1
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Tulkens D, Boelens M, Naert T, Carron M, Demuynck S, Dewaele S, Van Isterdael G, Creytens D, Pieters T, Goossens S, Van Vlierberghe P, Vleminckx K. Mutations in the histone methyltransferase Ezh2 drive context-dependent leukemia in Xenopus tropicalis. Leukemia 2023; 37:2404-2413. [PMID: 37794102 DOI: 10.1038/s41375-023-02052-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023]
Abstract
CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.
Collapse
Affiliation(s)
- Dieter Tulkens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Marthe Boelens
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Thomas Naert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sylviane Dewaele
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Gert Van Isterdael
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
| | - David Creytens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Pathology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Pieters
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Center for Medical Genetics, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
4
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Aiderus A, Newberg JY, Guzman-Rojas L, Contreras-Sandoval AM, Meshey AL, Jones DJ, Amaya-Manzanares F, Rangel R, Ward JM, Lee SC, Ban KHK, Rogers K, Rogers SM, Selvanesan L, McNoe LA, Copeland NG, Jenkins NA, Tsai KY, Black MA, Mann KM, Mann MB. Transposon mutagenesis identifies cooperating genetic drivers during keratinocyte transformation and cutaneous squamous cell carcinoma progression. PLoS Genet 2021; 17:e1009094. [PMID: 34398873 PMCID: PMC8389471 DOI: 10.1371/journal.pgen.1009094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 08/26/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022] Open
Abstract
The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates. Non-melanoma skin cancers, the most common cancers in the US, are caused by UV skin exposure. Nearly 1 million cases of cutaneous squamous cell carcinoma (cuSCC) are diagnosed in the US each year. While most cuSCCs are highly treatable, more than twice as many individuals die from this disease as from melanoma. The high burden of UV-induced DNA damage in human skin poses a challenge for identifying initiating and cooperating mutations that promote cuSCC development and for defining potential therapeutic targets. Here, we describe a genetic screen in mice using a DNA transposon system to mutagenize the genome of keratinocytes and drive squamous cell carcinoma in the absence of UV. By sequencing where the transposons selectively integrated in the genomes of normal skin, skin with pre-cancerous lesions and skin with fully developed cuSCCs from our mouse model, we were able to identify frequently mutated genes likely important for this disease. Our analysis also defined cooperation between sets of genes not previously appreciated in cuSCC. Our mouse model and ensuing data provide a framework for understanding the genetics of cuSCC and for defining the molecular changes that may lead to the future therapies for patients.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Liliana Guzman-Rojas
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Devin J. Jones
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Felipe Amaya-Manzanares
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Song-Choon Lee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Hon-Kim Ban
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Keith Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Susan M. Rogers
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Luxmanan Selvanesan
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Leslie A. McNoe
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
| | - Kenneth Y. Tsai
- Departments of Anatomic Pathology & Tumor Biology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Michael A. Black
- Centre for Translational Cancer Research, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, United States of America
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore, Republic of Singapore
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tao L, Raz O, Marx Z, Ghosh MS, Huber S, Greindl-Junghans J, Biezuner T, Amir S, Milo L, Adar R, Levy R, Onn A, Chapal-Ilani N, Berman V, Ben Arie A, Rom G, Oron B, Halaban R, Czyz ZT, Werner-Klein M, Klein CA, Shapiro E. Retrospective cell lineage reconstruction in humans by using short tandem repeats. CELL REPORTS METHODS 2021; 1:None. [PMID: 34341783 PMCID: PMC8313865 DOI: 10.1016/j.crmeth.2021.100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/17/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
Cell lineage analysis aims to uncover the developmental history of an organism back to its cell of origin. Recently, novel in vivo methods utilizing genome editing enabled important insights into the cell lineages of animals. In contrast, human cell lineage remains restricted to retrospective approaches, which still lack resolution and cost-efficient solutions. Here, we demonstrate a scalable platform based on short tandem repeats targeted by duplex molecular inversion probes. With this human cell lineage tracing method, we accurately reproduced a known lineage of DU145 cells and reconstructed lineages of healthy and metastatic single cells from a melanoma patient who matched the anatomical reference while adding further refinements. This platform allowed us to faithfully recapitulate lineages of developmental tissue formation in healthy cells. In summary, our lineage discovery platform can profile informative somatic mutations efficiently and provides solid lineage reconstructions even in challenging low-mutation-rate healthy single cells.
