1
|
Chen Y, Lin ZB, Wang SK, Wu B, Niu L, Zhong JY, Sun YM, Zheng Z, Bai X, Liu LR, Xie W, Chi W, Ye T, Luo R, Hou C, Luo F, Xiao CL. Reconstruction of diploid higher-order human 3D genome interactions from noisy Pore-C data using Dip3D. Nat Struct Mol Biol 2025:10.1038/s41594-025-01512-w. [PMID: 40038455 DOI: 10.1038/s41594-025-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Differential high-order chromatin interactions between homologous chromosomes affect many biological processes. Traditional chromatin conformation capture genome analysis methods mainly identify two-way interactions and cannot provide comprehensive haplotype information, especially for low-heterozygosity organisms such as human. Here, we present a pipeline of methods to delineate diploid high-order chromatin interactions from noisy Pore-C outputs. We trained a previously published single-nucleotide variant (SNV)-calling deep learning model, Clair3, on Pore-C data to achieve superior SNV calling, applied a filtering strategy to tag reads for haplotypes and established a haplotype imputation strategy for high-order concatemers. Learning the haplotype characteristics of high-order concatemers from high-heterozygosity mouse allowed us to devise a progressive haplotype imputation strategy, which improved the haplotype-informative Pore-C contact rate 14.1-fold to 76% in the HG001 cell line. Overall, the diploid three-dimensional (3D) genome interactions we derived using Dip3D surpassed conventional methods in noise reduction and contact distribution uniformity, with better haplotype-informative contact density and genomic coverage rates. Dip3D identified previously unresolved haplotype high-order interactions, in addition to an understanding of their relationship with allele-specific expression, such as in X-chromosome inactivation. These results lead us to conclude that Dip3D is a robust pipeline for the high-quality reconstruction of diploid high-order 3D genome interactions.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Zhuo-Bin Lin
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shao-Kai Wang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Bo Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Longjian Niu
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Jia-Yong Zhong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | - Yi-Meng Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhenxian Zheng
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Xin Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Luo-Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wei Chi
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, Shenzhen, China
| | | | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong, China.
| | - Chunhui Hou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC, USA.
| | - Chuan-Le Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
2
|
Sivkina AL, Iarovaia OV, Razin SV, Ulianov SV. The establishment of the 3D genome structure during zygotic genome activation. Ann N Y Acad Sci 2025. [PMID: 40029160 DOI: 10.1111/nyas.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
During zygotic genome activation (ZGA) and early development, hierarchical levels of chromatin structure undergo remarkable perturbations: changes in the nuclear-to-cytoplasmic ratio of various components; changes in chromatin accessibility; histone exchange; and the formation of 3D structures such as loops, topologically associated domains, and compartments. Here, we review the peculiarities, variability, and emergence of the chromatin structural features during ZGA in different organisms. Focusing on newly found structures called fountains, we describe the prerequisites for cohesin loading on DNA and possible mechanisms of genome organization in early development. Fountains resulting from asymmetric bidirectional cohesin extrusion spread from cohesin-loading points in a CTCF-independent manner. We discuss that fountains may not possess specific functions, unlike conventional chromatin structures, and could be found in other biological processes where cohesin loading occurs.
Collapse
Affiliation(s)
| | - Olga V Iarovaia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Hou Y, Nie Z, Jiang Q, Velychko S, Heising S, Bedzhov I, Wu G, Adachi K, Scholer HR. Emerging cooperativity between Oct4 and Sox2 governs the pluripotency network in early mouse embryos. eLife 2025; 13:RP100735. [PMID: 40014376 DOI: 10.7554/elife.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
Collapse
Affiliation(s)
- Yanlin Hou
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Zhengwen Nie
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Qi Jiang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Sergiy Velychko
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Sandra Heising
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Ivan Bedzhov
- Embryonic Self-Organization Research Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Kenjiro Adachi
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Scholer
- Cell and Developmental Biology Group, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
4
|
Liu M, Yue Y, Chen X, Xian K, Dong C, Shi M, Xiong H, Tian K, Li Y, Zhang QC, He A. Genome-coverage single-cell histone modifications for embryo lineage tracing. Nature 2025:10.1038/s41586-025-08656-1. [PMID: 40011786 DOI: 10.1038/s41586-025-08656-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
Substantial epigenetic resetting during early embryo development from fertilization to blastocyst formation ensures zygotic genome activation and leads to progressive cellular heterogeneities1-3. Mapping single-cell epigenomic profiles of core histone modifications that cover each individual cell is a fundamental goal in developmental biology. Here we develop target chromatin indexing and tagmentation (TACIT), a method that enabled genome-coverage single-cell profiling of seven histone modifications across mouse early embryos. We integrated these single-cell histone modifications with single-cell RNA sequencing data to chart a single-cell resolution epigenetic landscape. Multimodal chromatin-state annotations showed that the onset of zygotic genome activation at the early two-cell stage already primes heterogeneities in totipotency. We used machine learning to identify totipotency gene regulatory networks, including stage-specific transposable elements and putative transcription factors. CRISPR activation of a combination of these identified transcription factors induced totipotency activation in mouse embryonic stem cells. Together with single-cell co-profiles of multiple histone modifications, we developed a model that predicts the earliest cell branching towards the inner cell mass and the trophectoderm in latent multimodal space and identifies regulatory elements and previously unknown lineage-specifying transcription factors. Our work provides insights into single-cell epigenetic reprogramming, multimodal regulation of cellular lineages and cell-fate priming during mouse pre-implantation development.
Collapse
Affiliation(s)
- Min Liu
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Yanzhu Yue
- Department of Cell Fate and Diseases, Jilin Provincial Key Laboratory of Women's Reproductive Health, Jilin Provincial Clinical Research Center for Birth Defect and Rare Disease, The First Hospital of Jilin University, Changchun, China
| | - Xubin Chen
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Kexin Xian
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Chao Dong
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Ming Shi
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China
| | - Haiqing Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kang Tian
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhe Li
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Aibin He
- Institute of Molecular Medicine and National Biomedical Imaging Center, College of Future Technology, Peking-Tsinghua Center for Life Sciences and State Key Laboratory of Gene Function and Modulation Research, Peking University, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research of Ministry of Education of China, Peking University Cancer Hospital and Institute, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
5
|
Gökbuget D, Goehring L, Boileau RM, Lenshoek K, Huang TT, Blelloch R. KMT2C/KMT2D-dependent H3K4me1 mediates changes in DNA replication timing and origin activity during a cell fate transition. Cell Rep 2025; 44:115272. [PMID: 39908143 DOI: 10.1016/j.celrep.2025.115272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/10/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Mammalian genomes replicate in a cell-type-specific order during the S phase, correlated to transcriptional activity, histone modifications, and chromatin structure. The causal relationships between these features and DNA replication timing (RT), especially during cell fate changes, are largely unknown. Using machine learning, we quantify 21 chromatin features predicting local RT and RT changes during differentiation in embryonic stem cells (ESCs). About one-third of the genome shows RT changes during differentiation. Chromatin features accurately predict both steady-state RT and RT changes. Histone H3 lysine 4 monomethylation (H3K4me1), catalyzed by KMT2C and KMT2D (KMT2C/D), emerges as a top predictor. Loss of KMT2C/D or their enzymatic activities impairs RT changes during differentiation. This correlates with local H3K4me1 loss and reduced replication origin firing, while transcription remains largely unaffected. Our findings reveal KMT2C/D-dependent H3K4me1 as a key regulator of RT and replication initiation, a role that likely impacts diseases associated with KMT2C/D mutations.
