1
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
3
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
4
|
Osifalujo EA, Preston‐Herrera C, Betts PC, Satterwhite LR, Froese JT. Improving Toluene Dioxygenase Activity for Ester‐Functionalized Substrates through Enzyme Engineering. ChemistrySelect 2022. [DOI: 10.1002/slct.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Cristina Preston‐Herrera
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
- Cristina Preston-Herrera Department of Chemistry and Chemical Biology Cornell University 122 Baker Laboratory Ithaca NY USA 14853
| | - Phillip C. Betts
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Louis R. Satterwhite
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| | - Jordan T. Froese
- Department of Chemistry Ball State University 1600 W Ashland Avenue Muncie IN USA 47306
| |
Collapse
|
5
|
Yu C, Wang H, Blaustein RA, Guo L, Ye Q, Fu Y, Fan J, Su X, Hartmann EM, Shen C. Pangenomic and functional investigations for dormancy and biodegradation features of an organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151141. [PMID: 34688761 DOI: 10.1016/j.scitotenv.2021.151141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Environmental bacteria contain a wealth of untapped potential in the form of biodegradative genes. Leveraging this potential can often be confounded by a lack of understanding of fundamental survival strategies, like dormancy, for environmental stress. Investigating bacterial dormancy-to-degradation relationships enables improvement of bioremediation. Here, we couple genomic and functional assessment to provide context for key attributes of the organic pollutant-degrading strain Rhodococcus biphenylivorans TG9. Whole genome sequencing, pangenome analysis and functional characterization were performed to elucidate important genes and gene products, including antimicrobial resistance, dormancy, and degradation. Rhodococcus as a genus has strong potential for degradation and dormancy, which we demonstrate using R. biphenylivorans TG9 as a model. We identified four Resuscitation-promoting factor (Rpf) encoding genes in TG9 involved in dormancy and resuscitation. We demonstrate that R. biphenylivorans TG9 grows on fourteen typical organic pollutants, and exhibits a robust ability to degrade biphenyl and several congeners of polychlorinated biphenyls. We further induced TG9 into a dormant state and demonstrated pronounced differences in morphology and activity. Together, these results expand our understanding of the genus Rhodococcus and the relationship between dormancy and biodegradation in the presence of environmental stressors.
Collapse
Affiliation(s)
- Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, Guizhou, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ryan Andrew Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Li Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qi Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, China; Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Erica Marie Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
|
7
|
Yu C, Armengaud J, Blaustein RA, Chen K, Ye Z, Xu F, Gaillard JC, Qin Z, Fu Y, Hartmann EM, Shen C. Antibiotic tolerance and degradation capacity of the organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9 T. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127712. [PMID: 34865898 DOI: 10.1016/j.jhazmat.2021.127712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are ubiquitous in soil due to natural ecological competition, as well as emerging contaminants due to anthropogenic inputs. Under environmental factors like antibiotic stress, some bacteria, including those that degrade environmental pollutants, can enter a dormant state as a survival strategy, thereby limiting their metabolic activity and function. Dormancy has a critical influence on the degradative activity of bacteria, dramatically decreasing the rate at which they transform organic pollutants. To better understand this phenomenon in environmental pollutant-degrading bacteria, we investigated dormancy transitions induced with norfloxacin in Rhodococcus biphenylivorans TG9T using next-generation proteomics, proteogenomics, and additional experiments. Our results suggest that exposure to norfloxacin inhibited DNA replication, which led to damage to the cell. Dormant cells then likely triggered DNA repair, particularly homologous recombination, for continued survival. The results also indicated that substrate transport (ATP-binding cassette transporter), ATP production, and the tricarboxylic acid (TCA) cycle were repressed during dormancy, and degradation of organic pollutants was down-regulated. Given the widespread phenomenon of dormancy among bacteria involved in pollutant removal systems, this study improves our understanding of possible implications of antibiotic survival strategies on biotransformation of mixtures containing antibiotics as well as other organics.
Collapse
Affiliation(s)
- Chungui Yu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Ryan Andrew Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Kezhen Chen
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Zhe Ye
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Fengjun Xu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France
| | - Zhihui Qin
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Yulong Fu
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China
| | - Erica Marie Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA.
| | - Chaofeng Shen
- Zhejiang University, Department of Environmental Engineering, College of Environmental and Resource Sciences, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
8
|
Sankara Narayanan P, Runthala A. Accurate computational evolution of proteins and its dependence on deep learning and machine learning strategies. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2030317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Suman J, Strejcek M, Zubrova A, Capek J, Wald J, Michalikova K, Hradilova M, Sredlova K, Semerad J, Cajthaml T, Uhlik O. Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Front Microbiol 2021; 12:644708. [PMID: 34721309 PMCID: PMC8552027 DOI: 10.3389/fmicb.2021.644708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, the diversity of bphA genes was assessed in a 13C-enriched metagenome upon stable isotope probing (SIP) of microbial populations in legacy PCB-contaminated soil with 13C-biphenyl (BP). In total, 13 bphA sequence variants (SVs) were identified in the final amplicon dataset. Of these, one SV comprised 59% of all sequences, and when it was translated into a protein sequence, it exhibited 87, 77.4, and 76.7% identity to its homologs from Pseudomonas furukawaii KF707, Cupriavidus sp. WS, and Pseudomonas alcaliphila B-367, respectively. This same BphA sequence also contained unusual amino acid residues, Alanine, Valine, and Serine in region III, which had been reported to be crucial for the substrate specificity of the corresponding biphenyl dioxygenase (BPDO), and was accordingly designated BphA_AVS. The DNA locus of 18 kbp containing the BphA_AVS-coding sequence retrieved from the metagenome was comprised of 16 ORFs and was most likely borne by Paraburkholderia sp. The BPDO corresponding to bphAE_AVS was cloned and heterologously expressed in E. coli, and its substrate specificity toward PCBs and a spectrum of flavonoids was assessed. Although depleting a rather narrow spectrum of PCB congeners, the efficient transformation of flavone and flavanone was demonstrated through dihydroxylation of the B-ring of the molecules. The homology-based functional assignment of the putative proteins encoded by the rest of ORFs in the AVS region suggests their potential involvement in the transformation of aromatic compounds, such as flavonoids. In conclusion, this study contributes to the body of information on the involvement of soil-borne BPDOs in the metabolism of flavonoid compounds, and our paper provides a more advanced context for understanding the interactions between plants, microbes and anthropogenic compounds in the soil.
