1
|
Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov 2023; 22:917-934. [PMID: 37652974 DOI: 10.1038/s41573-023-00775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a monogenic muscle-wasting disorder and a priority candidate for molecular and cellular therapeutics. Although rare, it is the most common inherited myopathy affecting children and so has been the focus of intense research activity. It is caused by mutations that disrupt production of the dystrophin protein, and a plethora of drug development approaches are under way that aim to restore dystrophin function, including exon skipping, stop codon readthrough, gene replacement, cell therapy and gene editing. These efforts have led to the clinical approval of four exon skipping antisense oligonucleotides, one stop codon readthrough drug and one gene therapy product, with other approvals likely soon. Here, we discuss the latest therapeutic strategies that are under development and being deployed to treat DMD. Lessons from these drug development programmes are likely to have a major impact on the DMD field, but also on molecular and cellular medicine more generally. Thus, DMD is a pioneer disease at the forefront of future drug discovery efforts, with these experimental treatments paving the way for therapies using similar mechanisms of action being developed for other genetic diseases.
Collapse
Affiliation(s)
- Thomas C Roberts
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
| | - Matthew J A Wood
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Oxford, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Hanson B, Wood MJA, Roberts TC. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. RNA Biol 2021; 18:1048-1062. [PMID: 33472516 DOI: 10.1080/15476286.2021.1874161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a currently incurable X-linked neuromuscular disorder, characterized by progressive muscle wasting and premature death, typically as a consequence of cardiac failure. DMD-causing mutations in the dystrophin gene are highly diverse, meaning that the development of a universally-applicable therapy to treat all patients is very challenging. The leading therapeutic strategy for DMD is antisense oligonucleotide-mediated splice modulation, whereby one or more specific exons are excluded from the mature dystrophin mRNA in order to correct the translation reading frame. Indeed, three exon skipping oligonucleotides have received FDA approval for use in DMD patients. Second-generation exon skipping drugs (i.e. peptide-antisense oligonucleotide conjugates) exhibit enhanced potency, and also induce dystrophin restoration in the heart. Similarly, multiple additional antisense oligonucleotide drugs targeting various exons are in clinical development in order to treat a greater proportion of DMD patient mutations. Relatively recent advances in the field of genome engineering (specifically, the development of the CRISPR/Cas system) have provided multiple promising therapeutic approaches for the RNA-directed genetic correction of DMD, including exon excision, exon reframing via the introduction of insertion/deletion mutations, disruption of splice signals to promote exon skipping, and the templated correction of point mutations by seamless homology directed repair or base editing technology. Potential limitations to the clinical translation of the splice modulation and gene editing approaches are discussed, including drug delivery, the importance of uniform dystrophin expression in corrected myofibres, safety issues (e.g. renal toxicity, viral vector immunogenicity, and off-target gene editing), and the high cost of therapy.
Collapse
Affiliation(s)
- Britt Hanson
- Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, Oxford, UK
| |
Collapse
|
3
|
van Westering TLE, Lomonosova Y, Coenen-Stass AML, Betts CA, Bhomra A, Hulsker M, Clark LE, McClorey G, Aartsma-Rus A, van Putten M, Wood MJA, Roberts TC. Uniform sarcolemmal dystrophin expression is required to prevent extracellular microRNA release and improve dystrophic pathology. J Cachexia Sarcopenia Muscle 2020; 11:578-593. [PMID: 31849191 PMCID: PMC7113513 DOI: 10.1002/jcsm.12506] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disorder caused by genetic loss of dystrophin protein. Extracellular microRNAs (ex-miRNAs) are putative, minimally invasive biomarkers of DMD. Specific ex-miRNAs (e.g. miR-1, miR-133a, miR-206, and miR-483) are highly up-regulated in the serum of DMD patients and dystrophic animal models and are restored to wild-type levels following exon skipping-mediated dystrophin rescue in mdx mice. As such, ex-miRNAs are promising pharmacodynamic biomarkers of exon skipping efficacy. Here, we aimed to determine the degree to which ex-miRNA levels reflect the underlying level of dystrophin protein expression in dystrophic muscle. METHODS Candidate ex-miRNA biomarker levels were investigated in mdx mice in which dystrophin was restored with peptide-PMO (PPMO) exon skipping conjugates and in mdx-XistΔhs mice that express variable amounts of dystrophin from birth as a consequence of skewed X-chromosome inactivation. miRNA profiling was performed in mdx-XistΔhs mice using the FirePlex methodology and key results validated by small RNA TaqMan RT-qPCR. The muscles from each animal model were further characterized by dystrophin western blot and immunofluorescence staining. RESULTS The restoration of ex-myomiR abundance observed following PPMO treatment was not recapitulated in the high dystrophin-expressing mdx-XistΔhs group, despite these animals expressing similar amounts of total dystrophin protein (~37% of wild-type levels). Instead, ex-miRNAs were present at high levels in mdx-XistΔhs mice regardless of dystrophin expression. PPMO-treated muscles exhibited a uniform pattern of dystrophin localization and were devoid of regenerating fibres, whereas mdx-XistΔhs muscles showed non-homogeneous dystrophin staining and sporadic regenerating foci. CONCLUSIONS Uniform dystrophin expression is required to prevent ex-miRNA release, stabilize myofiber turnover, and attenuate pathology in dystrophic muscle.
Collapse
Affiliation(s)
- Tirsa L E van Westering
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Yulia Lomonosova
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Corinne A Betts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Margriet Hulsker
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucy E Clark
- Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.,Department of Paediatrics, University of Oxford, South Parks Road, Oxford, UK.,Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA, USA
| |
Collapse
|
4
|
Coenen-Stass AML, Wood MJA, Roberts TC. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med 2017; 23:989-1001. [PMID: 28988850 DOI: 10.1016/j.molmed.2017.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022]
Abstract
miRNAs are small, noncoding RNAs that not only regulate gene expression within cells, but might also constitute promising extracellular biomarkers for a variety of pathologies, including the progressive muscle-wasting disorder Duchenne Muscular Dystrophy (DMD). A set of muscle-enriched miRNAs, the myomiRs (miR-1, miR-133, and miR-206) are highly elevated in the serum of patients with DMD and in dystrophin-deficient animal models. Furthermore, circulating myomiRs might be used as pharmacodynamic biomarkers, given that their levels can be restored towards wild-type levels following exon skipping therapy in dystrophic mice. The relationship between muscle pathology and extracellular myomiR release is complex, and incompletely understood. Here, we discuss current progress leading towards the clinical utility of extracellular miRNAs as putative DMD biomarkers, and their possible contribution to muscle physiology.
Collapse
Affiliation(s)
- Anna M L Coenen-Stass
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Institute of Neurology, Sobell Department of Motor Neuroscience and Movement Disorders, University College London, London, Queen Square, London, WC1N 3BG, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK; Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Affiliation(s)
- Dongsheng Duan
- Departments of Molecular Microbiology and Immunology and Neurology, School of Medicine, Department of Bioengineering, and Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri , Columbia, Missouri
| |
Collapse
|