Collapse
Affiliation(s)
- Deniz Gökbuget
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Ryan M Boileau
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kayla Lenshoek
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Chakraborty S, Wenzlitschke N, Anderson MJ, Eraso A, Baudic M, Thompson JJ, Evans AA, Shatford-Adams LM, Chari R, Awasthi P, Dale RK, Lewandoski M, Petros TJ, Rocha PP. Deletion of a single CTCF motif at the boundary of a chromatin domain with three FGF genes disrupts gene expression and embryonic development. Dev Cell 2025:S1534-5807(25)00064-4. [PMID: 40015278 DOI: 10.1016/j.devcel.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/08/2024] [Accepted: 02/04/2025] [Indexed: 03/01/2025]
Abstract
Chromatin domains delimited by CTCF can restrict the range of enhancer action. However, disruption of some domain boundaries results in mild gene dysregulation and phenotypes. We tested whether perturbing a domain with multiple developmental regulators would lead to more severe outcomes. We chose a domain with three FGF ligand genes-Fgf3, Fgf4, and Fgf15-that control different murine developmental processes. Heterozygous deletion of a 23.9-kb boundary defined by four CTCF sites led to ectopic interactions of the FGF genes with enhancers active in the brain and induced FGF expression. This caused orofacial clefts, encephalocele, and fully penetrant perinatal lethality. Loss of the single CTCF motif oriented toward the enhancers-but not the three toward the FGF genes-recapitulated these phenotypes. Our works shows that small sequence variants at particular domain boundaries can have a surprisingly outsized effect and must be considered as potential sources of gene dysregulation in development and disease.
Collapse
Affiliation(s)
- Shreeta Chakraborty
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Wenzlitschke
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Anderson
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ariel Eraso
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manon Baudic
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alicia A Evans
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lilly M Shatford-Adams
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raj Chari
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Coßmann J, Kos PI, Varamogianni-Mamatsi V, Assenheimer DS, Bischof TA, Kuhn T, Vomhof T, Papantonis A, Giorgetti L, Gebhardt JCM. Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis. Nat Commun 2025; 16:1833. [PMID: 39979259 PMCID: PMC11842872 DOI: 10.1038/s41467-025-56889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The three-dimensional folding of chromosomes is essential for nuclear functions such as DNA replication and gene regulation. The emergence of chromatin architecture is thus an important process during embryogenesis. To shed light on the molecular and kinetic underpinnings of chromatin architecture formation, we characterized biophysical properties of cohesin and CTCF binding to chromatin and their changes upon cofactor depletion using single-molecule imaging in live developing zebrafish embryos. We found that chromatin-bound fractions of both cohesin and CTCF increased significantly between the 1000-cell and shield stages, which we could explain through changes in both their association and dissociation rates. Moreover, increasing binding of cohesin restricted chromatin motion, potentially via loop extrusion, and showed distinct stage-dependent nuclear distribution. Polymer simulations with experimentally derived parameters recapitulated the experimentally observed gradual emergence of chromatin architecture. Our findings reveal molecular kinetics underlying chromatin architecture formation during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jonas Coßmann
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Devin S Assenheimer
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Tobias A Bischof
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Timo Kuhn
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Ulm, Germany.
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.
| |
Collapse
|
8
|
Song Z, Xia Q, Yang M, Yang T, Liu Y, Wang D, Shu J, Liu Z, Chi Y, Xu H, Xing D, Zhou Y. Dynamic changes in 3D chromatin structure during male gametogenesis in Arabidopsis thaliana. Genome Biol 2025; 26:27. [PMID: 39930459 PMCID: PMC11808980 DOI: 10.1186/s13059-025-03496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Chromatin higher-order structure plays an important role in genome stability maintenance and gene transcriptional regulation; however, the dynamics of the three-dimensional (3D) chromatin in male gametophytes during the two rounds of mitosis remains elusive. RESULTS Here, we use the optimized single-nucleus and low-input Hi-C methods to investigate changes in 3D chromatin structure in four types of male gametophyte nucleus at different stages. The reconstructed genome structures show that microspore nuclei develop towards two different directions. Although the 3D chromatin organization in generative nuclei is similar to that in microspore nuclei, vegetative nuclei lose chromosome territories, display dispersed centromeres, and switched A/B compartments, which are associated with vegetative specific gene expression. Additionally, we find that there is an active transcriptional center in sperm nuclei, emphasizing the transcription in Arabidopsis sperm is not completely inhibited despite the chromosomes being condensed. CONCLUSIONS Our data suggest that the special 3D structures of vegetative and sperm nuclei contribute to cell type-specific expression patterns.
Collapse
Affiliation(s)
- Zhihan Song
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Minqi Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Tingting Yang
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yali Liu
- Institute of Cell Biologyand, MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences , Lanzhou University, Lanzhou, 730000, China
| | - Dingyue Wang
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jiayue Shu
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhiyuan Liu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China
| | - Yi Chi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Heming Xu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Yue Zhou
- State Key Laboratory of Gene Function and Modulation Research, School of Advanced Agricultural Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
9
|
Pinchuk D, Chowdhury HMAM, Pandeya A, Oluwadare O. HiCForecast: dynamic network optical flow estimation algorithm for spatiotemporal Hi-C data forecasting. Bioinformatics 2025; 41:btaf030. [PMID: 39842868 PMCID: PMC11793695 DOI: 10.1093/bioinformatics/btaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025] Open
Abstract
MOTIVATION The exploration of the 3D organization of DNA within the nucleus in relation to various stages of cellular development has led to experiments generating spatiotemporal Hi-C data. However, there is limited spatiotemporal Hi-C data for many organisms, impeding the study of 3D genome dynamics. To overcome this limitation and advance our understanding of genome organization, it is crucial to develop methods for forecasting Hi-C data at future time points from existing timeseries Hi-C data. RESULT In this work, we designed a novel framework named HiCForecast, adopting a dynamic voxel flow algorithm to forecast future spatiotemporal Hi-C data. We evaluated how well our method generalizes forecasting data across different species and systems, ensuring performance in homogeneous, heterogeneous, and general contexts. Using both computational and biological evaluation metrics, our results show that HiCForecast outperforms the current state-of-the-art algorithm, emerging as an efficient and powerful tool for forecasting future spatiotemporal Hi-C datasets. AVAILABILITY AND IMPLEMENTATION HiCForecast is publicly available at https://github.com/OluwadareLab/HiCForecast.
Collapse
Affiliation(s)
- Dmitry Pinchuk
- Department of Computer Science, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - H M A Mohit Chowdhury
- Department of Computer Science, University of Colorado, Colorado Springs, CO 80918, United States
| | - Abhishek Pandeya
- Department of Computer Science, University of Colorado, Colorado Springs, CO 80918, United States
| | - Oluwatosin Oluwadare
- Department of Computer Science, University of Colorado, Colorado Springs, CO 80918, United States
- Department of Biomedical Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
10
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Álvarez-González L, Ruiz-Herrera A. Evolution of 3D Chromatin Folding. Annu Rev Anim Biosci 2025; 13:49-71. [PMID: 39531399 DOI: 10.1146/annurev-animal-111523-102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Studies examining the evolution of genomes have focused mainly on sequence conservation. However, the inner working of a cell implies tightly regulated crosstalk between complex gene networks controlled by small dispersed regulatory elements of physically contacting DNA regions. How these different levels of chromatin organization crosstalk in different species underpins the potential for genome evolutionary plasticity. We review the evolution of chromatin organization across the Animal Tree of Life. We introduce general aspects of the mode and tempo of genome evolution to later explore the multiple layers of genome organization. We argue that both genome and chromosome size modulate patterns of chromatin folding and that chromatin interactions facilitate the formation of lineage-specific chromosomal reorganizations, especially in germ cells. Overall, analyzing the mechanistic forces involved in the maintenance of chromatin structure and function of the germ line is critical for understanding genome evolution, maintenance, and inheritance.
Collapse
Affiliation(s)
- Lucía Álvarez-González
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| | - Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina and Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ,
| |
Collapse
|
12
|
Ma G, Fu X, Zhou L, Babarinde IA, Shi L, Yang W, Chen J, Xiao Z, Qiao Y, Ma L, Ou Y, Li Y, Chang C, Deng B, Zhang R, Sun L, Tong G, Li D, Li Y, Hutchins AP. The nuclear matrix stabilizes primed-specific genes in human pluripotent stem cells. Nat Cell Biol 2025; 27:232-245. [PMID: 39789220 DOI: 10.1038/s41556-024-01595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size. Mechanistically, HNRNPU acts as a transcriptional co-factor that anchors promoters of primed-specific genes to the nuclear matrix with POLII to promote their expression and their RNA stability. Overall, HNRNPU promotes cell-type stability and when reduced promotes conversion to earlier embryonic states.