Collapse
Affiliation(s)
- Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Andrea Zubrova
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jan Capek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Jiri Wald
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Klara Michalikova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Miluse Hradilova
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Kamila Sredlova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Jaroslav Semerad
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Tomas Cajthaml
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czechia
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
| |
Collapse
|
10
|
Chen SC, Budhraja R, Adrian L, Calabrese F, Stryhanyuk H, Musat N, Richnow HH, Duan GL, Zhu YG, Musat F. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME JOURNAL 2021; 15:3508-3521. [PMID: 34117322 PMCID: PMC8630052 DOI: 10.1038/s41396-021-01022-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein–stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Rohit Budhraja
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
11
|
Wang W, Li Q, Zhang L, Cui J, Yu H, Wang X, Ouyang X, Tao F, Xu P, Tang H. Genetic mapping of highly versatile and solvent-tolerant Pseudomonas putida B6-2 (ATCC BAA-2545) as a 'superstar' for mineralization of PAHs and dioxin-like compounds. Environ Microbiol 2021; 23:4309-4325. [PMID: 34056829 DOI: 10.1111/1462-2920.15613] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and dioxin-like compounds, including sulfur, nitrogen and oxygen heterocycles, are widespread and toxic environmental pollutants. A wide variety of microorganisms capable of growing with aromatic polycyclic compounds are essential for bioremediation of the contaminated sites and the Earth's carbon cycle. Here, cells of Pseudomonas putida B6-2 (ATCC BAA-2545) grown in the presence of biphenyl (BP) are able to simultaneously degrade PAHs and their derivatives, even when they are present as mixtures, and tolerate high concentrations of extremely toxic solvents. Genetic analysis of the 6.37 Mb genome of strain B6-2 reveals coexistence of gene clusters responsible for central catabolic systems of aromatic compounds and for solvent tolerance. We used functional transcriptomics and proteomics to identify the candidate genes associated with catabolism of BP and a mixture of BP, dibenzofuran, dibenzothiophene and carbazole. Moreover, we observed dynamic changes in transcriptional levels with BP, including in metabolic pathways of aromatic compounds, chemotaxis, efflux pumps and transporters potentially involved in adaptation to PAHs. This study on the highly versatile activities of strain B6-2 suggests it to be a potentially useful model for bioremediation of polluted sites and for investigation of biochemical, genetic and evolutionary aspects of Pseudomonas.
Collapse
Affiliation(s)
- Weiwei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qinggang Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Lige Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Cui
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Yu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingyu Ouyang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Preston-Herrera C, Jackson AS, Bachmann BO, Froese JT. Development and application of a high throughput assay system for the detection of Rieske dioxygenase activity. Org Biomol Chem 2021; 19:775-784. [PMID: 33439179 DOI: 10.1039/d0ob02412k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report the development of a new periodate-based reactive assay system for the fluorescent detection of the cis-diol metabolites produced by Rieske dioxygenases. This sensitive and diastereoselective assay system successfully evaluates the substrate scope of Rieske dioxygenases and determines the relative activity of a rationally designed Rieske dioxygenase variant library. The high throughput capacity of the assay system enables rapid and efficient substrate scope investigations and screening of large dioxygenase variant libraries.
Collapse
Affiliation(s)
| | - Aaron S Jackson
- Department of Chemistry, Ball State University, 2000 W Riverside Ave, Muncie, IN 47306, USA.
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
| | - Jordan T Froese
- Department of Chemistry, Ball State University, 2000 W Riverside Ave, Muncie, IN 47306, USA.
| |
Collapse
|
13
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
14
|
Chettri D, Verma AK, Verma AK. Innovations in CAZyme gene diversity and its modification for biorefinery applications. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00525. [PMID: 32963975 PMCID: PMC7490808 DOI: 10.1016/j.btre.2020.e00525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
For sustainable growth, concept of biorefineries as recourse to the "fossil derived" energy source is important. Here, the Carbohydrate Active enZymes (CAZymes) play decisive role in generation of biofuels and related sugar-based products utilizing lignocellulose as a carbon source. Given their industrial significance, extensive studies on the evolution of CAZymes have been carried out. Various bacterial and fungal organisms have been scrutinized for the development of CAZymes, where advance techniques for strain enhancement such as CRISPR and analysis of specific expression systems have been deployed. Specific Omic-based techniques along with protein engineering have been adopted to unearth novel CAZymes and improve applicability of existing enzymes. In-Silico computational research and functional annotation of new CAZymes to synergy experiments are being carried out to devise cocktails of enzymes for use in biorefineries. Thus, with the establishment of these technologies, increased diversity of CAZymes with broad span of functions and applications is seen.
Collapse
|
15
|
Engineering Burkholderia xenovorans LB400 BphA through Site-Directed Mutagenesis at Position 283. Appl Environ Microbiol 2020; 86:AEM.01040-20. [PMID: 32709719 DOI: 10.1128/aem.01040-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO), which is a Rieske-type oxygenase (RO), catalyzes the initial dioxygenation of biphenyl and some polychlorinated biphenyls (PCBs). In order to enhance the degradation ability of BPDO in terms of a broader substrate range, the BphAES283M, BphAEp4-S283M, and BphAERR41-S283M variants were created from the parent enzymes BphAELB400, BphAEp4, and BphAERR41, respectively, by a substitution at one residue, Ser283Met. The results of steady-state kinetic parameters show that for biphenyl, the k cat/Km values of BphAES283M, BphAEp4-S283M, and BphAERR41-S283M were significantly increased compared to those of their parent enzymes. Meanwhile, we determined the steady-state kinetics of BphAEs toward highly chlorinated biphenyls. The results suggested that the Ser283Met substitution enhanced the catalytic activity of BphAEs toward 2,3',4,4'-tetrachlorobiphenyl (2,3',4,4'-CB), 2,2',6,6'-tetrachlorobiphenyl (2,2',6,6'-CB), and 2,3',4,4',5-pentachlorobiphenyl (2,3',4,4',5-CB). We compared the catalytic reactions of BphAELB400 and its variants toward 2,2'-dichlorobiphenyl (2,2'-CB), 2,5-dichlorobiphenyl (2,5-CB), and 2,6-dichlorobiphenyl (2,6-CB). The biochemical data indicate that the Ser283Met substitution alters the orientation of the substrate inside the catalytic site and, thereby, its site of hydroxylation, and this was confirmed by docking experiments. We also assessed the substrate ranges of BphAELB400 and its variants with degradation activity. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the 3-6-chlorinated biphenyls, which are generally very poorly oxidized by most dioxygenases. Collectively, the present work showed a significant effect of mutation Ser283Met on substrate specificity/regiospecificity in BPDO. These will certainly be meaningful elements for understanding the effect of the residue corresponding to position 283 in other Rieske oxygenase enzymes.IMPORTANCE The segment from positions 280 to 283 in BphAEs is located at the entrance of the catalytic pocket, and it shows variation in conformation. In previous works, results have suggested but never proved that residue Ser283 of BphAELB400 might play a role in substrate specificity. In the present paper, we found that the Ser283Met substitution significantly increased the specificity of the reaction of BphAE toward biphenyl, 2,3',4,4'-CB, 2,2',6,6'-CB, and 2,3',4,4',5-CB. Meanwhile, the Ser283Met substitution altered the regiospecificity of BphAE toward 2,2'-dichlorobiphenyl and 2,6-dichlorobiphenyl. Additionally, this substitution extended the range of PCBs metabolized by the mutated BphAE. BphAES283M and BphAEp4-S283M were clearly improved in oxidizing some of the more highly chlorinated biphenyls (3 to 6 chlorines), which are generally very poorly oxidized by most dioxygenases. We used modeled and docked enzymes to identify some of the structural features that explain the new properties of the mutant enzymes. Altogether, the results of this study provide better insights into the mechanisms by which BPDO evolves to change and/or expand its substrate range and its regiospecificity.