Collapse
Affiliation(s)
- Liming Tao
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ofir Raz
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Zipora Marx
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Manjusha S. Ghosh
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sandra Huber
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Julia Greindl-Junghans
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Tamir Biezuner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Shiran Amir
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Lilach Milo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Rivka Adar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ron Levy
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Amos Onn
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Noa Chapal-Ilani
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Veronika Berman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Asaf Ben Arie
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Guy Rom
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Barak Oron
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| | - Ruth Halaban
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520-8059, USA
| | - Zbigniew T. Czyz
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Melanie Werner-Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Christoph A. Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Division of Personalized Tumor Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology Regensburg, Am Biopark 9, 93053 Regensburg, Germany
| | - Ehud Shapiro
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 761001, Israel
| |
Collapse
|
7
|
Aiderus A, Contreras-Sandoval AM, Meshey AL, Newberg JY, Ward JM, Swing DA, Copeland NG, Jenkins NA, Mann KM, Mann MB. Promoterless Transposon Mutagenesis Drives Solid Cancers via Tumor Suppressor Inactivation. Cancers (Basel) 2021; 13:E225. [PMID: 33435458 PMCID: PMC7827284 DOI: 10.3390/cancers13020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.
Collapse
Affiliation(s)
- Aziz Aiderus
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Ana M. Contreras-Sandoval
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Amanda L. Meshey
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
| | - Justin Y. Newberg
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
| | - Jerrold M. Ward
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
| | - Deborah A. Swing
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Neal G. Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Nancy A. Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Karen M. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Departments of Gastrointestinal Oncology & Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Michael B. Mann
- Department of Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (A.A.); (A.M.C.-S.); (A.L.M.); (J.Y.N.)
- Cancer Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA; (N.G.C.); (N.A.J.)
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore;
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
- Cancer Biology and Evolution Program, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Weber J, Braun CJ, Saur D, Rad R. In vivo functional screening for systems-level integrative cancer genomics. Nat Rev Cancer 2020; 20:573-593. [PMID: 32636489 DOI: 10.1038/s41568-020-0275-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
With the genetic portraits of all major human malignancies now available, we next face the challenge of characterizing the function of mutated genes, their downstream targets, interactions and molecular networks. Moreover, poorly understood at the functional level are also non-mutated but dysregulated genomes, epigenomes or transcriptomes. Breakthroughs in manipulative mouse genetics offer new opportunities to probe the interplay of molecules, cells and systemic signals underlying disease pathogenesis in higher organisms. Herein, we review functional screening strategies in mice using genetic perturbation and chemical mutagenesis. We outline the spectrum of genetic tools that exist, such as transposons, CRISPR and RNAi and describe discoveries emerging from their use. Genome-wide or targeted screens are being used to uncover genomic and regulatory landscapes in oncogenesis, metastasis or drug resistance. Versatile screening systems support experimentation in diverse genetic and spatio-temporal settings to integrate molecular, cellular or environmental context-dependencies. We also review the combination of in vivo screening and barcoding strategies to study genetic interactions and quantitative cancer dynamics during tumour evolution. These scalable functional genomics approaches are transforming our ability to interrogate complex biological systems.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
| | - Christian J Braun
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany
- Institute of Translational Cancer Research and Experimental Cancer Therapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Inferring clonal composition from multiple tumor biopsies. NPJ Syst Biol Appl 2020; 6:27. [PMID: 32843649 PMCID: PMC7447821 DOI: 10.1038/s41540-020-00147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate mutation frequency estimates require accounting for CNAs—a challenging endeavour using the genetic profile of a single tumor biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition of Wilms’ tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.