Collapse
Affiliation(s)
- Gang Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xiuling Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Zhou
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Isaac A Babarinde
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Liyang Shi
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenting Yang
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiao Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhen Xiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yu Qiao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Lisha Ma
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Ou
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yuhao Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Chen Chang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Boping Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ran Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Sun
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Guoqing Tong
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Andrew P Hutchins
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
13
|
Wu H, Wang M, Zheng Y, Xie XS. Droplet-based high-throughput 3D genome structure mapping of single cells with simultaneous transcriptomics. Cell Discov 2025; 11:8. [PMID: 39837831 PMCID: PMC11751028 DOI: 10.1038/s41421-025-00770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C (dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages (3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts. Our results show that genes with significant structural changes are enriched in pathways related to metabolic process and morphology change in neurons, and innate immune response in glial cells, highlighting the role of 3D genome organization in physiological brain aging. Furthermore, our multi-omics joint assay, dscHi-C-multiome, enables precise cell type identification in the adult mouse brain and uncovers the intricate relationship between genome architecture and gene expression. Collectively, we developed the sensitive, high-throughput dscHi-C and its multi-omics derivative, dscHi-C-multiome, demonstrating their potential for large-scale cell atlas studies in development and disease.
Collapse
Affiliation(s)
- Honggui Wu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maoxu Wang
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Yinghui Zheng
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China
- Changping Laboratory, Beijing, China
| | - X Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
14
|
Wei K, Li R, Zhao X, Xie B, Xie T, Sun Q, Chen Y, Wei P, Xu W, Guo X, Zhao Z, Feng H, Ni L, Dong C. TRIM28 is an essential regulator of three-dimensional chromatin state underpinning CD8 + T cell activation. Nat Commun 2025; 16:750. [PMID: 39820353 PMCID: PMC11739657 DOI: 10.1038/s41467-025-56029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025] Open
Abstract
T cell activation is accompanied by extensive changes in epigenome. However, the high-ordered chromatin organization underpinning CD8+ T cell activation is not fully known. Here, we show extensive changes in the three-dimensional genome during CD8+ T cell activation, associated with changes in gene transcription. We show that CD8+ T-cell-specific deletion of Trim28 in mice disrupts autocrine IL-2 production and leads to impaired CD8+ T cell activation in vitro and in vivo. Mechanistically, TRIM28 binds to regulatory regions of genes associated with the formation of chromosomal loops during activation. At the loop anchor regions, TRIM28-occupancy overlaps with that of CTCF, a factor known for defining the boundaries of topologically associating domains and for forming of the loop anchors. In the absence of Trim28, RNA Pol II and cohesin binding to these regions diminishes, and the chromosomal structure required for the active state is disrupted. These results thus identify a critical role for TRIM28-dependent chromatin topology in gene transcription in activated CD8+ T cells.
Collapse
Affiliation(s)
- Kun Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ruifeng Li
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaohong Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Bowen Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Tian Xie
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Qinli Sun
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Chen
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Peng Wei
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Xu
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyi Guo
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zixuan Zhao
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Han Feng
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Ling Ni
- Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Chen Dong
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine- Affiliated Renji Hospital, Shanghai, 200127, China.
- Research Unit of Immune Regulation and Immune Diseases of Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine-Affiliated Renji Hospital, Shanghai, 200127, China.
- Westlake University School of Medicine, Hangzhou, Zhejiang, 310030, China.
| |
Collapse
|
15
|
Wen Z, Fang R, Zhang R, Yu X, Zhou F, Long H. Nucleosome wrapping states encode principles of 3D genome organization. Nat Commun 2025; 16:352. [PMID: 39753536 PMCID: PMC11699143 DOI: 10.1038/s41467-024-54735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Nucleosome is the basic structural unit of the genome. During processes like DNA replication and gene transcription, the conformation of nucleosomes undergoes dynamic changes, including DNA unwrapping and rewrapping, as well as histone disassembly and assembly. However, the wrapping characteristics of nucleosomes across the entire genome, including region-specificity and their correlation with higher-order chromatin organization, remains to be studied. In this study, we investigate the wrapping length of DNA on nucleosomes across the whole genome using wrapping-seq. We discover that the chromatin of mouse ES cells forms Nucleosome Wrapping Domains (NRDs), which can also be observed in yeast and fly genomes. We find that the degree of nucleosome wrapping decreases after DNA replication and is promoted by transcription. Furthermore, we observe that nucleosome wrapping domains delineate Hi-C compartments and replication timing domains. In conclusion, we have unveiled a previously unrecognized domainization principle of the chromatin, encoded by nucleosome wrapping states.
Collapse
Affiliation(s)
- Zengqi Wen
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ruxin Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xinqian Yu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Fanli Zhou
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Haizhen Long
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
16
|
Bondarieva A, Tachibana K. Genome folding and zygotic genome activation in mammalian preimplantation embryos. Curr Opin Genet Dev 2024; 89:102268. [PMID: 39383545 DOI: 10.1016/j.gde.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
The totipotent one-cell embryo, or zygote, gives rise to all germ layers and extraembryonic tissues that culminate in the development of a new organism. A zygote is produced at fertilisation by the fusion of differentiated germ cells, egg and sperm. The chromatin of parental genomes is reprogrammed and spatially reorganised in the early embryo. The 3D chromatin organisation is established de novo after fertilisation by a cohesin-dependent mechanism of loop extrusion that forms chromatin loops and topologically associating domains (TADs). Strengthening of TAD insulation is concomitant with the transcriptional 'awakening' of the embryo known as zygotic genome activation (ZGA). Whether and how these processes are causally linked remains poorly understood. In this review, we discuss recent findings of 3D chromatin organisation in mammalian gametes and embryos and how these are potentially related to ZGA.
Collapse
Affiliation(s)
- Anastasiia Bondarieva
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Martinsried, Munich, Germany.
| |
Collapse
|
17
|
Solberg T, Kobayashi-Ishihara M, Siomi H. The impact of retrotransposons on zygotic genome activation and the chromatin landscape of early embryos. Ann N Y Acad Sci 2024; 1542:11-24. [PMID: 39576233 DOI: 10.1111/nyas.15260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In mammals, fertilization is followed by extensive reprogramming and reorganization of the chromatin accompanying the transcriptional activation of the embryo. This reprogramming results in blastomeres with the ability to give rise to all cell types and a complete organism, including extra-embryonic tissues, and is known as totipotency. Transcriptional activation occurs in a process known as zygotic genome activation (ZGA) and is tightly linked to the expression of transposable elements, including endogenous retroviruses (ERVs) such as endogenous retrovirus with leucine tRNA primer (ERVL). Recent studies discovered the importance of ERVs in this process, yet the race to decipher the network surrounding these elements is still ongoing, and the molecular mechanism behind their involvement remains a mystery. Amid a recent surge of studies reporting the discovery of various factors and pathways involved in the regulation of ERVs, this review provides an overview of the knowns and unknowns in the field, with a particular emphasis on the chromatin landscape and how ERVs shape preimplantation development in mammals. In so doing, we highlight recent discoveries that have advanced our understanding of how these elements are involved in transforming the quiescent zygote into the most powerful cell type in mammals.