Collapse
|
16
|
Hirose J, Fujihara H, Watanabe T, Kimura N, Suenaga H, Futagami T, Goto M, Suyama A, Furukawa K. Biphenyl/PCB Degrading bph Genes of Ten Bacterial Strains Isolated from Biphenyl-Contaminated Soil in Kitakyushu, Japan: Comparative and Dynamic Features as Integrative Conjugative Elements (ICEs). Genes (Basel) 2019; 10:genes10050404. [PMID: 31137913 PMCID: PMC6563109 DOI: 10.3390/genes10050404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
We sequenced the entire genomes of ten biphenyl/PCB degrading bacterial strains (KF strains) isolated from biphenyl-contaminated soil in Kitakyushu, Japan. All the strains were Gram-negative bacteria belonging to β- and γ-proteobacteria. Out of the ten strains, nine strains carried a biphenyl catabolic bph gene cluster as integrative conjugative elements (ICEs), and they were classified into four groups based on the structural features of the bph genes. Group I (five strains) possessed bph genes that were very similar to the ones in Pseudomonasfurukawaii KF707 (formerly Pseudomonas pseudoalcaligenes KF707), which is one of the best characterized biphenyl-utilizing strains. This group of strains carried salicylate catabolic sal genes that were approximately 6-kb downstream of the bph genes. Group II (two strains) possessed bph and sal genes similar to the ones in KF707, but these strains lacked the bphX region between bphC and bphD, which is involved in the downstream catabolism of biphenyl. These bph-sal clusters in groups I and II were located on an integrative conjugative element that was larger than 110 kb, and they were named ICEbph-sal. Our previous study demonstrated that the ICEbph-sal of Pseudomonas putida KF715 in group II existed both in an integrated form in the chromosome (referred to as ICEbph-salKF715 (integrated)) and in a extrachromosomal circular form (referred to as ICEbph-sal (circular)) (previously called pKF715A, 483 kb) in the stationary culture. The ICEbph-sal was transferred from KF715 into P. putida AC30 and P. putida KT2440 with high frequency, and it was maintained stably as an extrachromosomal circular form. The ICEbph-salKF715 (circular) in these transconjugants was further transferred to P. putida F39/D and then integrated into the chromosome in one or two copies. Meanwhile, group III (one strain) possessed bph genes, but not sal genes. The nucleotide sequences of the bph genes in this group were less conserved compared to the genes of the strains belonging to groups I and II. Currently, there is no evidence to indicate that the bph genes in group III are carried by a mobile element. Group IV (two strains) carried bph genes as ICEs (59–61 kb) that were similar to the genes found in Tn4371 from Cupriavidus oxalacticus A5 and ICEKKS1024677 from the Acidovorax sp. strain KKS102. Our study found that bph gene islands have integrative functions, are transferred among soil bacteria, and are diversified through modification.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan.
| | - Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Hikaru Suenaga
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
| | - Akiko Suyama
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Kensuke Furukawa
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| |
Collapse
|
17
|
Zhao X, Qiu Y, Jiang L, Li Y. Analysis of Affinity Energy Between Biphenyl Dioxygenase and Polychlorinated Biphenyls Using Molecular Docking. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8340-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zhao XH, Wang XL, Li Y. Relationship between the binding free energy and PCBs' migration, persistence, toxicity and bioaccumulation using a combination of the molecular docking method and 3D-QSAR. Chem Cent J 2018; 12:20. [PMID: 29476294 PMCID: PMC5825354 DOI: 10.1186/s13065-018-0389-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 02/13/2018] [Indexed: 11/10/2022] Open
Abstract
The molecular docking method was used to calculate the binding free energies between biphenyl dioxygenase and 209 polychlorinated biphenyl (PCB) congeners. The relationships between the calculated binding free energies and migration (octanol-air partition coefficients, KOA), persistence (half-life, t1/2), toxicity (half maximal inhibitory concentration, IC50), and bioaccumulation (bioconcentration factor, BCF) values for the PCBs were used to gain insight into the degradation of PCBs in the presence of biphenyl dioxygenase. The relationships between the calculated binding free energies and the molecular weights, KOA, BCF, and t1/2 values for the PCBs were statistically significant (P < 0.01), whereas the relationship between the calculated binding free energies and the IC50 for the PCBs was not statistically significant (P > 0.05). The electrostatic field, derived from three-dimensional quantitative structure-activity relationship studies, was a primary factor governing the binding free energy, which agreed with literature findings for KOA, t1/2, and BCF. Comparative molecular field analysis and comparative molecular similarity indices analysis contour maps showed that the binding free energies, KOA, t1/2, and BCF values for the PCBs decreased simultaneously when substituents with electropositive groups at the 3-position or electronegative groups at the 3'-position were introduced. This indicated the binding free energy was correlated with the persistent organic pollutant characteristics of PCBs. Furthermore, low binding free energies improved the degradation of the PCBs and simultaneously decreased the KOA, t1/2, and BCF values, thereby reducing the persistent organic pollutant characteristics of PCBs in the environment. These results are expected to be beneficial in providing a theoretical foundation for further elucidation of the degradation and molecular modification of PCBs.
Collapse
Affiliation(s)
- Xiao-Hui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, No. 2, Beinong Road, Beijing, 102206 China
- The Moe Key Laboratory of Resources and Evironmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Xiao-Lei Wang
- College of Environmental Science and Engineering, North China Electric Power University, No. 2, Beinong Road, Beijing, 102206 China
- The Moe Key Laboratory of Resources and Evironmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, No. 2, Beinong Road, Beijing, 102206 China
- The Moe Key Laboratory of Resources and Evironmental Systems Optimization, North China Electric Power University, Beijing, 102206 China
| |
Collapse
|
19
|
From molecular engineering to process engineering: development of high-throughput screening methods in enzyme directed evolution. Appl Microbiol Biotechnol 2017; 102:559-567. [PMID: 29181567 DOI: 10.1007/s00253-017-8568-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023]
Abstract
With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.