Collapse
|
10
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
11
|
Cao ZX, Guo CJ, Song X, He JL, Tan L, Yu S, Zhang RQ, Peng F, Peng C, Li YZ. Erlotinib is effective against FLT3-ITD mutant AML and helps to overcome intratumoral heterogeneity via targeting FLT3 and Lyn. FASEB J 2020; 34:10182-10190. [PMID: 32543003 DOI: 10.1096/fj.201902922rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/24/2020] [Accepted: 05/15/2020] [Indexed: 11/11/2022]
Abstract
Erlotinib has potential therapeutic effect on acute myeloid leukemia (AML) in patients, but the mechanism is not clear. Effective tumor biomarkers for erlotinib in the treatment of AML remain poorly defined. Here, we demonstrate that erlotinib in vitro significantly inhibits the growth of the FLT3-ITD mutant AML cell MV4-11 and Ba/F3-FLT3-ITD cell via targeting FLT3, a certified valid target for the effective treatment of AML. In vivo, oral administration of erlotinib at 100 mg/kg/day induced rapid MV4-11 tumor regression and significantly prolonged the survival time of bone marrow engraftment AML mice via inhibiting the FLT3 signal. Thus, the therapeutic benefits of erlotinib on AML are due to its ability to target FLT3. FLT3-ITD mutation is an effective biomarker for erlotinib during AML treatment. In addition, we also demonstrate that erlotinib inhibits the activity of AML cell KG-1 (no FLT3 expression) by targeting Lyn. Recently, single cell analysis demonstrated that intratumoral heterogeneity are one of the contributors in the relapse and FLT3 inhibitor resistance. Erlotinib could effectively inhibit the MV4-11 cells via targeting FLT3, and inhibit KG-1 cells via targeting Lyn. Therefore, Erlotinib also has the potential to overcome intratumoral heterogeneity via targeting FLT3 and Lyn.
Collapse
Affiliation(s)
- Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Chuan-Jie Guo
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Xiaominting Song
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Jun-Lin He
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Lu Tan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Si Yu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Chengdu, China
| |
Collapse
|
12
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
13
|
Abstract
Advances in our understanding of molecular mechanisms of tumorigenesis have translated into knowledge-based therapies directed against specific oncogenic signaling targets. These therapies often induce dramatic responses in susceptible tumors. Unfortunately, most advanced cancers, including those with robust initial responses, eventually acquire resistance to targeted therapies and relapse. Even though immune-based therapies are more likely to achieve complete cures, acquired resistance remains an obstacle to their success as well. Acquired resistance is the direct consequence of pre-existing intratumor heterogeneity and ongoing diversification during therapy, which enables some tumor cells to survive treatment and facilitates the development of new therapy-resistant phenotypes. In this review, we discuss the sources of intratumor heterogeneity and approaches to capture and account for it during clinical decision making. Finally, we outline potential strategies to improve therapeutic outcomes by directly targeting intratumor heterogeneity.
Collapse
Affiliation(s)
- Andriy Marusyk
- Department of Cancer Physiology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
15
|
Shen Y, Schmidt BUS, Kubitschke H, Morawetz EW, Wolf B, Käs JA, Losert W. Detecting heterogeneity in and between breast cancer cell lines. CANCER CONVERGENCE 2020; 4:1. [PMID: 32090168 PMCID: PMC6997265 DOI: 10.1186/s41236-020-0010-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cellular heterogeneity in tumor cells is a well-established phenomenon. Genetic and phenotypic cell-to-cell variability have been observed in numerous studies both within the same type of cancer cells and across different types of cancers. Another known fact for metastatic tumor cells is that they tend to be softer than their normal or non-metastatic counterparts. However, the heterogeneity of mechanical properties in tumor cells are not widely studied. Results Here we analyzed single-cell optical stretcher data with machine learning algorithms on three different breast tumor cell lines and show that similar heterogeneity can also be seen in mechanical properties of cells both within and between breast tumor cell lines. We identified two clusters within MDA-MB-231 cells, with cells in one cluster being softer than in the other. In addition, we show that MDA-MB-231 cells and MDA-MB-436 cells which are both epithelial breast cancer cell lines with a mesenchymal-like phenotype derived from metastatic cancers are mechanically more different from each other than from non-malignant epithelial MCF-10A cells. Conclusion Since stiffness of tumor cells can be an indicator of metastatic potential, this result suggests that metastatic abilities could vary within the same monoclonal tumor cell line.