Collapse
Affiliation(s)
- Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| | | | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, Japan
| |
Collapse
|
18
|
Tian M, Tang X, Ouyang Z, Li Y, Bai X, Chen B, Yue S, Hu P, Bo X, Ren C, Chen H, Lu M. Long-range transcription factor binding sites clustered regions may mediate transcriptional regulation through phase-separation interactions in early human embryo. Comput Struct Biotechnol J 2024; 23:3514-3526. [PMID: 39435341 PMCID: PMC11492133 DOI: 10.1016/j.csbj.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
In mammals, during the post-fertilization pre-implantation phase, the expression of cell type-specific genes is crucial for normal embryonic development, which is regulated by cis-regulatory elements (CREs). TFs control gene expression by interacting with CREs. Research shows that transcription factor binding sites (TFBSs) reflect the general characteristics of the regulatory genome. Here, we identified TFBSs from chromatin accessibility data in five stages of early human embryonic development, and quantified transcription factor binding sites-clustered regions (TFCRs) and their complexity (TC). Assigning TC values to TFCRs has made it possible to assess the functionality of these regulatory elements in a more quantitative way. Our findings reveal a robust correlation between TFCR complexity and gene expression starting from the 8Cell stage, which is when the zygotic genome is activated in humans. Furthermore, we have defined long-range TFCRs (LR-TFCRs) and conjecture that LR-TFCRs may regulate gene expression through phase-separation mechanisms during the early stages of human embryonic development.
Collapse
Affiliation(s)
- Mengge Tian
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiaohan Tang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Zhangyi Ouyang
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Yaru Li
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Xuemei Bai
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Bijia Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Shutong Yue
- Academy of Military Medical Sciences, Beijing 100850, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pengzhen Hu
- Academy of Military Medical Sciences, Beijing 100850, China
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaochen Bo
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Chao Ren
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Hebing Chen
- Academy of Military Medical Sciences, Beijing 100850, China
| | - Meisong Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
19
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2024:10.1038/s41576-024-00792-0. [PMID: 39587307 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Zhang R, Sun J, Liu S, Ding J, Xiang M. Multiscale 3D genome rewiring during PTF1A-mediated somatic cell reprogramming into neural stem cells. Commun Biol 2024; 7:1505. [PMID: 39537822 PMCID: PMC11561290 DOI: 10.1038/s42003-024-07230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
The genome is intricately folded into chromatin compartments, topologically associating domains (TADs) and loops unique to each cell type. How this higher-order genome organization regulates cell fate transition remains elusive. Here we show how a single non-neural progenitor transcription factor, PTF1A, reorchestrates the 3D genome during fibroblast transdifferentiation into neural stem cells (NSCs). Multiomics analyses integrating Hi-C data, PTF1A and CTCF DNA-binding profiles, H3K27ac modification, and gene expression, demonstrate that PTF1A binds to subTAD boundaries subsequently associated with elevated CTCF binding and enhanced boundary insulation, and reorganizes chromatin loops, leading to gene expression changes that drive transdifferentiation into NSCs. Moreover, PTF1A activates enhancers and super-enhancers near low-insulation boundaries and modulates H3K27ac deposition, promoting cell fate transitions. Together, our data implicate an involvement of 3D genome in transcriptional and cell fate alterations, and highlight an essential role for PTF1A in gene expression control and multiscale 3D genome remodeling during cell reprogramming.
Collapse
Affiliation(s)
- Rong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Jun Sun
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Junjun Ding
- Department of Thoracic Surgery and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
21
|
Xu S, Egli D. Genome organization and stability in mammalian pre-implantation development. DNA Repair (Amst) 2024; 144:103780. [PMID: 39504608 DOI: 10.1016/j.dnarep.2024.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
A largely stable genome is required for normal development, even as genetic change is an integral aspect of reproduction, genetic adaptation and evolution. Recent studies highlight a critical window of mammalian development with intrinsic DNA replication stress and genome instability in the first cell divisions after fertilization. Patterns of DNA replication and genome stability are established very early in mammals, alongside patterns of nuclear organization, and before the emergence of gene expression patterns, and prior to cell specification and germline formation. The study of DNA replication and genome stability in the mammalian embryo provides a unique cellular system due to the resetting of the epigenome to a totipotent state, and the de novo establishment of the patterns of nuclear organization, gene expression, DNA methylation, histone modifications and DNA replication. Studies on DNA replication and genome stability in the early mammalian embryo is relevant for understanding both normal and disease-causing genetic variation, and to uncover basic principles of genome regulation.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA; Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
22
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Armand EJ, Mishra S, Xu J, Tastemel M, Lie A, Gibbs ZA, Indralingam HS, Tan TM, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C enables scalable, single-cell profiling of chromatin architecture in heterogeneous tissues. Nat Biotechnol 2024:10.1038/s41587-024-02447-1. [PMID: 39424717 DOI: 10.1038/s41587-024-02447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Current methods for analyzing chromatin architecture are not readily scalable to heterogeneous tissues. Here we introduce Droplet Hi-C, which uses a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture of the mouse cortex and analyzed gene regulatory programs in major cortical cell types. In addition, we used this technique to detect copy number variations, structural variations and extrachromosomal DNA in human glioblastoma, colorectal and blood cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We refined the technique to allow joint profiling of chromatin architecture and transcriptome in single cells, facilitating exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C both addresses critical gaps in chromatin analysis of heterogeneous tissues and enhances understanding of gene regulation.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Systems Biology and Bioinformatics PhD Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Ethan J Armand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jie Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Melodi Tastemel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Audrey Lie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Zane A Gibbs
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hannah S Indralingam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tuyet M Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA.
- Center for Epigenomics, Institute for Genomic Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Uebbing S, Kocher AA, Baumgartner M, Ji Y, Bai S, Xing X, Nottoli T, Noonan JP. Evolutionary Innovations in Conserved Regulatory Elements Associate With Developmental Genes in Mammals. Mol Biol Evol 2024; 41:msae199. [PMID: 39302728 PMCID: PMC11465374 DOI: 10.1093/molbev/msae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Genetic variation within enhancer sequences is an important contributor to phenotypic variation including evolutionary adaptations and human disease. Certain genes and pathways may be more prone to regulatory evolution than others, with different patterns across diverse organisms, but whether such patterns exist has not been investigated at a sufficient scale. To address this question, we identified signatures of accelerated sequence evolution in conserved enhancer elements throughout the mammalian phylogeny at an unprecedented scale. While different genes and pathways were enriched for regulatory evolution in different parts of the tree, we found a striking overall pattern of pleiotropic genes involved in gene regulatory and developmental processes being enriched for accelerated enhancer evolution. These genes were connected to more enhancers than other genes, which was the basis for having an increased amount of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. Detailed study of one acceleration event in an enhancer of HES1 revealed that sequence evolution led to a new activity domain in the developing limb that emerged concurrently with the evolution of digit reduction in hoofed mammals. Our results provide evidence that enhancer evolution has been a frequent contributor to regulatory innovation at conserved developmental signaling genes in mammals.
Collapse
Affiliation(s)
- Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Yu Ji
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaojun Xing
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
24
|
Du Z, Hu L, Zou Z, Liu M, Li Z, Lu X, Harris C, Xiang Y, Chen F, Yu G, Xu K, Kong F, Xu Q, Huang B, Liu L, Fan Q, Wang H, Kalantry S, Xie W. Stepwise de novo establishment of inactive X chromosome architecture in early development. Nat Genet 2024; 56:2185-2198. [PMID: 39256583 DOI: 10.1038/s41588-024-01897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
X chromosome inactivation triggers a dramatic reprogramming of transcription and chromosome architecture. However, how the chromatin organization of inactive X chromosome is established de novo in vivo remains elusive. Here, we identified an Xist-separated megadomain structure (X-megadomains) on the inactive X chromosome in mouse extraembryonic lineages and extraembryonic endoderm (XEN) cell lines, and transiently in the embryonic lineages, before Dxz4-delineated megadomain formation at later stages in a strain-specific manner. X-megadomain boundary coincides with strong enhancer activities and cohesin binding in an Xist regulatory region required for proper Xist activation in early embryos. Xist regulatory region disruption or cohesin degradation impaired X-megadomains in extraembryonic endoderm cells and caused ectopic activation of regulatory elements and genes near Xist, indicating that cohesin loading at regulatory elements promotes X-megadomains and confines local gene activities. These data reveal stepwise X chromosome folding and transcriptional regulation to achieve both essential gene activation and global silencing during the early stages of X chromosome inactivation.