Collapse
|
20
|
Atkinson JT, Campbell I, Bennett GN, Silberg JJ. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Biochemistry 2016; 55:7047-7064. [DOI: 10.1021/acs.biochem.6b00831] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua T. Atkinson
- Systems,
Synthetic, and Physical Biology Graduate Program, Rice University, MS-180, 6100 Main Street, Houston, Texas 77005, United States
| | - Ian Campbell
- Biochemistry
and Cell Biology Graduate Program, Rice University, MS-140, 6100
Main Street, Houston, Texas 77005, United States
| | - George N. Bennett
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Chemical and Biomolecular Engineering, Rice University, MS-362,
6100 Main Street, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department
of Biosciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, MS-142, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Suramwar NV, Thakare SR, Khaty NT. One pot synthesis of copper nanoparticles at room temperature and its catalytic activity. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2012.04.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
22
|
Structural Basis of the Enhanced Pollutant-Degrading Capabilities of an Engineered Biphenyl Dioxygenase. J Bacteriol 2016; 198:1499-512. [PMID: 26953337 DOI: 10.1128/jb.00952-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Biphenyl dioxygenase, the first enzyme of the biphenyl catabolic pathway, is a major determinant of which polychlorinated biphenyl (PCB) congeners are metabolized by a given bacterial strain. Ongoing efforts aim to engineer BphAE, the oxygenase component of the enzyme, to efficiently transform a wider range of congeners. BphAEII9, a variant of BphAELB400 in which a seven-residue segment, (335)TFNNIRI(341), has been replaced by the corresponding segment of BphAEB356, (333)GINTIRT(339), transforms a broader range of PCB congeners than does either BphAELB400 or BphAEB356, including 2,6-dichlorobiphenyl, 3,3'-dichlorobiphenyl, 4,4'-dichlorobiphenyl, and 2,3,4'-trichlorobiphenyl. To understand the structural basis of the enhanced activity of BphAEII9, we have determined the three-dimensional structure of this variant in substrate-free and biphenyl-bound forms. Structural comparison with BphAELB400 reveals a flexible active-site mouth and a relaxed substrate binding pocket in BphAEII9 that allow it to bind different congeners and which could be responsible for the enzyme's altered specificity. Biochemical experiments revealed that BphAEII9 transformed 2,3,4'-trichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl more efficiently than did BphAELB400 and BphAEB356 BphAEII9 also transformed the insecticide dichlorodiphenyltrichloroethane (DDT) more efficiently than did either parental enzyme (apparent kcat/Km of 2.2 ± 0.5 mM(-1) s(-1), versus 0.9 ± 0.5 mM(-1) s(-1) for BphAEB356). Studies of docking of the enzymes with these three substrates provide insight into the structural basis of the different substrate selectivities and regiospecificities of the enzymes. IMPORTANCE Biphenyl dioxygenase is the first enzyme of the biphenyl degradation pathway that is involved in the degradation of polychlorinated biphenyls. Attempts have been made to identify the residues that influence the enzyme activity for the range of substrates among various species. In this study, we have done a structural study of one variant of this enzyme that was produced by family shuffling of genes from two different species. Comparison of the structure of this variant with those of the parent enzymes provided an important insight into the molecular basis for the broader substrate preference of this enzyme. The structural and functional details gained in this study can be utilized to further engineer desired enzymatic activity, producing more potent enzymes.
Collapse
|
23
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
24
|
Strejcek M, Wang Q, Ridl J, Uhlik O. Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences. Front Microbiol 2015; 6:1267. [PMID: 26635739 PMCID: PMC4656815 DOI: 10.3389/fmicb.2015.01267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/30/2015] [Indexed: 01/19/2023] Open
Abstract
Functional gene ecological analyses using amplicon sequencing can be challenging as translated sequences are often burdened with shifted reading frames. The aim of this work was to evaluate several bioinformatics tools designed to correct errors which arise during sequencing in an effort to reduce the number of frameshifts (FS). Genes encoding for alpha subunits of biphenyl (bphA) and benzoate (benA) dioxygenases were used as model sequences. FrameBot, a FS correction tool, was able to reduce the number of detected FS to zero. However, up to 44% of sequences were discarded by FrameBot as non-specific targets. Therefore, we proposed a de novo mode of FrameBot for FS correction, which works on a similar basis as common chimera identifying platforms and is not dependent on reference sequences. By nature of FrameBot de novo design, it is crucial to provide it with data as error free as possible. We tested the ability of several publicly available correction tools to decrease the number of errors in the data sets. The combination of maximum expected error filtering and single linkage pre-clustering proved to be the most efficient read processing approach. Applying FrameBot de novo on the processed data enabled analysis of BphA sequences with minimal losses of potentially functional sequences not homologous to those previously known. This experiment also demonstrated the extensive diversity of dioxygenases in soil. A script which performs FrameBot de novo is presented in the supplementary material to the study or available at https://github.com/strejcem/FBdenovo. The tool was also implemented into FunGene Pipeline available at http://fungene.cme.msu.edu/FunGenePipeline/.
Collapse
Affiliation(s)
- Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague Prague, Czech Republic
| | - Qiong Wang
- Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague Prague, Czech Republic
| |
Collapse
|
25
|
Metabolism of Doubly para-Substituted Hydroxychlorobiphenyls by Bacterial Biphenyl Dioxygenases. Appl Environ Microbiol 2015; 81:4860-72. [PMID: 25956777 DOI: 10.1128/aem.00786-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/06/2015] [Indexed: 11/20/2022] Open
Abstract
In this work, we examined the profile of metabolites produced from the doubly para-substituted biphenyl analogs 4,4'-dihydroxybiphenyl, 4-hydroxy-4'-chlorobiphenyl, 3-hydroxy-4,4'-dichlorobiphenyl, and 3,3'-dihydroxy-4,4'-chlorobiphenyl by biphenyl-induced Pandoraea pnomenusa B356 and by its biphenyl dioxygenase (BPDO). 4-Hydroxy-4'-chlorobiphenyl was hydroxylated principally through a 2,3-dioxygenation of the hydroxylated ring to generate 2,3-dihydro-2,3,4-trihydroxy-4'-chlorobiphenyl and 3,4-dihydroxy-4'-chlorobiphenyl after the removal of water. The former was further oxidized by the biphenyl dioxygenase to produce ultimately 3,4,5-trihydroxy-4'-chlorobiphenyl, a dead-end metabolite. 3-Hydroxy-4,4'-dichlorobiphenyl was oxygenated on both rings. Hydroxylation of the nonhydroxylated ring generated 2,3,3'-trihydroxy-4'-chlorobiphenyl with concomitant dechlorination, and 2,3,3'-trihydroxy-4'-chlorobiphenyl was ultimately metabolized to 2-hydroxy-4-chlorobenzoate, but hydroxylation of the hydroxylated ring generated dead-end metabolites. 3,3'-Dihydroxy-4,4'-dichlorobiphenyl was principally metabolized through a 2,3-dioxygenation to generate 2,3-dihydro-2,3,3'-trihydroxy-4,4'-dichlorobiphenyl, which was ultimately converted to 3-hydroxy-4-chlorobenzoate. Similar metabolites were produced when the biphenyl dioxygenase of Burkholderia xenovorans LB400 was used to catalyze the reactions, except that for the three substrates used, the BPDO of LB400 was less efficient than that of B356, and unlike that of B356, it was unable to further oxidize the initial reaction products. Together the data show that BPDO oxidation of doubly para-substituted hydroxychlorobiphenyls may generate nonnegligible amounts of dead-end metabolites. Therefore, biphenyl dioxygenase could produce metabolites other than those expected, corresponding to dihydrodihydroxy metabolites from initial doubly para-substituted substrates. This finding shows that a clear picture of the fate of polychlorinated biphenyls in contaminated sites will require more insights into the bacterial metabolism of hydroxychlorobiphenyls and the chemistry of the dihydrodihydroxylated metabolites derived from them.