Collapse
Affiliation(s)
- Yang Shen
- 1Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - B U Sebastian Schmidt
- 1Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| | - Hans Kubitschke
- 2Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Erik W Morawetz
- 2Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Benjamin Wolf
- Leipzig University Medical Center, Department of Obstetrics and Gynecology, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Josef A Käs
- 2Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstr. 5, 04103 Leipzig, Germany
| | - Wolfgang Losert
- 1Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
16
|
Newberg JY, Black MA, Jenkins NA, Copeland NG, Mann KM, Mann MB. SB Driver Analysis: a Sleeping Beauty cancer driver analysis framework for identifying and prioritizing experimentally actionable oncogenes and tumor suppressors. Nucleic Acids Res 2019; 46:e94. [PMID: 29846651 PMCID: PMC6144815 DOI: 10.1093/nar/gky450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancer driver prioritization for functional analysis of potential actionable therapeutic targets is a significant challenge. Meta-analyses of mutated genes across different human cancer types for driver prioritization has reaffirmed the role of major players in cancer, including KRAS, TP53 and EGFR, but has had limited success in prioritizing genes with non-recurrent mutations in specific cancer types. Sleeping Beauty (SB) insertional mutagenesis is a powerful experimental gene discovery framework to define driver genes in mouse models of human cancers. Meta-analyses of SB datasets across multiple tumor types is a potentially informative approach to prioritize drivers, and complements efforts in human cancers. Here, we report the development of SB Driver Analysis, an in-silico method for defining cancer driver genes that positively contribute to tumor initiation and progression from population-level SB insertion data sets. We demonstrate that SB Driver Analysis computationally prioritizes drivers and defines distinct driver classes from end-stage tumors that predict their putative functions during tumorigenesis. SB Driver Analysis greatly enhances our ability to analyze, interpret and prioritize drivers from SB cancer datasets and will continue to substantially increase our understanding of the genetic basis of cancer.
Collapse
Affiliation(s)
- Justin Y Newberg
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nancy A Jenkins
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Genetics Department, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Karen M Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Departments of Gastrointestinal Oncology and Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Michael B Mann
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Department of Oncological Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Cutaneous Oncology and Donald A. Adam Melanoma and Skin Cancer Research Center of Excellence, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
17
|
Newberg JY, Mann KM, Mann MB, Jenkins NA, Copeland NG. SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers. Nucleic Acids Res 2019; 46:D1011-D1017. [PMID: 29059366 PMCID: PMC5753260 DOI: 10.1093/nar/gkx956] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization.