Collapse
Affiliation(s)
- Zhenhai Du
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Liangjun Hu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Meishuo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zihan Li
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xukun Lu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yunlong Xiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Fengling Chen
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Guang Yu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kai Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Feng Kong
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qianhua Xu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Bo Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Liu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Qiang Fan
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Haifeng Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
25
|
Guerreiro I, Rang FJ, Kawamura YK, Kroon-Veenboer C, Korving J, Groenveld FC, van Beek RE, Lochs SJA, Boele E, Peters AHMF, Kind J. Antagonism between H3K27me3 and genome-lamina association drives atypical spatial genome organization in the totipotent embryo. Nat Genet 2024; 56:2228-2237. [PMID: 39284976 PMCID: PMC11525175 DOI: 10.1038/s41588-024-01902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
In mammals, early embryonic development exhibits highly unusual spatial positioning of genomic regions at the nuclear lamina, but the mechanisms underpinning this atypical genome organization remain elusive. Here, we generated single-cell profiles of lamina-associated domains (LADs) coupled with transcriptomics, which revealed a striking overlap between preimplantation-specific LAD dissociation and noncanonical broad domains of H3K27me3. Loss of H3K27me3 resulted in a restoration of canonical LAD profiles, suggesting an antagonistic relationship between lamina association and H3K27me3. Tethering of H3K27me3 to the nuclear periphery showed that the resultant relocalization is partially dependent on the underlying DNA sequence. Collectively, our results suggest that the atypical organization of LADs in early developmental stages is the result of a tug-of-war between intrinsic affinity for the nuclear lamina and H3K27me3, constrained by the available space at the nuclear periphery. This study provides detailed insight into the molecular mechanisms regulating nuclear organization during early mammalian development.
Collapse
Affiliation(s)
- Isabel Guerreiro
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
| | - Franka J Rang
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Carla Kroon-Veenboer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Femke C Groenveld
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ramada E van Beek
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Silke J A Lochs
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Ellen Boele
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Antoine H M F Peters
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- Faculty of Sciences, University of Basel, Basel, Switzerland
| | - Jop Kind
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands.
- Oncode Institute, Utrecht, the Netherlands.
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands.
| |
Collapse
|
26
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
27
|
Oji A, Choubani L, Miura H, Hiratani I. Structure and dynamics of nuclear A/B compartments and subcompartments. Curr Opin Cell Biol 2024; 90:102406. [PMID: 39083950 DOI: 10.1016/j.ceb.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Mammalian chromosomes form a hierarchical structure within the cell nucleus, from chromatin loops, megabase (Mb)-sized topologically associating domains (TADs) to larger-scale A/B compartments. The molecular basis of the structures of loops and TADs has been actively studied. However, the A and B compartments, which correspond to early-replicating euchromatin and late-replicating heterochromatin, respectively, are still relatively unexplored. In this review, we focus on the A/B compartments, discuss their close relationship to DNA replication timing (RT), and introduce recent findings on the features of subcompartments revealed by detailed classification of the A/B compartments. In doing so, we speculate on the structure, potential function, and developmental dynamics of A/B compartments and subcompartments in mammalian cells.
Collapse
Affiliation(s)
- Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Linda Choubani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 Japan.
| |
Collapse
|
28
|
Takahashi S, Kyogoku H, Hayakawa T, Miura H, Oji A, Kondo Y, Takebayashi SI, Kitajima TS, Hiratani I. Embryonic genome instability upon DNA replication timing program emergence. Nature 2024; 633:686-694. [PMID: 39198647 PMCID: PMC11410655 DOI: 10.1038/s41586-024-07841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/17/2024] [Indexed: 09/01/2024]
Abstract
Faithful DNA replication is essential for genome integrity1-4. Under-replicated DNA leads to defects in chromosome segregation, which are common during embryogenesis5-8. However, the regulation of DNA replication remains poorly understood in early mammalian embryos. Here we constructed a single-cell genome-wide DNA replication atlas of pre-implantation mouse embryos and identified an abrupt replication program switch accompanied by a transient period of genomic instability. In 1- and 2-cell embryos, we observed the complete absence of a replication timing program, and the entire genome replicated gradually and uniformly using extremely slow-moving replication forks. In 4-cell embryos, a somatic-cell-like replication timing program commenced abruptly. However, the fork speed was still slow, S phase was extended, and markers of replication stress, DNA damage and repair increased. This was followed by an increase in break-type chromosome segregation errors specifically during the 4-to-8-cell division with breakpoints enriched in late-replicating regions. These errors were rescued by nucleoside supplementation, which accelerated fork speed and reduced the replication stress. By the 8-cell stage, forks gained speed, S phase was no longer extended and chromosome aberrations decreased. Thus, a transient period of genomic instability exists during normal mouse development, preceded by an S phase lacking coordination between replisome-level regulation and megabase-scale replication timing regulation, implicating a link between their coordination and genome stability.
Collapse
Affiliation(s)
- Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Hirohisa Kyogoku
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan.
| | - Takuya Hayakawa
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Asami Oji
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Yoshiko Kondo
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shin-Ichiro Takebayashi
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| |
Collapse
|
29
|
Jarosz AS, Halo JV. Transcription of Endogenous Retroviruses: Broad and Precise Mechanisms of Control. Viruses 2024; 16:1312. [PMID: 39205286 PMCID: PMC11359688 DOI: 10.3390/v16081312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous retroviruses (ERVs) are the remnants of retroviral germline infections and are highly abundant in the genomes of vertebrates. At one time considered to be nothing more than inert 'junk' within genomes, ERVs have been tolerated within host genomes over vast timescales, and their study continues to reveal complex co-evolutionary histories within their respective host species. For example, multiple instances have been characterized of ERVs having been 'borrowed' for normal physiology, from single copies to ones involved in various regulatory networks such as innate immunity and during early development. Within the cell, the accessibility of ERVs is normally tightly controlled by epigenetic mechanisms such as DNA methylation or histone modifications. However, these silencing mechanisms of ERVs are reversible, and epigenetic alterations to the chromatin landscape can thus lead to their aberrant expression, as is observed in abnormal cellular environments such as in tumors. In this review, we focus on ERV transcriptional control and draw parallels and distinctions concerning the loss of regulation in disease, as well as their precise regulation in early development.
Collapse
Affiliation(s)
- Abigail S. Jarosz
- Science and Mathematics Division, Lorrain County Community College, Lorrain, OH 44035, USA;
| | - Julia V. Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
30
|
Li M, Yang J, Xiao R, Liu Y, Hu J, Li T, Wu P, Zhang M, Huang Y, Sun Y, Li C. The effect of trisomic chromosomes on spatial genome organization and global transcription in embryonic stem cells. Cell Prolif 2024; 57:e13639. [PMID: 38553796 PMCID: PMC11294443 DOI: 10.1111/cpr.13639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
Aneuploidy frequently occurs in cancer and developmental diseases such as Down syndrome, with its functional consequences implicated in dosage effects on gene expression and global perturbation of stress response and cell proliferation pathways. However, how aneuploidy affects spatial genome organization remains less understood. In this study, we addressed this question by utilizing the previously established isogenic wild-type (WT) and trisomic mouse embryonic stem cells (mESCs). We employed a combination of Hi-C, RNA-seq, chromosome painting and nascent RNA imaging technologies to compare the spatial genome structures and gene transcription among these cells. We found that trisomy has little effect on spatial genome organization at the level of A/B compartment or topologically associating domain (TAD). Inter-chromosomal interactions are associated with chromosome regions with high gene density, active histone modifications and high transcription levels, which are confirmed by imaging. Imaging also revealed contracted chromosome volume and weakened transcriptional activity for trisomic chromosomes, suggesting potential implications for the transcriptional output of these chromosomes. Our data resources and findings may contribute to a better understanding of the consequences of aneuploidy from the angle of spatial genome organization.
