
Affiliation(s)
- Francesca De Bortoli
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Espinosa
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
45
|
van der Feltz C, Nikolai B, Schneider C, Paulson JC, Fu X, Hoskins AA. Saccharomyces cerevisiae Ecm2 Modulates the Catalytic Steps of pre-mRNA Splicing. RNA (NEW YORK, N.Y.) 2021; 27:rna.077727.120. [PMID: 33547186 PMCID: PMC8051269 DOI: 10.1261/rna.077727.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/03/2021] [Indexed: 05/10/2023]
Abstract
Genetic, biochemical, and structural studies have elucidated the molecular basis for spliceosome catalysis. Splicing is RNA catalyzed and the essential snRNA and protein factors are well-conserved. However, little is known about how non-essential components of the spliceosome contribute to the reaction and modulate the activities of the fundamental core machinery. Ecm2 is a non-essential yeast splicing factor that is a member of the Prp19-related complex of proteins. Cryo-electron microscopy (cryo-EM) structures have revealed that Ecm2 binds the U6 snRNA and is entangled with Cwc2, a factor previously found to promote a catalytically active conformation of the spliceosome. These structures also indicate that Ecm2 and the U2 snRNA likely form a transient interaction during 5' splice site (SS) cleavage. We have characterized genetic interactions between ECM2 and alleles of splicing factors that alter the catalytic steps in splicing. In addition, we have studied how loss of ECM2 impacts splicing of pre-mRNAs containing non-consensus or competing SS. Our results show that ECM2 functions during the catalytic stages of splicing. Our data are consistent with Ecm2 facilitating the formation and stabilization of the 1st-step catalytic site, promoting 2nd-step catalysis, and permiting alternate 5' SS usage. We propose that Cwc2 and Ecm2 can each fine-tune the spliceosome active site in unique ways. Their interaction network may act as a conduit through which splicing of certain pre-mRNAs, such as those containing weak or alternate splice sites, can be regulated.
Collapse
|
46
|
Larsen NA. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Subcell Biochem 2021; 96:409-432. [PMID: 33252738 DOI: 10.1007/978-3-030-58971-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.
Collapse
|
47
|
Ciavarella J, Perea W, Greenbaum NL. Topology of the U12-U6 atac snRNA Complex of the Minor Spliceosome and Binding by NTC-Related Protein RBM22. ACS OMEGA 2020; 5:23549-23558. [PMID: 32984674 PMCID: PMC7512442 DOI: 10.1021/acsomega.0c01674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 06/02/2023]
Abstract
Splicing of precursor messenger RNA is catalyzed by the spliceosome, a dynamic ribonucleoprotein assembly including five small nuclear (sn)RNAs and >100 proteins. RNA components catalyze the two transesterification reactions, but proteins perform critical roles in assembly and rearrangement. The catalytic core comprises a paired complex of U2 and U6 snRNAs for the major form of the spliceosome and U12 and U6atac snRNAs for the minor variant (∼0.3% of all spliceosomes in higher eukaryotes); the latter shares key catalytic sequence elements and performs identical chemistry. Here we use solution NMR techniques to show that the U12-U6atac snRNA complex of both human and Arabidopsis maintain base-pairing patterns similar to those in the three-helix model of the U2-U6 snRNA complex that position key elements to form the spliceosome's active site. However, in place of the stacked base pairs at the base of the U6 snRNA intramolecular stem loop and the central junction of the U2-U6 snRNA complex, we see altered geometry in the single-stranded hinge region opposing termini of the snRNAs to enable interaction between the key elements. We then use electrophoretic mobility shift assays and fluorescence assays to show that the protein RBM22, implicated in remodeling the human U2-U6 snRNA complex prior to catalysis, also binds the U12-U6atac snRNA complexes specifically and with similar affinity as to U2-U6 snRNA (a mean K d for the two methods = 3.4 and 8.0 μM for U2-U6 and U12-U6atac snRNA complexes, respectively), suggesting that RBM22 performs the same role in both spliceosomes.
Collapse
Affiliation(s)
- Joanna Ciavarella
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - William Perea
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| | - Nancy L. Greenbaum
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Department
of Chemistry, Hunter College of the City
University of New York, New York, New York 10065, United States
| |
Collapse
|
48
|
Fica SM. Cryo-EM snapshots of the human spliceosome reveal structural adaptions for splicing regulation. Curr Opin Struct Biol 2020; 65:139-148. [PMID: 32717639 DOI: 10.1016/j.sbi.2020.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022]
Abstract
Introns are excised from pre-messenger RNAs by the spliceosome, which produces mRNAs with continuous protein-coding information. In humans, most pre-mRNAs undergo alternative splicing to expand proteomic diversity. Cryo-electron microscopy (cryo-EM) structures of the yeast spliceosome elucidated how proteins stabilize and remodel an RNA-based active site to effect splicing catalysis. More recent cryo-EM snapshots of the human spliceosome reveal a complex protein scaffold and provide insights into the role of specific human proteins in modulating spliceosome activation, splice site positioning, and the ATPase-mediated dynamics of the active site. The emerging molecular picture highlights how, compared to its yeast counterpart, the human spliceosome has coopted additional protein factors to allow increased plasticity of splice site recognition and remodeling, and potentially to regulate alternative splicing.
Collapse
Affiliation(s)
- Sebastian M Fica
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
49
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
50
|
Abstract
Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.
Collapse
Affiliation(s)
- Ruixue Wan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Rui Bai
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Xiechao Zhan
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
| | - Yigong Shi
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China;,
- Institute of Biology, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| |
Collapse
|