Collapse
|
26
|
3-Ketosteroid 9α-hydroxylase enzymes: Rieske non-heme monooxygenases essential for bacterial steroid degradation. Antonie van Leeuwenhoek 2014; 106:157-72. [PMID: 24846050 PMCID: PMC4064121 DOI: 10.1007/s10482-014-0188-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/25/2014] [Indexed: 12/26/2022]
Abstract
Various micro-organisms are able to use sterols/steroids as carbon- and energy sources for growth. 3-Ketosteroid 9α-hydroxylase (KSH), a two component Rieske non-heme monooxygenase comprised of the oxygenase KshA and the reductase KshB, is a key-enzyme in bacterial steroid degradation. It initiates opening of the steroid polycyclic ring structure. The enzyme has industrial relevance in the synthesis of pharmaceutical steroids. Deletion of KSH activity in sterol degrading bacteria results in blockage of steroid ring opening and is used to produce valuable C19-steroids such as 4-androstene-3,17-dione and 1,4-androstadiene-3,17-dione. Interestingly, KSH activity is essential for the pathogenicity of Mycobacterium tuberculosis. Detailed information about KSH thus is of medical relevance, and KSH inhibitory compounds may find application in combatting tuberculosis. In recent years, the 3D structure of the KshA protein of M. tuberculosis H37Rv has been elucidated and various studies report biochemical characteristics and possible physiological roles of KSH. The current knowledge is reviewed here and forms a solid basis for further studies on this highly interesting enzyme. Future work may result in the construction of KSH mutants capable of production of specific bioactive steroids. Furthermore, KSH provides an promising target for drugs against the pathogenic agent M. tuberculosis.
Collapse
|
27
|
Zhang H, Jiang X, Xiao W, Lu L. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254. PLoS One 2014; 9:e91162. [PMID: 24618583 PMCID: PMC3949748 DOI: 10.1371/journal.pone.0091162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Kang JY, Ryu SH, Park SH, Cha GS, Kim DH, Kim KH, Hong AW, Ahn T, Pan JG, Joung YH, Kang HS, Yun CH. Chimeric cytochromes P450 engineered by domain swapping and random mutagenesis for producing human metabolites of drugs. Biotechnol Bioeng 2014; 111:1313-22. [DOI: 10.1002/bit.25202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Ji-Yeon Kang
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Sang Hoon Ryu
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Sun-Ha Park
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Gun Su Cha
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Dong-Hyun Kim
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Keon-Hee Kim
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | | | - Taeho Ahn
- Department of Biochemistry, College of Veterinary Medicine; Chonnam National University; Gwangju Republic of Korea
| | - Jae-Gu Pan
- Superbacteria Research Center; Korea Research Institute of Bioscience and Biotechnology (KRIBB); Daejon Republic of Korea
| | - Young Hee Joung
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 500-757 Republic of Korea
| |
Collapse
|
29
|
The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation. Appl Environ Microbiol 2013; 79:7846-56. [PMID: 24123738 DOI: 10.1128/aem.02478-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase.
Collapse
|
30
|
Jeon JR, Murugesan K, Nam IH, Chang YS. Coupling microbial catabolic actions with abiotic redox processes: A new recipe for persistent organic pollutant (POP) removal. Biotechnol Adv 2013; 31:246-56. [DOI: 10.1016/j.biotechadv.2012.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/01/2012] [Accepted: 11/03/2012] [Indexed: 11/26/2022]
|
31
|
Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 2012; 97:561-71. [DOI: 10.1007/s00253-012-4584-0] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 11/26/2022]
|
32
|
Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran. Biochem Biophys Res Commun 2012; 419:362-7. [PMID: 22342725 DOI: 10.1016/j.bbrc.2012.02.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 11/23/2022]
|
33
|
Characterization of biphenyl dioxygenase sequences and activities encoded by the metagenomes of highly polychlorobiphenyl-contaminated soils. Appl Environ Microbiol 2012; 78:2706-15. [PMID: 22327590 DOI: 10.1128/aem.07381-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Total extracted DNA from two heavily polychlorobiphenyl-contaminated soils was analyzed with respect to biphenyl dioxygenase sequences and activities. This was done by PCR amplification and cloning of a DNA segment encoding the active site of the enzyme. The translated sequences obtained fell into three similarity clusters (I to III). Sequence identities were high within but moderate or low between the clusters. Members of clusters I and II showed high sequence similarities with well-known biphenyl dioxygenases. Cluster III showed low (43%) sequence identity with a biphenyl dioxygenase from Rhodococcus jostii RHA1. Amplicons from the three clusters were used to reconstitute and express complete biphenyl dioxygenase operons. In most cases, the resulting hybrid dioxygenases were detected in cell extracts of the recombinant hosts. At least 83% of these enzymes were catalytically active. Several amino acid exchanges were identified that critically affected activity. Chlorobiphenyl turnover by the enzymes containing the prototype sequences of clusters I and II was characterized with 10 congeners that were major, minor, or not constituents of the contaminated soils. No direct correlations were observed between on-site concentrations and rates of productive dioxygenations of these chlorobiphenyls. The prototype enzymes displayed markedly different substrate and product ranges. The cluster II dioxygenase possessed a broader substrate spectrum toward the assayed congeners, whereas the cluster I enzyme was superior in the attack of ortho-chlorinated aromatic rings. These results demonstrate the feasibility of the applied approach to functionally characterize dioxygenase activities of soil metagenomes via amplification of incomplete genes.
Collapse
|
34
|
Cao YM, Xu L, Jia LY. Analysis of PCBs degradation abilities of biphenyl dioxygenase derived from Enterobacter sp. LY402 by molecular simulation. N Biotechnol 2011; 29:90-8. [DOI: 10.1016/j.nbt.2011.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 07/28/2011] [Accepted: 08/29/2011] [Indexed: 11/26/2022]
|
35
|
Jez JM. Toward protein engineering for phytoremediation: possibilities and challenges. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13 Suppl 1:77-89. [PMID: 22046752 DOI: 10.1080/15226514.2011.568537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of rational protein engineering and directed evolution techniques allow for the redesign of enzymes with tailored properties for use in environmental remediation. This review summarizes current molecular methods for either altering or improving protein function and highlights examples of how these methods can address bioremediation problems. Although much of the protein engineering applied to environmental clean-up employs microbial systems, there is great potential for and significant challenges to translating these approaches to plant systems for phytoremediation purposes. Protein engineering technologies combined with genomic information and metabolic engineering strategies hold promise for the design of plants and microbes to remediate organic and inorganic pollutants.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
36
|
Suenaga H, Nonaka K, Fujihara H, Goto M, Furukawa K. Hybrid pseudomonads engineered by two-step homologous recombination acquire novel degradation abilities toward aromatics and polychlorinated biphenyls. Appl Microbiol Biotechnol 2010; 88:915-23. [PMID: 20809076 DOI: 10.1007/s00253-010-2840-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl and polychlorinated biphenyls. Previously, we constructed chimeric versions of the bphA1 gene, which encodes a large subunit of biphenyl dioxygenase, by using DNA shuffling between bphA1 genes from P. pseudoalcaligenes KF707 and Burkholderia xenovorans LB400. In this study, we demonstrate replacement of the bphA1 gene with chimeric bphA1 sequence within the chromosomal bph gene cluster by two-step homologous recombination. Notably, some of the hybrid strains acquired enhanced and/or expanded degradation capabilities for specific aromatic compounds, including single aromatic hydrocarbons and polychlorinated biphenyls.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan.