Collapse
Affiliation(s)
- Mengfan Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Junsheng Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Rong Xiao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yunjie Liu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jiaqi Hu
- School of Health HumanitiesPeking UniversityBeijingChina
| | - Tingting Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical Sciences, National Center of Biomedical AnalysisBeijingChina
| | - Pengze Wu
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Meili Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yue Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Medical GeneticsInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical CollegeBeijingChina
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC)Peking UniversityBeijingChina
| | - Cheng Li
- Center for Bioinformatics, School of Life Sciences, Center for Statistical Science, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| |
Collapse
|
31
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Stephens RK, Miroshnikova YA. Nuclear periphery and its mechanical regulation in cell fate transitions. Curr Opin Struct Biol 2024; 87:102867. [PMID: 38889500 DOI: 10.1016/j.sbi.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Cell fate changes require rewiring of transcriptional programs to generate functionally specialized cell states. Reconfiguration of transcriptional networks requires overcoming epigenetic barriers imposed by silenced heterochromatin in order to activate lineage-specific genes. Further, cell fate decisions are made in a tissue-specific context, where cells are physically linked to each other as well as to the connective tissue environment. Here, cells are continuously exposed to a multitude of mechanical forces emanating from cellular dynamics in their local microenvironments, for example through cell movements, cell divisions, tissue contractions, or fluid flow. Through their ability to deform cellular structures and activate receptors, mechanical forces can be sensed at the plasma membrane, but also at the nuclear periphery through direct or cytoskeleton-mediated deformation of the nuclear envelope. This deformation and the associated signaling is capable of triggering changes in the mechanical state of the nuclear membranes, the organization and rigidity of the underlying nuclear lamina, compaction state of chromatin, and ultimately transcription. This review focuses on the role of nuclear architecture, particularly the nuclear lamina-chromatin interface, and its mechanical regulation in cell fate decisions as well as its physiological role in development and cellular reprogramming.
Collapse
Affiliation(s)
- Rebecca K Stephens
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. https://twitter.com/BecKateStephens
| | - Yekaterina A Miroshnikova
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Halliwell JA, Martin-Gonzalez J, Hashim A, Dahl JA, Hoffmann ER, Lerdrup M. Sex-specific DNA-replication in the early mammalian embryo. Nat Commun 2024; 15:6323. [PMID: 39060312 PMCID: PMC11282264 DOI: 10.1038/s41467-024-50727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The timing of DNA replication in mammals is crucial for minimizing errors and influenced by genome usage and chromatin states. Replication timing in the newly formed mammalian embryo remains poorly understood. Here, we have investigated replication timing in mouse zygotes and 2-cell embryos, revealing that zygotes lack a conventional replication timing program, which then emerges in 2-cell embryos. This program differs from embryonic stem cells and generally correlates with transcription and genome compartmentalization of both parental genomes. However, consistent and systematic differences existed between the replication timing of the two parental genomes, including considerably later replication of maternal pericentromeric regions compared to paternal counterparts. Moreover, maternal chromatin modified by Polycomb Repressive Complexes in the oocyte, undergoes early replication, despite belonging to the typically late-replicating B-compartment of the genome. This atypical and asynchronous replication of the two parental genomes may advance our understanding of replication stress in early human embryos and trigger strategies to reduce errors and aneuploidies.
Collapse
Affiliation(s)
- Jason Alexander Halliwell
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Adnan Hashim
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway
| | - Eva R Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Mads Lerdrup
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Centre for Embryology and Healthy Development, University of Oslo, Oslo, Norway.
| |
Collapse
|
34
|
Li X, Bie L, Wang Y, Hong Y, Zhou Z, Fan Y, Yan X, Tao Y, Huang C, Zhang Y, Sun X, Li JXH, Zhang J, Chang Z, Xi Q, Meng A, Shen X, Xie W, Liu N. LINE-1 transcription activates long-range gene expression. Nat Genet 2024; 56:1494-1502. [PMID: 38849613 DOI: 10.1038/s41588-024-01789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
Long interspersed nuclear element-1 (LINE-1 or L1) is a retrotransposon group that constitutes 17% of the human genome and shows variable expression across cell types. However, the control of L1 expression and its function in gene regulation are incompletely understood. Here we show that L1 transcription activates long-range gene expression. Genome-wide CRISPR-Cas9 screening using a reporter driven by the L1 5' UTR in human cells identifies functionally diverse genes affecting L1 expression. Unexpectedly, altering L1 expression by knockout of regulatory genes impacts distant gene expression. L1s can physically contact their distal target genes, with these interactions becoming stronger upon L1 activation and weaker when L1 is silenced. Remarkably, L1s contact and activate genes essential for zygotic genome activation (ZGA), and L1 knockdown impairs ZGA, leading to developmental arrest in mouse embryos. These results characterize the regulation and function of L1 in long-range gene activation and reveal its importance in mammalian ZGA.
Collapse
Affiliation(s)
- Xiufeng Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Luyao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqiang Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ziqiang Zhou
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Fan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohan Yan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yibing Tao
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Chunyi Huang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yongyan Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xueyan Sun
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - John Xiao He Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zai Chang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiaoran Xi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Shen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Wei Xie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nian Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
35
|
Murtaza G, Butaney B, Wagner J, Singh R. scGrapHiC: deep learning-based graph deconvolution for Hi-C using single cell gene expression. Bioinformatics 2024; 40:i490-i500. [PMID: 38940151 PMCID: PMC11256916 DOI: 10.1093/bioinformatics/btae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Single-cell Hi-C (scHi-C) protocol helps identify cell-type-specific chromatin interactions and sheds light on cell differentiation and disease progression. Despite providing crucial insights, scHi-C data is often underutilized due to the high cost and the complexity of the experimental protocol. We present a deep learning framework, scGrapHiC, that predicts pseudo-bulk scHi-C contact maps using pseudo-bulk scRNA-seq data. Specifically, scGrapHiC performs graph deconvolution to extract genome-wide single-cell interactions from a bulk Hi-C contact map using scRNA-seq as a guiding signal. Our evaluations show that scGrapHiC, trained on seven cell-type co-assay datasets, outperforms typical sequence encoder approaches. For example, scGrapHiC achieves a substantial improvement of 23.2% in recovering cell-type-specific Topologically Associating Domains over the baselines. It also generalizes to unseen embryo and brain tissue samples. scGrapHiC is a novel method to generate cell-type-specific scHi-C contact maps using widely available genomic signals that enables the study of cell-type-specific chromatin interactions. AVAILABILITY AND IMPLEMENTATION The GitHub link: https://github.com/rsinghlab/scGrapHiC contains the source code of scGrapHiC and associated scripts to preprocess publicly available datasets to produce the results and visualizations we have discuss in this manuscript.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
| | - Byron Butaney
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
| | - Justin Wagner
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, United States
| | - Ritambhara Singh
- Department of Computer Science, Brown University, 115 Waterman Street, Providence, RI, 02912, United States
- Center for Computational Molecular Biology, Brown University, 164 Angell Street, Providence, RI, 02912, United States
| |
Collapse
|
36
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
37
|
Xu S, Wang N, Zuccaro MV, Gerhardt J, Iyyappan R, Scatolin GN, Jiang Z, Baslan T, Koren A, Egli D. DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility. Nat Commun 2024; 15:5247. [PMID: 38898078 PMCID: PMC11187207 DOI: 10.1038/s41467-024-49565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
DNA replication in differentiated cells follows a defined program, but when and how it is established during mammalian development is not known. Here we show using single-cell sequencing, that late replicating regions are established in association with the B compartment and the nuclear lamina from the first cell cycle after fertilization on both maternal and paternal genomes. Late replicating regions contain a relative paucity of active origins and few but long genes and low G/C content. In both bovine and mouse embryos, replication timing patterns are established prior to embryonic genome activation. Chromosome breaks, which form spontaneously in bovine embryos at sites concordant with human embryos, preferentially locate to late replicating regions. In mice, late replicating regions show enhanced fragility due to a sparsity of dormant origins that can be activated under conditions of replication stress. This pattern predisposes regions with long neuronal genes to fragility and genetic change prior to separation of soma and germ cell lineages. Our studies show that the segregation of early and late replicating regions is among the first layers of genome organization established after fertilization.