Collapse
Affiliation(s)
- Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Karen M Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Michael B Mann
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA.,Genetics Department, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Weber J, de la Rosa J, Grove CS, Schick M, Rad L, Baranov O, Strong A, Pfaus A, Friedrich MJ, Engleitner T, Lersch R, Öllinger R, Grau M, Menendez IG, Martella M, Kohlhofer U, Banerjee R, Turchaninova MA, Scherger A, Hoffman GJ, Hess J, Kuhn LB, Ammon T, Kim J, Schneider G, Unger K, Zimber-Strobl U, Heikenwälder M, Schmidt-Supprian M, Yang F, Saur D, Liu P, Steiger K, Chudakov DM, Lenz G, Quintanilla-Martinez L, Keller U, Vassiliou GS, Cadiñanos J, Bradley A, Rad R. PiggyBac transposon tools for recessive screening identify B-cell lymphoma drivers in mice. Nat Commun 2019; 10:1415. [PMID: 30926791 PMCID: PMC6440946 DOI: 10.1038/s41467-019-09180-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 02/18/2019] [Indexed: 01/03/2023] Open
Abstract
B-cell lymphoma (BCL) is the most common hematologic malignancy. While sequencing studies gave insights into BCL genetics, identification of non-mutated cancer genes remains challenging. Here, we describe PiggyBac transposon tools and mouse models for recessive screening and show their application to study clonal B-cell lymphomagenesis. In a genome-wide screen, we discover BCL genes related to diverse molecular processes, including signaling, transcriptional regulation, chromatin regulation, or RNA metabolism. Cross-species analyses show the efficiency of the screen to pinpoint human cancer drivers altered by non-genetic mechanisms, including clinically relevant genes dysregulated epigenetically, transcriptionally, or post-transcriptionally in human BCL. We also describe a CRISPR/Cas9-based in vivo platform for BCL functional genomics, and validate discovered genes, such as Rfx7, a transcription factor, and Phip, a chromatin regulator, which suppress lymphomagenesis in mice. Our study gives comprehensive insights into the molecular landscapes of BCL and underlines the power of genome-scale screening to inform biology.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carolyn S Grove
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
- Department of Haematology, PathWest and Sir Charles Gairdner Hospital, Queen Elizabeth II Medical Centre, Nedlands, 6009, Australia
| | - Markus Schick
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Olga Baranov
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Anja Pfaus
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Mathias J Friedrich
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
| | - Michael Grau
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Irene Gonzalez Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Manuela Martella
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ruby Banerjee
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Maria A Turchaninova
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Anna Scherger
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- School of Medicine, University of Western Australia, Crawley, 6009, Australia
| | - Julia Hess
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | - Laura B Kuhn
- Helmholtz Zentrum München, Research Unit Gene Vectors, Munich, 81377, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Johnny Kim
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Center for Cardiovascular Research (DZHK), Rhine Main, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Kristian Unger
- Helmholtz Zentrum München, Research Unit Radiation Cytogenetics, Neuherberg, 85764, Germany
| | | | - Mathias Heikenwälder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Fengtang Yang
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Katja Steiger
- Comparative Experimental Pathology, Technische Universität München, Munich, 81675, Germany
| | - Dmitriy M Chudakov
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, Nizhny Novgorod, 603005, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, Moscow, 117997, Russia
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Center of Molecular Medicine, CEITEC, Masaryk University, Brno, 601 77, Czech Republic
| | - Georg Lenz
- Department of Medicine A, University Hospital Münster, Münster, 48149, Germany
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, 48149, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, Tübingen, 72076, Germany
| | - Ulrich Keller
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany
- Hematology and Oncology-Campus Benjamin Franklin (CBF), Charité-Universitätsmedizin Berlin, Berlin, 12203, Germany
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, CB2 0XY, Cambridge, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, CB2 0PT, UK
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, 33193, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, 33006, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Munich, 81675, Germany.
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, 81675, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| |
Collapse
|
19
|
Abstract
Cellular heterogeneity within and across tumors has been a major obstacle in understanding and treating cancer, and the complex heterogeneity is masked if bulk tumor tissues are used for analysis. The advent of rapidly developing single-cell sequencing technologies, which include methods related to single-cell genome, epigenome, transcriptome, and multi-omics sequencing, have been applied to cancer research and led to exciting new findings in the fields of cancer evolution, metastasis, resistance to therapy, and tumor microenvironment. In this review, we discuss recent advances and limitations of these new technologies and their potential applications in cancer studies.