| | | | | | | | | |
Collapse
|
37
|
Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:65-94. [PMID: 20652669 DOI: 10.1007/978-1-4419-6260-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Numerous aromatic compounds are pollutants to which exposure exists or is possible, and are of concern because they are mutagenic, carcinogenic, or display other toxic characteristics. Depending on the types of dioxygenation reactions of which microorganisms are capable, they utilize ring-hydroxylating oxygenases (RHOs) to initiate the degradation and detoxification of such aromatic compound pollutants. Gene families encoding for RHOs appear to be most common in bacteria. Oxygenases are important in degrading both natural and synthetic aromatic compounds and are particularly important for their role in degrading toxic pollutants; for this reason, it is useful for environmental scientists and others to understand more of their characteristics and capabilities. It is the purpose of this review to address RHOs and to describe much of their known character, starting with a review as to how RHOs are classified. A comprehensive phylogenetic analysis has revealed that all RHOs are, in some measure, related, presumably by divergent evolution from a common ancestor, and this is reflected in how they are classified. After we describe RHO classification schemes, we address the relationship between RHO structure and function. Structural differences affect substrate specificity and product formation. In the alpha subunit of the known terminal oxygenase of RHOs, there is a catalytic domain with a mononuclear iron center that serves as a substrate-binding site and a Rieske domain that retains a [2Fe-2S] cluster that acts as an entity of electron transfer for the mononuclear iron center. Oxygen activation and substrate dihydroxylation occurring at the catalytic domain are dependent on the binding of substrate at the active site and the redox state of the Rieske center. The electron transfer from NADH to the catalytic pocket of RHO and catalyzing mechanism of RHOs is depicted in our review and is based on the results of recent studies. Electron transfer involving the RHO system typically involves four steps: NADH-ferredoxin reductase receives two electrons from NADH; ferredoxin binds with NADH-ferredoxin reductase and accepts electron from it; the reduced ferredoxin dissociates from NADH-ferredoxin reductase and shuttles the electron to the Rieske domain of the terminal oxygenase; the Rieske cluster donates electrons to O2 through the mononuclear iron. On the basis of crystal structure studies, it has been proposed that the broad specificity of the RHOs results from the large size and specific topology of its hydrophobic substrate-binding pocket. Several amino acids that determine the substrate specificity and enantioselectivity of RHOs have been identified through sequence comparison and site-directed mutagenesis at the active site. Exploiting the crystal structure data and the available active site information, engineered RHO enzymes have been and can be designed to improve their capacity to degrade environmental pollutants. Such attempts to enhance degradation capabilities of RHOs have been made. Dioxygenases have been modified to improve the degradation capacities toward PCBs, PAHs, dioxins, and some other aromatic hydrocarbons. We hope that the results of this review and future research on enhancing RHOs will promote their expanded usage and effectiveness for successfully degrading environmental aromatic pollutants.
Collapse
Affiliation(s)
- Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Synchrotron Infrared Spectromicroscopy for Studying Chemistry of Microbial Activity in Geologic Materials. SYNCHROTRON-BASED TECHNIQUES IN SOILS AND SEDIMENTS 2010. [DOI: 10.1016/s0166-2481(10)34004-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Li Q, Wang X, Yin G, Gai Z, Tang H, Ma C, Deng Z, Xu P. New metabolites in dibenzofuran cometabolic degradation by a biphenyl-cultivated Pseudomonas putida strain B6-2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:8635-8642. [PMID: 20028064 DOI: 10.1021/es901991d] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A biphenyl (BP)-utilizing bacterium, designated B6-2, was isolated from soil and identified as Pseudomonas putida. BP-grown B6-2 cells were capable of transforming dibenzofuran (DBF) via a lateral dioxygenation and meta-cleavage pathway. The ring cleavage product 2-hydroxy-4-(3'-oxo-3'H-benzofuran-2'-yliden)but-2-enoic acid (HOBB) was detected as a major metabolite. B6-2 growing cells could also cometabolically degrade DBF using BP as a primary substrate. A recombinant Escherichia coli strain DH10B (pUC118bphABC) expressing BP dioxygenase, BP-dihydrodiol dehydrogenase, and dihydroxybiphenyl dioxygenase was shown to be capable of transforming DBF to HOBB. Using purified HOBB that was produced by the recombinant as the substrate for B6-2, we newly identified a series of benzofuran derivatives as metabolites. The structures of these metabolites indicate that an unreported HOBB degradation pathway is employed by strain B6-2. In this pathway, HOBB is proposed to be transformed to 2-oxo-4-(3'-oxobenzofuran-2'-yl)butanoic acid and 2-hydroxy-4-(3'-oxobenzofuran-2'-yl)butanoic acid (D4) through two sequential double-bond hydrogenation steps. D4 is suggested to undergo reactions including decarboxylation and oxidation to produce 3-(3'-oxobenzofuran-2'-yl)propanoic acid (D6). 3-Hydroxy-3-(3'-oxobenzofuran-2'-yl)propanoic acid (D7) and 2-(3'-oxobenzofuran-2'-yl)acetic acid (D8) would represent metabolites involved in the processes of beta- and alpha-oxidation of D6, respectively. D7 and D8 are suggested to be transformed to their respective products 3-hydroxy-2,3-dihydrobenzofuran-2-carboxylic acid (D10) and 2-(3'-hydroxy-2',3'-dihydrobenzofuran-2'-yl)acetic acid. D10 is proposed to be transformed to salicylic acid (D14) via 2,3-dihydro-2,3-dihydroxybenzofuran, 2-oxo-2-(2'-hydroxyphenyl)acetic acid and 2-hydroxy-2-(2'-hydroxyphenyl)acetic acid. Further experimental results revealed that B6-2 was capable of growing with D14 as the sole carbon source. Because benzofuran derivatives may have biological, pharmacological, and toxic properties, the elucidation of this new pathway should be significant from both biotechnological and environmental views.