Collapse
Affiliation(s)
- Shuangyi Xu
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Ning Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Michael V Zuccaro
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Graduate Program, Department of Cellular Physiology and Biophysics, Columbia University, New York, NY, USA
| | - Jeannine Gerhardt
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical School, New York, NY, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Amnon Koren
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA.
| |
Collapse
|
38
|
Chen M, Wu B, Huang Y, Wang W, Zheng Y, Shabbir S, Liu P, Dai Y, Xia M, Hu G, He M. Transcription factor shapes chromosomal conformation and regulates gene expression in bacterial adaptation. Nucleic Acids Res 2024; 52:5643-5657. [PMID: 38716861 PMCID: PMC11162768 DOI: 10.1093/nar/gkae318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024] Open
Abstract
Genomic mutations allow bacteria to adapt rapidly to adverse stress environments. The three-dimensional conformation of the genome may also play an important role in transcriptional regulation and environmental adaptation. Here, using chromosome conformation capture, we investigate the high-order architecture of the Zymomonas mobilis chromosome in response to genomic mutation and ambient stimuli (acetic acid and furfural, derived from lignocellulosic hydrolysate). We find that genomic mutation only influences the local chromosome contacts, whereas stress of acetic acid and furfural restrict the long-range contacts and significantly change the chromosome organization at domain scales. Further deciphering the domain feature unveils the important transcription factors, Ferric uptake regulator (Fur) proteins, which act as nucleoid-associated proteins to promote long-range (>200 kb) chromosomal communications and regulate the expression of genes involved in stress response. Our work suggests that ubiquitous transcription factors in prokaryotes mediate chromosome organization and regulate stress-resistance genes in bacterial adaptation.
Collapse
Affiliation(s)
- Mao Chen
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Bo Wu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yuhuan Huang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Weiting Wang
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yudi Zheng
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
- Graduate School of Chinese Academy of Agricultural Sciences; Beijing 100081, PR China
| | - Samina Shabbir
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Panting Liu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Yonghua Dai
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mengli Xia
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Guoquan Hu
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs; Chengdu 610041, PR China
| |
Collapse
|
39
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
40
|
Tomikawa J. Potential roles of inter-chromosomal interactions in cell fate determination. Front Cell Dev Biol 2024; 12:1397807. [PMID: 38774644 PMCID: PMC11106443 DOI: 10.3389/fcell.2024.1397807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Mammalian genomic DNA is packed in a small nucleus, and its folding and organization in the nucleus are critical for gene regulation and cell fate determination. In interphase, chromosomes are compartmentalized into certain nuclear spaces and territories that are considered incompatible with each other. The regulation of gene expression is influenced by the epigenetic characteristics of topologically associated domains and A/B compartments within chromosomes (intrachromosomal). Previously, interactions among chromosomes detected via chromosome conformation capture-based methods were considered noise or artificial errors. However, recent studies based on newly developed ligation-independent methods have shown that inter-chromosomal interactions play important roles in gene regulation. This review summarizes the recent understanding of spatial genomic organization in mammalian interphase nuclei and discusses the potential mechanisms that determine cell identity. In addition, this review highlights the potential role of inter-chromosomal interactions in early mouse development.
Collapse
Affiliation(s)
- Junko Tomikawa
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
41
|
Gao R, Yang G, Wang M, Xiao J, Yi S, Huang Y, Guo Z, Kang Y, Fu Q, Wang M, Xu B, Shen S, Zhu Q, Liu M, Wang L, Cui X, Yi S, Kou X, Zhao Y, Gu L, Wang H, Gao S, Jiang C, Chen J. Defining a TFAP2C-centered transcription factor network during murine peri-implantation. Dev Cell 2024; 59:1146-1158.e6. [PMID: 38574734 DOI: 10.1016/j.devcel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
Transcription factors (TFs) play important roles in early embryonic development, but factors regulating TF action, relationships in signaling cascade, genome-wide localizations, and impacts on cell fate transitions during this process have not been clearly elucidated. In this study, we used uliCUT&RUN-seq to delineate a TFAP2C-centered regulatory network, showing that it involves promoter-enhancer interactions and regulates TEAD4 and KLF5 function to mediate cell polarization. Notably, we found that maternal retinoic acid metabolism regulates TFAP2C expression and function by inducing the active demethylation of SINEs, indicating that the RARG-TFAP2C-TEAD4/KLF5 axis connects the maternal-to-zygotic transition to polarization. Moreover, we found that both genomic imprinting and SNP-transferred genetic information can influence TF positioning to regulate parental gene expressions in a sophisticated manner. In summary, we propose a ternary model of TF regulation in murine embryonic development with TFAP2C as the core element and metabolic, epigenetic, and genetic information as nodes connecting the pathways.
Collapse
Affiliation(s)
- Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Guang Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jing Xiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Zhenxiang Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yunzhe Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianzheng Fu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Mingzhu Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shijun Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Qianshu Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Meng Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liping Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xinyu Cui
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shanshan Yi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Liang Gu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai 200120, China.
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai 200065, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China.
| |
Collapse
|
42
|
Hong Y, Bie L, Zhang T, Yan X, Jin G, Chen Z, Wang Y, Li X, Pei G, Zhang Y, Hong Y, Gong L, Li P, Xie W, Zhu Y, Shen X, Liu N. SAFB restricts contact domain boundaries associated with L1 chimeric transcription. Mol Cell 2024; 84:1637-1650.e10. [PMID: 38604171 DOI: 10.1016/j.molcel.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.
Collapse
Affiliation(s)
- Yaqiang Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luyao Bie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tao Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohan Yan
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangpu Jin
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo Chen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yang Wang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiufeng Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongyan Zhang
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liang Gong
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Pilong Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei Xie
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanfen Zhu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Xiaohua Shen
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Nian Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
43
|
Han X, Xing L, Hong Y, Zhang X, Hao B, Lu JY, Huang M, Wang Z, Ma S, Zhan G, Li T, Hao X, Tao Y, Li G, Zhou S, Zheng Z, Shao W, Zeng Y, Ma D, Zhang W, Xie Z, Deng H, Yan J, Deng W, Shen X. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence. Cell Stem Cell 2024; 31:694-716.e11. [PMID: 38631356 DOI: 10.1016/j.stem.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
Collapse
Affiliation(s)
- Xue Han
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linqing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yantao Hong
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuechun Zhang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Hao
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - J Yuyang Lu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Mengyuan Huang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shaoqian Ma
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Ge Zhan
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaowen Hao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yibing Tao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Guanwen Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Shuqin Zhou
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zheng Zheng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Wen Shao
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yitian Zeng
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Dacheng Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and Systems Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiangwei Yan
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiaohua Shen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
44
|
Han Q, Ma R, Liu N. Epigenetic reprogramming in the transition from pluripotency to totipotency. J Cell Physiol 2024; 239:e31222. [PMID: 38375873 DOI: 10.1002/jcp.31222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
Mammalian development commences with the zygote, which can differentiate into both embryonic and extraembryonic tissues, a capability known as totipotency. Only the zygote and embryos around zygotic genome activation (ZGA) (two-cell embryo stage in mice and eight-cell embryo in humans) are totipotent cells. Epigenetic modifications undergo extremely extensive changes during the acquisition of totipotency and subsequent development of differentiation. However, the underlying molecular mechanisms remain elusive. Recently, the discovery of mouse two-cell embryo-like cells, human eight-cell embryo-like cells, extended pluripotent stem cells and totipotent-like stem cells with extra-embryonic developmental potential has greatly expanded our understanding of totipotency. Experiments with these in vitro models have led to insights into epigenetic changes in the reprogramming of pluri-to-totipotency, which have informed the exploration of preimplantation development. In this review, we highlight the recent findings in understanding the mechanisms of epigenetic remodeling during totipotency capture, including RNA splicing, DNA methylation, chromatin configuration, histone modifications, and nuclear organization.