Collapse
Affiliation(s)
- Xianwen Ren
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Boxi Kang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Beijing Advanced Innovation Centre for Genomics, Peking-Tsinghua Centre for Life Sciences, Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis. Proc Natl Acad Sci U S A 2018; 115:E10417-E10426. [PMID: 30327349 PMCID: PMC6217425 DOI: 10.1073/pnas.1808968115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the fastest rising cause of hepatocellular carcinoma (HCC) in Western countries; however, the molecular mechanisms driving NAFLD-HCC remain elusive. Using Sleeping Beauty transposon mutagenesis in two mouse models of NAFLD-HCC, we identified hundreds of NAFLD-HCC candidate cancer genes that were enriched in pathways often associated with NAFLD and HCC. We also showed that Sav1, which functions in the Hippo signaling pathway and was the most frequently mutated gene identified by SB in both screens, prevents progression of steatohepatitis and subsequent HCC development in coordination with PI3K signaling via suppression of Yap, a downstream effector of the Hippo pathway. Our forward genetic screens have thus identified pathways and genes driving the development of NAFLD-HCC. Nonalcoholic fatty liver disease (NAFLD) is the fastest rising cause of hepatocellular carcinoma (HCC) in Western countries; however, the molecular mechanisms that cause NAFLD-HCC remain elusive. To identify molecular drivers of NAFLD-HCC, we performed Sleeping Beauty (SB) transposon mutagenesis screens in liver-specific Pten knockout and in high-fat diet-fed mice, which are murine models of NAFLD-HCC. SB mutagenesis accelerated liver tumor formation in both models and identified 588 and 376 candidate cancer genes (CCGs), respectively; 257 CCGs were common to both screens and were enriched in signaling pathways known to be important for human HCC. Comparison of these CCGs with those identified in a previous SB screen of hepatitis B virus-induced HCC identified a core set of 141 CCGs that were mutated in all screens. Forty-one CCGs appeared specific for NAFLD-HCC, including Sav1, a component of the Hippo signaling pathway and the most frequently mutated gene identified in both NAFLD-HCC screens. Liver-specific deletion of Sav1 was found to promote hepatic lipid accumulation, apoptosis, and fibrogenesis, leading to the acceleration of hepatocarcinogenesis in liver-specific Pten mutant mice. Sav1/Pten double-mutant livers also showed a striking up-regulation of markers of liver progenitor cells (LPCs), along with synergistic activation of Yap, which is a major downstream effector of Hippo signaling. Lastly, Yap activation, in combination with Pten inactivation, was found to accelerate cell growth and sphere formation of LPCs in vitro and induce their malignant transformation in allografts. Our forward genetic screens in mice have thus identified pathways and genes driving the development of NAFLD-HCC.
Collapse
|
21
|
Shi M, Dong X, Huo L, Wei X, Wang F, Sun K. The Potential Roles and Advantages of Single Cell Sequencing in the Diagnosis and Treatment of Hematological Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1068:119-133. [DOI: 10.1007/978-981-13-0502-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
O'Donnell KA. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Curr Opin Genet Dev 2018; 49:85-94. [PMID: 29587177 PMCID: PMC6312197 DOI: 10.1016/j.gde.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
Large-scale genome sequencing studies have identified a wealth of mutations in human tumors and have dramatically advanced the field of cancer genetics. However, the functional consequences of an altered gene in tumor progression cannot always be inferred from mutation status alone. This underscores the critical need for complementary methods to assign functional significance to mutated genes in cancer. Transposons are mobile genetic elements that serve as powerful tools for insertional mutagenesis. Over the last decade, investigators have employed mouse models with ondemand transposon-mediated mutagenesis to perform unbiased genetic screens to identify clinically relevant genes that participate in the pathogenesis of human cancer. Two distinct DNA transposon mutagenesis systems, Sleeping Beauty (SB) and PiggyBac (PB), have been applied extensively in vivo and more recently, in ex vivo settings. These studies have informed our understanding of the genes and pathways that drive cancer initiation, progression, and metastasis. This review highlights the latest progress on cancer gene identification for specific cancer subtypes, as well as new technological advances and incorporation of the CRISPR/Cas9 toolbox into transposon-mediated functional genetic studies.