Collapse
Affiliation(s)
- Qinggang Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Baig MS, Manickam N. Homology modeling and docking studies of Comamonas testosteroni B-356 biphenyl-2,3-dioxygenase involved in degradation of polychlorinated biphenyls. Int J Biol Macromol 2009; 46:47-53. [PMID: 19879892 DOI: 10.1016/j.ijbiomac.2009.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 10/19/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
Abstract
Biphenyl dioxygenase is a microbial enzyme which catalyzes the stereospecific dioxygenation of aromatic rings of biphenyl congeners leading to their degradation. Hence, it has attracted the attention of researchers due to its ability to oxidize chlorinated biphenyls, which are one of the serious environmental contaminants. In the present study, the three-dimensional model of alpha-subunit of biphenyl dioxygenase (BphA) from Comamonas testosteroni B-356 has been constructed. The resulting model was further validated and used for docking studies with a class of chlorinated biphenyls such as biphenyl,3,3'-dichlorobiphenyl and 4,4'-dichlorobiphenyl. The kinetic parameters of these biphenyl compounds were well matched with the docking results in terms of conformational and distance constraints. The binding properties of these biphenyl compounds along with identification of critical active site residues could be used for further site-directed mutagenesis experiments in order to identify their role in activity and substrate specificity, ultimately leading to improved mutants for degradation of these toxic compounds.
Collapse
Affiliation(s)
- M S Baig
- Environmental Biotechnology Division, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, Lucknow, Uttar Pradesh 226001, India
| | | |
Collapse
|
41
|
Abstract
Redox-active enzymes perform many key biological reactions. The electron transfer process is complex, not only because of its versatility, but also because of the intricate and delicate modulation exerted by the protein scaffold on the redox properties of the catalytic sites. Nowadays, there is a wealth of information available about the catalytic mechanisms of redox-active enzymes and the time is propitious for the development of projects based on the protein engineering of redox-active enzymes. In this review, we aim to provide an updated account of the available methods used for protein engineering, including both genetic and chemical tools, which are usually reviewed separately. Specific applications to redox-active enzymes are mentioned within each technology, with emphasis on those cases where the generation of novel functionality was pursued. Finally, we focus on two emerging fields in the protein engineering of redox-active enzymes: the construction of novel nucleic acid-based catalysts and the remodeling of intra-molecular electron transfer networks. We consider that the future development of these areas will represent fine examples of the concurrence of chemical and genetic tools.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
42
|
Kagami O, Shindo K, Kyojima A, Takeda K, Ikenaga H, Furukawa K, Misawa N. Protein engineering on biphenyl dioxygenase for conferring activity to convert 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin). J Biosci Bioeng 2008; 106:121-7. [PMID: 18804053 DOI: 10.1263/jbb.106.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/28/2008] [Indexed: 11/17/2022]
Abstract
A central part (amino-acid position 268-397 of 458 amino-acid residues) of the biphenyl dioxygenase large (alpha) subunit, BphA1, from Pseudomonas pseudoalcaligenes strain KF707 was exchanged with the corresponding part of BphA1 from another biphenyl-degrading bacterium, Pseudomonas putida strain KF715, to construct hybrid BphA1, BphA1 (715-707). When expressed in Escherichia coli together with the bphA2A3A4BC genes from strain KF707, this enzyme was shown to possess activity for degrading both 1-phenylnaphthalene and 2-phenylnaphthalene. Between central parts of BphA1 from strains KF707 and KF715, the difference of amino-acid residues resided only in position 324-325. An attempt was made to improve the substrate preference of BphA1 by applying random amino-acid substitutions at these positions to BphA1 (715-707). After screening the mutant library to bioconvert several flavonoids, BphA1 (1-22; T324A and I325L) and BphA1 (2-2; T324L and I325I) were selected. When expressed in E. coli together with bphA2A3A4B from strain KF707, both BphA1 (1-22) and BphA1 (2-2) bioconverted the refractory flavonoids, 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin), which were hardly converted by any unmodified and artificially-modified shuffled biphenyl dioxygeneses, into their vicinal diol forms, i.e., 2-(2,3-dihydroxyphenyl)-7-hydroxy-chromen-4-one and 2-(2,3-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one, respectively. In addition, trans-chalcone was converted into 3-(2,3-dihydroxyphenyl)-1-phenylpropan-1-one and further into 1,3-bis-(2,3-dihydroxyphenyl)-propan-1-one. The antioxidative activity of these generated compounds was markedly higher than that of the original substrates used.
Collapse
Affiliation(s)
- Osamu Kagami
- Marine Biotechnology Institute, Kamaishi, Iwate, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Molecular approaches in bioremediation. Curr Opin Biotechnol 2008; 19:572-8. [DOI: 10.1016/j.copbio.2008.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/14/2008] [Accepted: 10/16/2008] [Indexed: 01/08/2023]
|
44
|
Directed evolution of aniline dioxygenase for enhanced bioremediation of aromatic amines. Appl Microbiol Biotechnol 2008; 81:1063-70. [PMID: 18813921 DOI: 10.1007/s00253-008-1710-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 08/21/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
The objective of this study was to enhance the activity of aniline dioxygenase (AtdA), a multi-component Rieske non-heme iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA, so as to create an enhanced biocatalyst for the bioremediation of aromatic amines. Previously, the mutation V205A was found to widen the substrate specificity of AtdA to accept 2-isopropylaniline (2IPA) for which the wild-type enzyme has no activity (Ang EL, Obbard JP, Zhao HM, FEBS J, 274:928-939, 2007). Using mutant V205A as the parent and applying one round of saturation mutagenesis followed by a round of random mutagenesis, the activity of the final mutant, 3-R21, was increased by 8.9-, 98.0-, and 2.0-fold for aniline, 2,4-dimethylaniline (24DMA), and 2-isopropylaniline (2IPA), respectively, over the mutant V205A. In particular, the activity of the mutant 3-R21 for 24DMA, which is a carcinogenic aromatic amine pollutant, was increased by 3.5-fold over the wild-type AtdA, while the AN activity was restored to the wild-type level, thus yielding a mutant aniline dioxygenase with enhanced activity and capable of hydroxylating a wider range of aromatic amines than the wild type.
Collapse
|
45
|
Furukawa K, Fujihara H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J Biosci Bioeng 2008; 105:433-49. [PMID: 18558332 DOI: 10.1263/jbb.105.433] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/04/2008] [Indexed: 11/17/2022]
Affiliation(s)
- Kensuke Furukawa
- Depatment of Food and Bioscience, Faculty of Food and Nutrition, Beppu University, Beppu, Ohita 874-8501, Japan.
| | | |
Collapse
|
46
|
Arginine deiminase, a potential anti-tumor drug. Cancer Lett 2008; 261:1-11. [PMID: 18179862 DOI: 10.1016/j.canlet.2007.11.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 11/24/2022]
Abstract
Arginine deiminase (ADI; EC 3.5.3.6), an arginine-degrading enzyme, has been studied as a potential anti-tumor drug for the treatment of arginine-auxotrophic tumors, such as hepatocellular carcinomas (HCCs) and melanomas. Studies with human lymphatic leukemia cell lines further suggest that ADI is a potential anti-angiogenic agent and is effective in the treatment of leukemia. For instance ADI-PEG-20, patented by Pheonix Pharmacologic Inc., is currently in clinical trials for the treatment of HCC (Phase II/III) and melanoma (Phase I/II). This review summarizes results on recombinant expression, structural analysis, PEG (polyethylene glycerol) modification, in vivo anti-cancer activities, and clinical studies of ADI. Discussions on heterogeneous expression of ADI, directed evolution for improving enzymatic properties, and HSA-fusion for increased in vivo activity conclude this review.