Collapse
Affiliation(s)
- Qingsheng Han
- School of Medicine, Nankai University, Tianjin, China
| | - Ru Ma
- School of Medicine, Nankai University, Tianjin, China
| | - Na Liu
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
45
|
Liu T, Zhu H, Wang Z. Learning Micro-C from Hi-C with diffusion models. PLoS Comput Biol 2024; 20:e1012136. [PMID: 38758956 PMCID: PMC11139321 DOI: 10.1371/journal.pcbi.1012136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/30/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024] Open
Abstract
In the last few years, Micro-C has shown itself as an improved alternative to Hi-C. It replaced the restriction enzymes in Hi-C assays with micrococcal nuclease (MNase), resulting in capturing nucleosome resolution chromatin interactions. The signal-to-noise improvement of Micro-C allows it to detect more chromatin loops than high-resolution Hi-C. However, compared with massive Hi-C datasets available in the literature, there are only a limited number of Micro-C datasets. To take full advantage of these Hi-C datasets, we present HiC2MicroC, a computational method learning and then predicting Micro-C from Hi-C based on the denoising diffusion probabilistic models (DDPM). We trained our DDPM and other regression models in human foreskin fibroblast (HFFc6) cell line and evaluated these methods in six different cell types at 5-kb and 1-kb resolution. Our evaluations demonstrate that both HiC2MicroC and regression methods can markedly improve Hi-C towards Micro-C, and our DDPM-based HiC2MicroC outperforms regression in various terms. First, HiC2MicroC successfully recovers most of the Micro-C loops even those not detected in Hi-C maps. Second, a majority of the HiC2MicroC-recovered loops anchor CTCF binding sites in a convergent orientation. Third, HiC2MicroC loops share genomic and epigenetic properties with Micro-C loops, including linking promoters and enhancers, and their anchors are enriched for structural proteins (CTCF and cohesin) and histone modifications. Lastly, we find our recovered loops are also consistent with the loops identified from promoter capture Micro-C (PCMicro-C) and Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET). Overall, HiC2MicroC is an effective tool for further studying Hi-C data with Micro-C as a template. HiC2MicroC is publicly available at https://github.com/zwang-bioinformatics/HiC2MicroC/.
Collapse
Affiliation(s)
- Tong Liu
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| | - Hao Zhu
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| | - Zheng Wang
- Department of Computer Science, University of Miami, Coral Gables, Florida, United States of America
| |
Collapse
|
46
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
47
|
Chang L, Xie Y, Taylor B, Wang Z, Sun J, Tan TR, Bejar R, Chen CC, Furnari FB, Hu M, Ren B. Droplet Hi-C for Fast and Scalable Profiling of Chromatin Architecture in Single Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590148. [PMID: 38712075 PMCID: PMC11071305 DOI: 10.1101/2024.04.18.590148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Comprehensive analysis of chromatin architecture is crucial for understanding the gene regulatory programs during development and in disease pathogenesis, yet current methods often inadequately address the unique challenges presented by analysis of heterogeneous tissue samples. Here, we introduce Droplet Hi-C, which employs a commercial microfluidic device for high-throughput, single-cell chromatin conformation profiling in droplets. Using Droplet Hi-C, we mapped the chromatin architecture at single-cell resolution from the mouse cortex and analyzed gene regulatory programs in major cortical cell types. Additionally, we used this technique to detect copy number variation (CNV), structural variations (SVs) and extrachromosomal DNA (ecDNA) in cancer cells, revealing clonal dynamics and other oncogenic events during treatment. We further refined this technique to allow for joint profiling of chromatin architecture and transcriptome in single cells, facilitating a more comprehensive exploration of the links between chromatin architecture and gene expression in both normal tissues and tumors. Thus, Droplet Hi-C not only addresses critical gaps in chromatin analysis of heterogeneous tissues but also emerges as a versatile tool enhancing our understanding of gene regulation in health and disease.
Collapse
Affiliation(s)
- Lei Chang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Brett Taylor
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jiachen Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Systems Biology and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Tuyet R. Tan
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Rafael Bejar
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Clark C. Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Frank B. Furnari
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Epigenomics, Institute for Genomic Medicine, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| |
Collapse
|
48
|
Wei C, Kesner B, Yin H, Lee JT. Imprinted X chromosome inactivation at the gamete-to-embryo transition. Mol Cell 2024; 84:1442-1459.e7. [PMID: 38458200 PMCID: PMC11031340 DOI: 10.1016/j.molcel.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/23/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.
Collapse
Affiliation(s)
- Chunyao Wei
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Barry Kesner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hao Yin
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Yoon I, Kim U, Jung KO, Song Y, Park T, Lee DS. 3C methods in cancer research: recent advances and future prospects. Exp Mol Med 2024; 56:788-798. [PMID: 38658701 PMCID: PMC11059347 DOI: 10.1038/s12276-024-01236-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
In recent years, Hi-C technology has revolutionized cancer research by elucidating the mystery of three-dimensional chromatin organization and its role in gene regulation. This paper explored the impact of Hi-C advancements on cancer research by delving into high-resolution techniques, such as chromatin loops, structural variants, haplotype phasing, and extrachromosomal DNA (ecDNA). Distant regulatory elements interact with their target genes through chromatin loops. Structural variants contribute to the development and progression of cancer. Haplotype phasing is crucial for understanding allele-specific genomic rearrangements and somatic clonal evolution in cancer. The role of ecDNA in driving oncogene amplification and drug resistance in cancer cells has also been revealed. These innovations offer a deeper understanding of cancer biology and the potential for personalized therapies. Despite these advancements, challenges, such as the accurate mapping of repetitive sequences and precise identification of structural variants, persist. Integrating Hi-C with multiomics data is key to overcoming these challenges and comprehensively understanding complex cancer genomes. Thus, Hi-C is a powerful tool for guiding precision medicine in cancer research and treatment.
Collapse
Affiliation(s)
- Insoo Yoon
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Uijin Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyung Oh Jung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yousuk Song
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Taesoo Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
50
|
Wang W, Gao R, Yang D, Ma M, Zang R, Wang X, Chen C, Kou X, Zhao Y, Chen J, Liu X, Lu J, Xu B, Liu J, Huang Y, Chen C, Wang H, Gao S, Zhang Y, Gao Y. ADNP modulates SINE B2-derived CTCF-binding sites during blastocyst formation in mice. Genes Dev 2024; 38:168-188. [PMID: 38479840 PMCID: PMC10982698 DOI: 10.1101/gad.351189.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/20/2024] [Indexed: 04/02/2024]
Abstract
CTCF is crucial for chromatin structure and transcription regulation in early embryonic development. However, the kinetics of CTCF chromatin occupation in preimplantation embryos have remained unclear. In this study, we used CUT&RUN technology to investigate CTCF occupancy in mouse preimplantation development. Our findings revealed that CTCF begins binding to the genome prior to zygotic genome activation (ZGA), with a preference for CTCF-anchored chromatin loops. Although the majority of CTCF occupancy is consistently maintained, we identified a specific set of binding sites enriched in the mouse-specific short interspersed element (SINE) family B2 that are restricted to the cleavage stages. Notably, we discovered that the neuroprotective protein ADNP counteracts the stable association of CTCF at SINE B2-derived CTCF-binding sites. Knockout of Adnp in the zygote led to impaired CTCF binding signal recovery, failed deposition of H3K9me3, and transcriptional derepression of SINE B2 during the morula-to-blastocyst transition, which further led to unfaithful cell differentiation in embryos around implantation. Our analysis highlights an ADNP-dependent restriction of CTCF binding during cell differentiation in preimplantation embryos. Furthermore, our findings shed light on the functional importance of transposable elements (TEs) in promoting genetic innovation and actively shaping the early embryo developmental process specific to mammals.
Collapse
Affiliation(s)
- Wen Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Dongxu Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mingli Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center at Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Chuan Chen
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Xuelian Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Lu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ben Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Juntao Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoqun Chen
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yong Zhang
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| | - Yawei Gao
- State Key Laboratory of Cardiology and Medical Innovation Center, Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China
| |
Collapse
|