Collapse
Affiliation(s)
- Kathryn A O'Donnell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States; Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9148, United States.
| |
Collapse
|
23
|
Li YZ, Yu S, Yan PA, Gong DY, Wu FL, He Z, Yuan YY, Zhao AY, Tang X, Zhang RQ, Peng C, Cao ZX. Crotonoside exhibits selective post-inhibition effect in AML cells via inhibition of FLT3 and HDAC3/6. Oncotarget 2017; 8:103087-103099. [PMID: 29262547 PMCID: PMC5732713 DOI: 10.18632/oncotarget.20710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
Targeted therapies for the treatment of acute myeloid leukemia (AML), specifically the FLT3 inhibitors, have shown promising results. Nevertheless, it is very unlikely that inhibitors which target a single pathway will provide long-term disease control. Here, we report the characterization of crotonoside, a natural product extracted from Chinese medicinal herb, Croton, for the treatment of AML via inhibition of FLT3 and HDAC3/6. In vitro, crotonoside exhibited selective inhibition in AML cells. In vivo, crotonoside treatment at 70 and 35 mg/kg/d produced significant AML tumor inhibition rates of 93.5% and 73.6%, respectively. Studies on the anti-AML mechanism of crotonoside demonstrated a significant inhibition of FLT3 signaling, cell cycle arrest in G0/G1 phase, and apoptosis. In contrast to classic FLT3 inhibitor; sunitinib, crotonoside was able to selectively suppress the expression of HDAC3 and HDAC6 without altering the expression of other HDAC isoforms. Inhibitors of HDAC3 and HDAC6; RGFP966 and HPOB, respectively, also exhibited selective inhibition in AML cells. Furthermore, we established novel signaling pathways including HDAC3/NF-κB-p65 and HDAC6/c-Myc besides FLT3/c-Myc which are aberrantly regulated in the progression of AML. In addition, crotonoside alone or the combination of sunitinib/RFP966/HPOB exhibited a significant post-inhibition effect in AML cells by the inhibition of FLT3 and HDAC3/6. Inhibitors targeting the FLT3 and HDAC3/6 might provide a more effective treatment strategy for AML. Taken together, the present study suggests that crotonoside could be a promising candidate for the treatment of AML, and deserves further investigations.
Collapse
Affiliation(s)
- Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Si Yu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Pei-Ao Yan
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Dao-Yin Gong
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Fang-Li Wu
- Second Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Zhi He
- Second Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Yu-Yao Yuan
- Second Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - An-Yan Zhao
- Second Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Sichuan, China
| | - Xue Tang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Ruo-Qi Zhang
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Cheng Peng
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| | - Zhi-Xing Cao
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base of Co-founded by Sichuan Province and MOST, Sichuan, China
| |
Collapse
|
24
|
Kawakami K, Largaespada DA, Ivics Z. Transposons As Tools for Functional Genomics in Vertebrate Models. Trends Genet 2017; 33:784-801. [PMID: 28888423 DOI: 10.1016/j.tig.2017.07.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/06/2023]
Abstract
Genetic tools and mutagenesis strategies based on transposable elements are currently under development with a vision to link primary DNA sequence information to gene functions in vertebrate models. By virtue of their inherent capacity to insert into DNA, transposons can be developed into powerful tools for chromosomal manipulations. Transposon-based forward mutagenesis screens have numerous advantages including high throughput, easy identification of mutated alleles, and providing insight into genetic networks and pathways based on phenotypes. For example, the Sleeping Beauty transposon has become highly instrumental to induce tumors in experimental animals in a tissue-specific manner with the aim of uncovering the genetic basis of diverse cancers. Here, we describe a battery of mutagenic cassettes that can be applied in conjunction with transposon vectors to mutagenize genes, and highlight versatile experimental strategies for the generation of engineered chromosomes for loss-of-function as well as gain-of-function mutagenesis for functional gene annotation in vertebrate models, including zebrafish, mice, and rats.