Collapse
|
47
|
Gómez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol 2007; 189:5705-15. [PMID: 17526697 PMCID: PMC1951834 DOI: 10.1128/jb.01476-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biphenyl dioxygenase (BPDO) catalyzes the aerobic transformation of biphenyl and various polychlorinated biphenyls (PCBs). In three different assays, BPDO(B356) from Pandoraea pnomenusa B-356 was a more potent PCB-degrading enzyme than BPDO(LB400) from Burkholderia xenovorans LB400 (75% amino acid sequence identity), transforming nine congeners in the following order of preference: 2,3',4-trichloro approximately 2,3,4'-trichloro > 3,3'-dichloro > 2,4,4'-trichloro > 4,4'-dichloro approximately 2,2'-dichloro > 2,6-dichloro > 2,2',3,3'-tetrachloro approximately 2,2',5,5'-tetrachloro. Except for 2,2',5,5'-tetrachlorobiphenyl, BPDO(B356) transformed each congener at a higher rate than BPDO(LB400). The assays used either whole cells or purified enzymes and either individual congeners or mixtures of congeners. Product analyses established previously unrecognized BPDO(B356) activities, including the 3,4-dihydroxylation of 2,6-dichlorobiphenyl. BPDO(LB400) had a greater apparent specificity for biphenyl than BPDO(B356) (k(cat)/K(m) = 2.4 x 10(6) +/- 0.7 x 10(6) M(-1) s(-1) versus k(cat)/K(m) = 0.21 x 10(6) +/- 0.04 x 10(6) M(-1) s(-1)). However, the latter transformed biphenyl at a higher maximal rate (k(cat) = 4.1 +/- 0.2 s(-1) versus k(cat) = 0.4 +/- 0.1 s(-1)). A variant of BPDO(LB400) containing four active site residues of BPDO(B356) transformed para-substituted congeners better than BPDO(LB400). Interestingly, a substitution remote from the active site, A267S, increased the enzyme's preference for meta-substituted congeners. Moreover, this substitution had a greater effect on the kinetics of biphenyl utilization than substitutions in the substrate-binding pocket. In all variants, the degree of coupling between congener depletion and O(2) consumption was approximately proportional to congener depletion. At 2.4-A resolution, the crystal structure of the BPDO(B356)-2,6-dichlorobiphenyl complex, the first crystal structure of a BPDO-PCB complex, provided additional insight into the reactivity of this isozyme with this congener, as well as into the differences in congener preferences of the BPDOs.
Collapse
Affiliation(s)
- Leticia Gómez-Gil
- Department of Microbiology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|
48
|
Ang EL, Obbard JP, Zhao H. Probing the molecular determinants of aniline dioxygenase substrate specificity by saturation mutagenesis. FEBS J 2007; 274:928-39. [PMID: 17269935 DOI: 10.1111/j.1742-4658.2007.05638.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aniline dioxygenase is a multicomponent Rieske nonheme-iron dioxygenase enzyme isolated from Acinetobacter sp. strain YAA. Saturation mutagenesis of the substrate-binding pocket residues, which were identified using a homology model of the alpha subunit of the terminal dioxygenase (AtdA3), was used to probe the molecular determinants of AtdA substrate specificity. The V205A mutation widened the substrate specificity of aniline dioxygenase to include 2-isopropylaniline, for which the wild-type enzyme has no activity. The V205A mutation also made 2-isopropylaniline a better substrate for the enzyme than 2,4-dimethylaniline, a native substrate of the wild-type enzyme. The I248L mutation improved the activity of aniline dioxygenase against aniline and 2,4-dimethylaniline approximately 1.7-fold and 2.1-fold, respectively. Thus, it is shown that the alpha subunit of the terminal dioxygenase indeed plays a part in the substrate specificity as well as the activity of aniline dioxygenase. Interestingly, the equivalent residues of V205 and I248 have not been previously reported to influence the substrate specificity of other Rieske dioxygenases. These results should facilitate future engineering of the enzyme for bioremediation and industrial applications.
Collapse
Affiliation(s)
- Ee L Ang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
49
|
Shindo K, Shindo Y, Hasegawa T, Osawa A, Kagami O, Furukawa K, Misawa N. Synthesis of highly hydroxylated aromatics by evolved biphenyl dioxygenase and subsequent dihydrodiol dehydrogenase. Appl Microbiol Biotechnol 2007; 75:1063-9. [PMID: 17401562 DOI: 10.1007/s00253-007-0928-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/05/2007] [Accepted: 03/06/2007] [Indexed: 11/28/2022]
Abstract
The evolved bphA1 (2049) gene, in which nine amino acids from the Pseudomonas pseudoalcaligenes KF707 BphA1 were changed to those from the Burkholderia xenovorans LB400 BphA1 (M247I, H255Q, V258I, G268A, D303E, -313G, S324T, V325I, and T376N), was expressed in Escherichia coli along with the bphA2A3A4 and bphB genes derived from strain KF707. This recombinant E. coli cells converted biphenyl and several heterocyclic aromatic compounds into the highly hydroxylated products such as biphenyl-2,3,2',3'-tetraol (from biphenyl), 2-(2,3-dihydroxyphenyl)benzoxazole-4,5-diol (from 2-phenylbenzoxazole), and 2-(2,5-dihydroxyphenyl)benzoxazole-4,5-diol [from 2-(2-hydroxyphenyl)benzoxazole]. The antioxidative activity of these generated compounds was markedly higher than that of the original substrate used.
Collapse
Affiliation(s)
- Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Wittich RM, Wolff P. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Microbiology (Reading) 2007; 153:186-95. [PMID: 17185547 DOI: 10.1099/mic.0.29096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) strain H850 is known to grow on biphenyl, and to co-oxidize congeners of polychlorinated biphenyls (PCBs). Using a Tn5-based minitransposon shuttle system and the TOL plasmid, the rational construction of hybrids of H850 was achieved by subsequent introduction of three distinct elements carrying 11 catabolic loci from three other biodegrading bacteria into the parent strain, finally yielding C. necator RW112. The new genetic elements introduced into H850 and its derivatives were tcbRCDEF, which encode the catabolic enzymes needed for chlorocatechol biodegradation under the control of a transcriptional regulator, followed by cbdABC, encoding a 2-halobenzoate dioxygenase, and xylXYZ, encoding a broad-spectrum toluate dioxygenase. The expression of the introduced genes was demonstrated by measuring the corresponding enzymic activities. The engineered strain RW112 gained the ability to grow on all isomeric monochlorobenzoates and 3,5-dichlorobenzoate, all monochlorobiphenyls, and 3,5-dichloro-, 2,3'-dichloro- and 2,4'-dichlorobiphenyl, without accumulation of chlorobenzoates. It also grew and utilized two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as sole carbon and energy sources for growth. This is the first report on the aerobic growth of a genetically improved bacterial strain at the expense of technical Aroclor mixtures.
Collapse
Affiliation(s)
- Rolf-Michael Wittich
- Division of Microbiology, German Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|