Collapse
Affiliation(s)
- Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan; These authors contributed equally to this work
| | - David A Largaespada
- Department of Genetics, Cell Biology and Development, University of Minnesota, MN, USA; These authors contributed equally to this work
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany; These authors contributed equally to this work..
| |
Collapse
|
25
|
Wang L, Livak KJ, Wu CJ. High-dimension single-cell analysis applied to cancer. Mol Aspects Med 2017; 59:70-84. [PMID: 28823596 DOI: 10.1016/j.mam.2017.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022]
Abstract
High-dimension single-cell technology is transforming our ability to study and understand cancer. Numerous studies and reviews have reported advances in technology development. The biological insights gleaned from single-cell technology about cancer biology are less reviewed. Here we focus on research studies that illustrate novel aspects of cancer biology that bulk analysis could not achieve, and discuss the fresh insights gained from the application of single-cell technology across basic and clinical cancer studies.
Collapse
Affiliation(s)
- Lili Wang
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Kenneth J Livak
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| | - Catherine J Wu
- Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
26
|
Abstract
The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.
Collapse
Affiliation(s)
- Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10044, USA, and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James Hicks
- University of Southern California Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
27
|
Lunger I, Fawaz M, Rieger MA. Single-cell analyses to reveal hematopoietic stem cell fate decisions. FEBS Lett 2017; 591:2195-2212. [PMID: 28600837 DOI: 10.1002/1873-3468.12712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are the best studied adult stem cells with enormous clinical value. Most of our knowledge about their biology relies on assays at the single HSC level. However, only the recent advances in developing new single cell technologies allowed the elucidation of the complex regulation of HSC fate decision control. This Review will focus on current attempts to investigate individual HSCs at molecular and functional levels. The advantages of these technologies leading to groundbreaking insights into hematopoiesis will be highlighted, and the challenges facing these technologies will be discussed. The importance of combining molecular and functional assays to enlighten regulatory networks of HSC fate decision control, ideally at high temporal resolution, becomes apparent for future studies.
Collapse
Affiliation(s)
- Ilaria Lunger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Malak Fawaz
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael A Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 2017; 114:E4951-E4960. [PMID: 28584132 DOI: 10.1073/pnas.1702723114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.
Collapse
|
29
|
Mohme M, Maire CL, Riecken K, Zapf S, Aranyossy T, Westphal M, Lamszus K, Fehse B. Optical Barcoding for Single-Clone Tracking to Study Tumor Heterogeneity. Mol Ther 2017; 25:621-633. [PMID: 28109958 PMCID: PMC5363186 DOI: 10.1016/j.ymthe.2016.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
Intratumoral heterogeneity has been identified as one of the strongest drivers of treatment resistance and tumor recurrence. Therefore, investigating the complex clonal architecture of tumors over time has become a major challenge in cancer research. We developed a new fluorescent "optical barcoding" technique that allows fast tracking, identification, and quantification of live cell clones in vitro and in vivo using flow cytometry (FC). We optically barcoded two cell lines derived from malignant glioma, an exemplary heterogeneous brain tumor. In agreement with mathematical combinatorics, we demonstrate that up to 41 clones can unambiguously be marked using six fluorescent proteins and a maximum of three colors per clone. We show that optical barcoding facilitates sensitive, precise, rapid, and inexpensive analysis of clonal composition kinetics of heterogeneous cell populations by FC. We further assessed the quantitative contribution of multiple clones to glioblastoma growth in vivo and we highlight the potential to recover individual viable cell clones by fluorescence-activated cell sorting. In summary, we demonstrate that optical barcoding is a powerful technique for clonal cell tracking in vitro and in vivo, rendering this approach a potent tool for studying the heterogeneity of complex tissues, in particular, cancer.
Collapse
Affiliation(s)
- Malte Mohme
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cecile L Maire
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Svenja Zapf
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manfred Westphal
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katrin Lamszus
- Laboratory for Brain Tumor Biology, Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|
30
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
31
|
A single-cell screen for genetic drivers of leukemia. Nat Methods 2016. [DOI: 10.1038/nmeth.4006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|